Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma
Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD...
Saved in:
| Published in | Apoptosis (London) Vol. 29; no. 7-8; pp. 1090 - 1108 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1360-8185 1573-675X 1573-675X |
| DOI | 10.1007/s10495-024-01947-4 |
Cover
| Abstract | Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as “hot” tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients. |
|---|---|
| AbstractList | Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as "hot" tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients.Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as "hot" tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients. Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as “hot” tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients. |
| Author | Yang, G. Bo Xiong, E. Qi Han, A. Xuan Li, F. Jinfeng Long, B. Yaping Li, C. Yao Wu, G. Liangliang Huang, D. Di Hu, H. Yi Liu, Qiaowei |
| Author_xml | – sequence: 1 givenname: A. Xuan surname: Han fullname: Han, A. Xuan organization: Department of General Surgery, Aerospace Central Hospital – sequence: 2 givenname: B. Yaping surname: Long fullname: Long, B. Yaping organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, School of Medicine, Nankai University, Nankai District – sequence: 3 givenname: C. Yao surname: Li fullname: Li, C. Yao organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, Medical School of Chinese People’s Liberation Army (PLA), Haidian District – sequence: 4 givenname: D. Di surname: Huang fullname: Huang, D. Di organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital – sequence: 5 givenname: E. Qi surname: Xiong fullname: Xiong, E. Qi organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital – sequence: 6 givenname: F. Jinfeng surname: Li fullname: Li, F. Jinfeng organization: Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital – sequence: 7 givenname: G. Liangliang surname: Wu fullname: Wu, G. Liangliang organization: Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital – sequence: 8 givenname: Qiaowei surname: Liu fullname: Liu, Qiaowei email: dr_liuqiaowei@126.com organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, Department of Emergency, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital – sequence: 9 givenname: G. Bo surname: Yang fullname: Yang, G. Bo email: yangbo@301hospital.com organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital – sequence: 10 givenname: H. Yi surname: Hu fullname: Hu, H. Yi email: huyi301zlxb@sina.com organization: Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, School of Medicine, Nankai University, Nankai District, Medical School of Chinese People’s Liberation Army (PLA), Haidian District, Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38519636$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctu1jAQRi1URC_wAiyQJTbdBCZ24jhLVHGTitiAxM6aOJP-Lo4d7KTQp-gr4_IXkLroyiP5HM94vmN2EGIgxp7X8KoG6F7nGpq-rUA0FdR901XNI3ZUt52sVNd-Oyi1VFDpWreH7DjnSwCQWjZP2KHUbd0rqY7YzSe0OxeIe8IUXLjgU8KZfsb0nY90RT4umQfa1hSXnfOcfq0JLXm_eUy81OV6jiN5PsXErXfBWfQ8bquNM3EMI3fzvIW47qjA1zxRXmLIxF3gfiv9cKQQLSbrQpzxKXs8oc_07O48YV_fvf1y9qE6__z-49mb88rKrl2rpoFWTrYf1NSOY4-6EUpM0k4joh4tCoVWdxonGKwFO5BC0qBFPXQCBFh5wk737y4p_tgor2Z2-fZfGChu2Yi-awB61YmCvryHXsYthTKdkaClUAVtC_XijtqGmUazJDdjujZ_V10AsQdsijknmv4hNZjbPM0-T1PyNH_yNE2R9D3JuhVXF0NZvfMPq3Kv5tInXFD6P_YD1m-x1bil |
| CitedBy_id | crossref_primary_10_3390_biomedicines12081831 crossref_primary_10_1016_j_intimp_2024_113908 crossref_primary_10_1080_21645515_2024_2435598 |
| Cites_doi | 10.1126/scitranslmed.aag1711 10.1084/jem.20220011 10.1126/science.aao4227 10.1172/jci.insight.122311 10.1172/2Fjci.insight.128008 10.3390/cancers12102884 10.7150/thno.43150 10.1172/JCI67484 10.1001/jama.2019.11058 10.1111/cas.15197 10.1158/1078-0432.CCR-20-1319 10.1083/jcb.201006052 10.1016/j.chom.2011.12.004 10.1038/s41573-018-0007-y 10.1158/0008-5472.CAN-18-0689 10.1182/blood-2007-03-080457 10.3389/fimmu.2020.01749 10.3322/caac.21763 10.1038/cr.2012.45 10.1038/ncomms14381 10.1186/s12964-022-00895-3 10.1038/ni.2987 10.1128/spectrum.01342-21 10.1016/j.trecan.2021.04.007 10.1016/j.cell.2021.04.016 10.1088/1758-5090/abe1cf 10.1083/jcb.200606027 10.1002/ctm2.24 10.1158/1538-7445.AM2021-115 10.1002/path.5435 10.7150/thno.53649 10.1074/jbc.M405883200 10.1186/s12931-022-02302-4 10.1038/s41573-019-0054-z 10.1038/nchembio.1735 10.3390/ijms23063218 10.1093/annonc/mdy333 10.1016/j.it.2022.04.010 10.1245/s10434-018-6941-4 10.1038/s41586-020-2155-6 10.1016/j.canlet.2020.10.015 10.1016/j.ctrv.2021.102227 10.1038/s41467-020-19015-1 10.1172/JCI91190 10.1038/nri.2017.105 10.1111/jth.13951 10.1074/jbc.271.29.17205 10.1074/jbc.M115.698639 10.1002/advs.202105631 10.1126/science.1092385 10.1016/j.febslet.2014.11.036 10.3390/cancers12061542 10.1016/j.it.2019.04.013 10.1016/j.addr.2021.05.001 10.1016/j.jhep.2021.07.032 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7RQ 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U U9A 7X8 |
| DOI | 10.1007/s10495-024-01947-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Career & Technical Education Database Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Career and Technical Education (Alumni Edition) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Career and Technical Education ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1573-675X |
| EndPage | 1108 |
| ExternalDocumentID | 38519636 10_1007_s10495_024_01947_4 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Military Health Special Research Project grantid: 20BJZ37 – fundername: key project of the National Health Commission grantid: GWJJ2021100304 |
| GroupedDBID | --- -4W -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7RQ 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBY SCLPG SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QL 7QP 7TK 7TM 7U9 7XB 8FK AZQEC C1K GNUQQ H94 K9. M7N PKEHL PQEST PQUKI Q9U U9A 7X8 |
| ID | FETCH-LOGICAL-c375t-44053fc9b6f5dd9a84262f3cfdaa8dca26ac878af0bcc0cbe6ae80821b72020c3 |
| IEDL.DBID | BENPR |
| ISSN | 1360-8185 1573-675X |
| IngestDate | Sat Sep 27 22:19:33 EDT 2025 Tue Oct 07 05:54:29 EDT 2025 Thu Aug 28 04:41:07 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Wed Oct 01 04:26:23 EDT 2025 Fri Feb 21 02:40:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Keywords | Prognostic model PLSCR1 Lung adenocarcinoma Cluster immunophenotype Neutrophil extracellular traps Machine learning |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-44053fc9b6f5dd9a84262f3cfdaa8dca26ac878af0bcc0cbe6ae80821b72020c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 38519636 |
| PQID | 3083269745 |
| PQPubID | 55375 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2974009672 proquest_journals_3083269745 pubmed_primary_38519636 crossref_primary_10_1007_s10495_024_01947_4 crossref_citationtrail_10_1007_s10495_024_01947_4 springer_journals_10_1007_s10495_024_01947_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Netherlands – name: London |
| PublicationSubtitle | An International Journal on Programmed Cell Death |
| PublicationTitle | Apoptosis (London) |
| PublicationTitleAbbrev | Apoptosis |
| PublicationTitleAlternate | Apoptosis |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Ayers, Lunceford, Nebozhyn, Murphy, Loboda, Kaufman, Albright, Cheng, Kang, Shankaran (CR34) 2017; 127 Cools-Lartigue, Spicer, McDonald, Gowing, Chow, Giannias, Bourdeau, Kubes, Ferri (CR19) 2013; 123 Wang, Zhang, Wang, Brown, Xia, Huang, Shen, Hu, Beane, Ansa-Addo (CR24) 2021; 75 Kaltenmeier, Yazdani, Tohme (CR23) 2021; 81 Hu, Yu, Othmane, Qiu, Li, Li, Liu, Ren, Chen, Gong (CR29) 2021; 11 Masucci, Minopoli, Del Vecchio, Carriero (CR12) 2020; 11 Kodigepalli, Bowers, Sharp, Nanjundan (CR44) 2015; 589 Huang, Liao, Chen, Wu, Li, Wang, Cao, Dong (CR48) 2020; 10 Wu, Saxena, Goel, Prajapati, Wang, Singh (CR13) 2020; 12 Branzk, Lubojemska, Hardison, Wang, Gutierrez, Brown, Papayannopoulos (CR7) 2014; 15 Kargl, Busch, Yang, Kim, Hanke, Metz, Hubbard, Lee, Madtes, McIntosh, Houghton (CR3) 2017; 8 Siegel, Miller, Wagle, Jemal (CR1) 2023; 73 Park, Wysocki, Amoozgar, Maiorino, Fein, Jorns, Schott, Kinugasa-Katayama, Lee, Won (CR14) 2016 Lizak, Yarovinsky (CR51) 2012; 11 Kantari, Pederzoli-Ribeil, Amir-Moazami, Gausson-Dorey, Moura, Lecomte, Benhamou, Witko-Sarsat (CR54) 2007; 110 Dal Col, Lamberti, Nigro, Casolaro, Fratta, Steffan, Montico (CR46) 2022; 20 Papayannopoulos (CR28) 2018; 18 Cabrita, Lauss, Sanna, Donia, Skaarup Larsen, Mitra, Johansson, Phung, Harbst, Vallon-Christersson (CR33) 2020; 580 Lewis, Liddle, Coote, Atkinson, Barker, Bax, Bicker, Bingham, Campbell, Chen (CR26) 2015; 11 Martinelli, Urosevic, Daryadel, Oberholzer, Baumann, Fey, Dummer, Simon, Yousefi (CR53) 2004; 279 Tang, Tie, Tu, Wei (CR27) 2020; 10 Teijeira, Garasa, Ochoa, Villalba, Olivera, Cirella, Eguren-Santamaria, Berraondo, Schalper, de Andrea (CR22) 2021; 27 Rayes, Mouhanna, Nicolau, Bourdeau, Giannias, Rousseau, Quail, Walsh, Sangwan, Bertos (CR10) 2019 Brinkmann, Reichard, Goosmann, Fauler, Uhlemann, Weiss, Weinrauch, Zychlinsky (CR9) 2004; 303 Cui, Chakraborty, Tang, Zhou, Schoenfelt, Becker, Hoffman, Chang, Blank, Reardon (CR5) 2021; 184 Rogers, DeBerardinis (CR42) 2021; 7 Mauracher, Posch, Martinod, Grilz, Däullary, Hell, Brostjan, Zielinski, Ay, Wagner (CR21) 2018; 16 Andreasson, Bodén, Fakhro, von Wachter, Olm, Malmsjö, Hallgren, Lindstedt (CR49) 2022; 23 Surendran, Rutledge, Colmon, Chandrasekaran (CR15) 2021; 13 Jin, Xu, Zhang, Li, Wang, Gao, Wu, Xu, Qi, Li (CR11) 2019; 26 Papayannopoulos, Metzler, Hakkim, Zychlinsky (CR25) 2010; 191 Albrengues, Shields, Ng, Park, Ambrico, Poindexter, Upadhyay, Uyeminami, Pommier, Küttner (CR20) 2018 Xu, Deng, Pang, Zhang, Liu, Liao, Yuan, Cheng, Li, Long (CR30) 2018; 78 Too, Ho, Adine, Iyer, Fong (CR36) 2021; 175 Kron, Alidousty, Scheffler, Merkelbach-Bruse, Seidel, Riedel, Ihle, Michels, Nogova, Fassunke (CR43) 2018; 29 Kajioka, Kagawa, Ito, Yoshimoto, Sakamoto, Kikuchi, Kuroda, Yoshida, Umeda, Noma (CR16) 2021; 497 Sadanari, Takemoto, Ishida, Otagiri, Daikoku, Murayama, Kusano (CR52) 2022; 10 Galon, Bruni (CR35) 2019; 18 Liao, Lin, Liu, Wei, Chen, Feng, Chang, Chang, Wang, Chi (CR47) 2022; 113 Avila Cobos, Alquicira-Hernandez, Powell, Mestdagh, De Preter (CR31) 2020; 11 Quail, Amulic, Aziz, Barnes, Eruslanov, Fridlender, Goodridge, Granot, Hidalgo, Huttenlocher (CR6) 2022 Martin, Kantari-Mimoun, Yin, Pederzoli-Ribeil, Angelot-Delettre, Ceroi, Grauffel, Benhamou, Reuter, Saas (CR55) 2016; 291 Hidalgo, Chilvers, Summers, Koenderman (CR56) 2019; 40 Martins-Cardoso, Almeida, Bagri, Rossi, Mermelstein, König, Monteiro (CR18) 2020; 12 Wang, Zhao, Zhao, Zheng, Zhuang, Liao, Wang, Cai, Zhang, Zeng, Liu (CR39) 2022; 9 Zhu, Zou, Yang, Li, Wang, Li, Li, Xu, Huang, Wu (CR17) 2021; 48 Cai, Zhao, Cao, Ma, Chen, Wu, Jia, He, Fu, Tan (CR32) 2020; 251 Gerard, Delyon, Wicky, Homicsko, Cuendet, Michielin (CR38) 2021; 101 Németh, Sperandio, Mócsai (CR4) 2020; 19 Zhang, Huang, Saw, Song (CR37) 2022; 43 Bassé, Stout, Sims, Wiedmer (CR45) 1996; 271 Arbour, Riely (CR2) 2019; 322 Talukder, Bao, Kim, Facchinetti, Hanabuchi, Bover, Zal, Liu (CR50) 2012; 22 Raftopoulou, Valadez-Cosmes, Mihalic, Schicho, Kargl (CR40) 2022; 23 Fuchs, Abed, Goosmann, Hurwitz, Schulze, Wahn, Weinrauch, Brinkmann, Zychlinsky (CR8) 2007; 176 Singel, Emmons, Khan, Mayor, Shen, Wong, Morrell, Eng, Mark, Bankert (CR41) 2019 V Papayannopoulos (1947_CR28) 2018; 18 F Avila Cobos (1947_CR31) 2020; 11 H Wang (1947_CR24) 2021; 75 H Kajioka (1947_CR16) 2021; 497 MT Masucci (1947_CR12) 2020; 11 C Cui (1947_CR5) 2021; 184 V Papayannopoulos (1947_CR25) 2010; 191 T Rogers (1947_CR42) 2021; 7 LM Mauracher (1947_CR21) 2018; 16 H Sadanari (1947_CR52) 2022; 10 V Surendran (1947_CR15) 2021; 13 A Teijeira (1947_CR22) 2021; 27 F Tang (1947_CR27) 2020; 10 KR Martin (1947_CR55) 2016; 291 N Branzk (1947_CR7) 2014; 15 L Wu (1947_CR13) 2020; 12 R Cabrita (1947_CR33) 2020; 580 WC Liao (1947_CR47) 2022; 113 A Hidalgo (1947_CR56) 2019; 40 KL Singel (1947_CR41) 2019 T Zhu (1947_CR17) 2021; 48 L Xu (1947_CR30) 2018; 78 J Galon (1947_CR35) 2019; 18 KM Kodigepalli (1947_CR44) 2015; 589 AH Talukder (1947_CR50) 2012; 22 J Cools-Lartigue (1947_CR19) 2013; 123 A Kron (1947_CR43) 2018; 29 C Kaltenmeier (1947_CR23) 2021; 81 C Kantari (1947_CR54) 2007; 110 MC Cai (1947_CR32) 2020; 251 CL Gerard (1947_CR38) 2021; 101 K Martins-Cardoso (1947_CR18) 2020; 12 S Martinelli (1947_CR53) 2004; 279 RL Siegel (1947_CR1) 2023; 73 P Huang (1947_CR48) 2020; 10 S Raftopoulou (1947_CR40) 2022; 23 J Andreasson (1947_CR49) 2022; 23 F Bassé (1947_CR45) 1996; 271 V Brinkmann (1947_CR9) 2004; 303 NSH Too (1947_CR36) 2021; 175 M Lizak (1947_CR51) 2012; 11 M Ayers (1947_CR34) 2017; 127 J Park (1947_CR14) 2016 J Albrengues (1947_CR20) 2018 RF Rayes (1947_CR10) 2019 Y Wang (1947_CR39) 2022; 9 J Dal Col (1947_CR46) 2022; 20 J Hu (1947_CR29) 2021; 11 W Jin (1947_CR11) 2019; 26 HD Lewis (1947_CR26) 2015; 11 KC Arbour (1947_CR2) 2019; 322 DF Quail (1947_CR6) 2022 J Kargl (1947_CR3) 2017; 8 TA Fuchs (1947_CR8) 2007; 176 T Németh (1947_CR4) 2020; 19 J Zhang (1947_CR37) 2022; 43 |
| References_xml | – volume: 176 start-page: 231 year: 2007 end-page: 241 ident: CR8 article-title: Novel cell death program leads to neutrophil extracellular traps publication-title: J Cell Biol – volume: 13 start-page: 035029 year: 2021 ident: CR15 article-title: A novel tumor-immune microenvironment (TIME)-on-Chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion publication-title: Biofabrication – volume: 10 start-page: 199 year: 2020 end-page: 223 ident: CR27 article-title: Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies publication-title: Clin Transl Med – volume: 11 start-page: 1749 year: 2020 ident: CR12 article-title: The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis publication-title: Front Immunol – year: 2016 ident: CR14 article-title: Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aag1711 – volume: 322 start-page: 764 year: 2019 end-page: 774 ident: CR2 article-title: Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review publication-title: JAMA – volume: 40 start-page: 584 year: 2019 end-page: 597 ident: CR56 article-title: The neutrophil life cycle publication-title: Trends Immunol – volume: 7 start-page: 700 year: 2021 end-page: 713 ident: CR42 article-title: Metabolic plasticity of neutrophils: relevance to pathogen responses and cancer publication-title: Trends Cancer – volume: 20 start-page: 78 year: 2022 ident: CR46 article-title: Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors publication-title: Cell Commun Signal – volume: 127 start-page: 2930 year: 2017 end-page: 2940 ident: CR34 article-title: IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade publication-title: J Clin Invest – volume: 78 start-page: 6575 year: 2018 end-page: 6580 ident: CR30 article-title: TIP: a web server for resolving tumor immunophenotype profiling publication-title: Cancer Res – volume: 73 start-page: 17 year: 2023 end-page: 48 ident: CR1 article-title: Cancer statistics, 2023 publication-title: CA Cancer J Clin – volume: 497 start-page: 1 year: 2021 end-page: 13 ident: CR16 article-title: Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis publication-title: Cancer Lett – volume: 11 start-page: 189 year: 2015 end-page: 191 ident: CR26 article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation publication-title: Nat Chem Biol – volume: 589 start-page: 3 year: 2015 end-page: 14 ident: CR44 article-title: Roles and regulation of phospholipid scramblases publication-title: FEBS Lett – year: 2022 ident: CR6 article-title: Neutrophil phenotypes and functions in cancer: a consensus statement publication-title: J Exp Med doi: 10.1084/jem.20220011 – volume: 123 start-page: 3446 year: 2013 end-page: 3458 ident: CR19 article-title: Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis publication-title: J Clin Invest – volume: 29 start-page: 2068 year: 2018 end-page: 2075 ident: CR43 article-title: Impact of TP53 mutation status on systemic treatment outcome in ALK-rearranged non-small-cell lung cancer publication-title: Ann Oncol – year: 2018 ident: CR20 article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice publication-title: Science doi: 10.1126/science.aao4227 – volume: 18 start-page: 197 year: 2019 end-page: 218 ident: CR35 article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies publication-title: Nat Rev Drug Discov – volume: 113 start-page: 205 year: 2022 end-page: 220 ident: CR47 article-title: Nuclear accumulation of KPNA2 impacts radioresistance through positive regulation of the PLSCR1-STAT1 loop in lung adenocarcinoma publication-title: Cancer Sci – volume: 175 start-page: 113791 year: 2021 ident: CR36 article-title: Hot or cold: bioengineering immune contextures into in vitro patient-derived tumor models publication-title: Adv Drug Deliv Rev – volume: 184 start-page: 3163 year: 2021 end-page: 3177.e3121 ident: CR5 article-title: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis publication-title: Cell – volume: 110 start-page: 4086 year: 2007 end-page: 4095 ident: CR54 article-title: Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis publication-title: Blood – volume: 8 start-page: 14381 year: 2017 ident: CR3 article-title: Neutrophils dominate the immune cell composition in non-small cell lung cancer publication-title: Nat Commun – volume: 81 start-page: 115 year: 2021 ident: CR23 article-title: Neutrophil extracellular traps express PD-L1 which promotes T cell exhaustion in the tumor microenvironment publication-title: Cancer Res – volume: 10 start-page: e0134221 year: 2022 ident: CR52 article-title: The interferon-inducible human PLSCR1 protein is a restriction factor of human cytomegalovirus publication-title: Microbiol Spectr – volume: 11 start-page: 70 year: 2012 end-page: 80 ident: CR51 article-title: Phospholipid scramblase 1 mediates type i interferon-induced protection against staphylococcal α-toxin publication-title: Cell Host Microbe – volume: 15 start-page: 1017 year: 2014 end-page: 1025 ident: CR7 article-title: Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens publication-title: Nat Immunol – volume: 27 start-page: 2383 year: 2021 end-page: 2393 ident: CR22 article-title: IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy publication-title: Clin Cancer Res – volume: 580 start-page: E1 year: 2020 ident: CR33 article-title: Author correction: tertiary lymphoid structures improve immunotherapy and survival in melanoma publication-title: Nature – volume: 43 start-page: 523 year: 2022 end-page: 545 ident: CR37 article-title: Turning cold tumors hot: from molecular mechanisms to clinical applications publication-title: Trends Immunol – volume: 12 start-page: 1542 year: 2020 ident: CR18 article-title: Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition publication-title: Cancers (Basel) – volume: 10 start-page: 4644 year: 2020 end-page: 4658 ident: CR48 article-title: Nuclear translocation of PLSCR1 activates STAT1 signaling in basal-like breast cancer publication-title: Theranostics – volume: 16 start-page: 508 year: 2018 end-page: 518 ident: CR21 article-title: Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients publication-title: J Thromb Haemost – volume: 48 start-page: 1 year: 2021 end-page: 13 ident: CR17 article-title: Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition publication-title: Int J Mol Med – volume: 11 start-page: 5650 year: 2020 ident: CR31 article-title: Benchmarking of cell type deconvolution pipelines for transcriptomics data publication-title: Nat Commun – volume: 101 start-page: 102227 year: 2021 ident: CR38 article-title: Turning tumors from cold to inflamed to improve immunotherapy response publication-title: Cancer Treat Rev – volume: 191 start-page: 677 year: 2010 end-page: 691 ident: CR25 article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps publication-title: J Cell Biol – volume: 23 start-page: 369 year: 2022 ident: CR49 article-title: Exhaled phospholipid transfer protein and hepatocyte growth factor receptor in lung adenocarcinoma publication-title: Respir Res – volume: 12 start-page: 2884 year: 2020 ident: CR13 article-title: Breast cancer cell-neutrophil interactions enhance neutrophil survival and pro-tumorigenic activities publication-title: Cancers (Basel) – volume: 271 start-page: 17205 year: 1996 end-page: 17210 ident: CR45 article-title: Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid publication-title: J Biol Chem – volume: 291 start-page: 10476 year: 2016 end-page: 10489 ident: CR55 article-title: Proteinase 3 is a phosphatidylserine-binding protein that affects the production and function of microvesicles publication-title: J Biol Chem – volume: 279 start-page: 44123 year: 2004 end-page: 44132 ident: CR53 article-title: Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation publication-title: J Biol Chem – volume: 26 start-page: 635 year: 2019 end-page: 643 ident: CR11 article-title: Tumor-infiltrating NETs predict postsurgical survival in patients with pancreatic ductal adenocarcinoma publication-title: Ann Surg Oncol – volume: 75 start-page: 1271 year: 2021 end-page: 1283 ident: CR24 article-title: Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis publication-title: J Hepatol – volume: 11 start-page: 3089 year: 2021 end-page: 3108 ident: CR29 article-title: Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer publication-title: Theranostics – volume: 9 start-page: e2105631 year: 2022 ident: CR39 article-title: Remodeling tumor-associated neutrophils to enhance dendritic cell-based HCC neoantigen nano-vaccine efficiency publication-title: Adv Sci (Weinh) – volume: 22 start-page: 1129 year: 2012 end-page: 1139 ident: CR50 article-title: Phospholipid scramblase 1 regulates Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells publication-title: Cell Res – volume: 251 start-page: 147 year: 2020 end-page: 159 ident: CR32 article-title: T-cell exhaustion interrelates with immune cytolytic activity to shape the inflamed tumor microenvironment publication-title: J Pathol – year: 2019 ident: CR41 article-title: Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment publication-title: JCI Insight doi: 10.1172/jci.insight.122311 – volume: 18 start-page: 134 year: 2018 end-page: 147 ident: CR28 article-title: Neutrophil extracellular traps in immunity and disease publication-title: Nat Rev Immunol – year: 2019 ident: CR10 article-title: Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects publication-title: JCI Insight doi: 10.1172/2Fjci.insight.128008 – volume: 23 start-page: 3218 year: 2022 ident: CR40 article-title: Tumor-mediated neutrophil polarization and therapeutic implications publication-title: Int J Mol Sci – volume: 19 start-page: 253 year: 2020 end-page: 275 ident: CR4 article-title: Neutrophils as emerging therapeutic targets publication-title: Nat Rev Drug Discov – volume: 303 start-page: 1532 year: 2004 end-page: 1535 ident: CR9 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science – volume: 12 start-page: 2884 year: 2020 ident: 1947_CR13 publication-title: Cancers (Basel) doi: 10.3390/cancers12102884 – volume: 10 start-page: 4644 year: 2020 ident: 1947_CR48 publication-title: Theranostics doi: 10.7150/thno.43150 – volume: 123 start-page: 3446 year: 2013 ident: 1947_CR19 publication-title: J Clin Invest doi: 10.1172/JCI67484 – volume: 322 start-page: 764 year: 2019 ident: 1947_CR2 publication-title: JAMA doi: 10.1001/jama.2019.11058 – volume: 113 start-page: 205 year: 2022 ident: 1947_CR47 publication-title: Cancer Sci doi: 10.1111/cas.15197 – volume: 27 start-page: 2383 year: 2021 ident: 1947_CR22 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-1319 – year: 2019 ident: 1947_CR10 publication-title: JCI Insight doi: 10.1172/2Fjci.insight.128008 – volume: 191 start-page: 677 year: 2010 ident: 1947_CR25 publication-title: J Cell Biol doi: 10.1083/jcb.201006052 – volume: 11 start-page: 70 year: 2012 ident: 1947_CR51 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.12.004 – volume: 18 start-page: 197 year: 2019 ident: 1947_CR35 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-018-0007-y – volume: 78 start-page: 6575 year: 2018 ident: 1947_CR30 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0689 – volume: 110 start-page: 4086 year: 2007 ident: 1947_CR54 publication-title: Blood doi: 10.1182/blood-2007-03-080457 – volume: 11 start-page: 1749 year: 2020 ident: 1947_CR12 publication-title: Front Immunol doi: 10.3389/fimmu.2020.01749 – volume: 73 start-page: 17 year: 2023 ident: 1947_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 22 start-page: 1129 year: 2012 ident: 1947_CR50 publication-title: Cell Res doi: 10.1038/cr.2012.45 – volume: 8 start-page: 14381 year: 2017 ident: 1947_CR3 publication-title: Nat Commun doi: 10.1038/ncomms14381 – volume: 20 start-page: 78 year: 2022 ident: 1947_CR46 publication-title: Cell Commun Signal doi: 10.1186/s12964-022-00895-3 – volume: 15 start-page: 1017 year: 2014 ident: 1947_CR7 publication-title: Nat Immunol doi: 10.1038/ni.2987 – volume: 10 start-page: e0134221 year: 2022 ident: 1947_CR52 publication-title: Microbiol Spectr doi: 10.1128/spectrum.01342-21 – volume: 7 start-page: 700 year: 2021 ident: 1947_CR42 publication-title: Trends Cancer doi: 10.1016/j.trecan.2021.04.007 – volume: 184 start-page: 3163 year: 2021 ident: 1947_CR5 publication-title: Cell doi: 10.1016/j.cell.2021.04.016 – volume: 13 start-page: 035029 year: 2021 ident: 1947_CR15 publication-title: Biofabrication doi: 10.1088/1758-5090/abe1cf – volume: 176 start-page: 231 year: 2007 ident: 1947_CR8 publication-title: J Cell Biol doi: 10.1083/jcb.200606027 – volume: 10 start-page: 199 year: 2020 ident: 1947_CR27 publication-title: Clin Transl Med doi: 10.1002/ctm2.24 – year: 2022 ident: 1947_CR6 publication-title: J Exp Med doi: 10.1084/jem.20220011 – year: 2019 ident: 1947_CR41 publication-title: JCI Insight doi: 10.1172/jci.insight.122311 – volume: 81 start-page: 115 year: 2021 ident: 1947_CR23 publication-title: Cancer Res doi: 10.1158/1538-7445.AM2021-115 – volume: 251 start-page: 147 year: 2020 ident: 1947_CR32 publication-title: J Pathol doi: 10.1002/path.5435 – volume: 11 start-page: 3089 year: 2021 ident: 1947_CR29 publication-title: Theranostics doi: 10.7150/thno.53649 – volume: 279 start-page: 44123 year: 2004 ident: 1947_CR53 publication-title: J Biol Chem doi: 10.1074/jbc.M405883200 – volume: 48 start-page: 1 year: 2021 ident: 1947_CR17 publication-title: Int J Mol Med – volume: 23 start-page: 369 year: 2022 ident: 1947_CR49 publication-title: Respir Res doi: 10.1186/s12931-022-02302-4 – volume: 19 start-page: 253 year: 2020 ident: 1947_CR4 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0054-z – volume: 11 start-page: 189 year: 2015 ident: 1947_CR26 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1735 – volume: 23 start-page: 3218 year: 2022 ident: 1947_CR40 publication-title: Int J Mol Sci doi: 10.3390/ijms23063218 – volume: 29 start-page: 2068 year: 2018 ident: 1947_CR43 publication-title: Ann Oncol doi: 10.1093/annonc/mdy333 – volume: 43 start-page: 523 year: 2022 ident: 1947_CR37 publication-title: Trends Immunol doi: 10.1016/j.it.2022.04.010 – volume: 26 start-page: 635 year: 2019 ident: 1947_CR11 publication-title: Ann Surg Oncol doi: 10.1245/s10434-018-6941-4 – volume: 580 start-page: E1 year: 2020 ident: 1947_CR33 publication-title: Nature doi: 10.1038/s41586-020-2155-6 – volume: 497 start-page: 1 year: 2021 ident: 1947_CR16 publication-title: Cancer Lett doi: 10.1016/j.canlet.2020.10.015 – volume: 101 start-page: 102227 year: 2021 ident: 1947_CR38 publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2021.102227 – volume: 11 start-page: 5650 year: 2020 ident: 1947_CR31 publication-title: Nat Commun doi: 10.1038/s41467-020-19015-1 – volume: 127 start-page: 2930 year: 2017 ident: 1947_CR34 publication-title: J Clin Invest doi: 10.1172/JCI91190 – year: 2018 ident: 1947_CR20 publication-title: Science doi: 10.1126/science.aao4227 – volume: 18 start-page: 134 year: 2018 ident: 1947_CR28 publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.105 – year: 2016 ident: 1947_CR14 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aag1711 – volume: 16 start-page: 508 year: 2018 ident: 1947_CR21 publication-title: J Thromb Haemost doi: 10.1111/jth.13951 – volume: 271 start-page: 17205 year: 1996 ident: 1947_CR45 publication-title: J Biol Chem doi: 10.1074/jbc.271.29.17205 – volume: 291 start-page: 10476 year: 2016 ident: 1947_CR55 publication-title: J Biol Chem doi: 10.1074/jbc.M115.698639 – volume: 9 start-page: e2105631 year: 2022 ident: 1947_CR39 publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202105631 – volume: 303 start-page: 1532 year: 2004 ident: 1947_CR9 publication-title: Science doi: 10.1126/science.1092385 – volume: 589 start-page: 3 year: 2015 ident: 1947_CR44 publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.11.036 – volume: 12 start-page: 1542 year: 2020 ident: 1947_CR18 publication-title: Cancers (Basel) doi: 10.3390/cancers12061542 – volume: 40 start-page: 584 year: 2019 ident: 1947_CR56 publication-title: Trends Immunol doi: 10.1016/j.it.2019.04.013 – volume: 175 start-page: 113791 year: 2021 ident: 1947_CR36 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2021.05.001 – volume: 75 start-page: 1271 year: 2021 ident: 1947_CR24 publication-title: J Hepatol doi: 10.1016/j.jhep.2021.07.032 |
| SSID | ssj0003834 |
| Score | 2.4734106 |
| Snippet | Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1090 |
| SubjectTerms | Adenocarcinoma Adenocarcinoma of Lung - genetics Adenocarcinoma of Lung - immunology Adenocarcinoma of Lung - pathology Algorithms Animals Biochemistry Biomedical and Life Sciences Biomedicine Cancer Cancer Research Cell Biology Cell death Cell Line, Tumor Cluster analysis Clusters DNA microarrays Extracellular Traps - immunology Extracellular Traps - metabolism Gene Expression Regulation, Neoplastic Genes Humans Immunotherapy In vivo methods and tests Learning algorithms Leukocytes (neutrophilic) Lung cancer Lung Neoplasms - genetics Lung Neoplasms - immunology Lung Neoplasms - pathology Lungs Machine Learning Medical prognosis Metastases Mice Microenvironments Neutrophils Neutrophils - immunology Neutrophils - metabolism Oncology Performance prediction Phenotypes Phospholipid Transfer Proteins - genetics Phospholipid Transfer Proteins - metabolism Phospholipids Prognosis Therapeutic targets Tumor Microenvironment - immunology Tumors Virology |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEagXVMqjWwoyEjeItHX8SI4VoqqQlhMr9RaNX7DSklTZ7KG_gr_cseNsQQWk3iLZcSzPeOZzPN8MwHsnkAepQiGl0YWolCuMdqEI6AR5FKxl4nEvvqqLpfhyKS8zKWwzRbtPV5LJUv9GdhOJTRyjJmpBAz-ERzKm8yItXvKznf2lM9dYylbNi-iOMlXm72P86Y7uYMw796PJ7ZwfwNOMF9nZKOBn8MC3h_B4rCB5fQhPFvlu_Dn8WqS4SM9yIYjvLEyBVyxTozas9duh765-rNaMrHKP8b99DERl9EzNqS4OIxzLJsYk67YDrY9n2Dq2imSSTNm6Zv0YXuvZqmVrshkMyYaRa-xpPt1PfAHL88_fPl0UudxCYUsth0IQdiuDrY0K0rkaq5isPpQ2OMTKWeQKbaUrDHNj7dwar9BXhCBOjeYEOm35EvbarvVHwLzD2nIjUVtDljjm1EdRCy9Kp7U3cgan06o3NucijyUx1s1tFuUoqYYk1SRJNWIGH3bvXI2ZOP7b-2QSZpN35aYpCW9yRScomsC7XTPtp7jY2Ppuu2k4NcdzneYzeDUqwe5zJcFTMlhqBh8nrbgd_N9zOb5f99ewz5OGxijDE9gb-q1_Q8hnMG-Tot8An-j8iA priority: 102 providerName: Springer Nature |
| Title | Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma |
| URI | https://link.springer.com/article/10.1007/s10495-024-01947-4 https://www.ncbi.nlm.nih.gov/pubmed/38519636 https://www.proquest.com/docview/3083269745 https://www.proquest.com/docview/2974009672 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-675X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003834 issn: 1360-8185 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1573-675X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0003834 issn: 1360-8185 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-675X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0003834 issn: 1360-8185 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-675X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003834 issn: 1360-8185 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-675X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003834 issn: 1360-8185 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9NAEB7uWpR7ET1_XPQsK_imwd5mN5s8iFTpeSgtIhbqU9ifWqhJTdOH-yv8l51NNi1yeG8h2ybLzmTmS3a--QBeGiap46mLOVciZllqYiWMi500DDOKzHnL457N06sF-7TkyyOY91wYX1bZx8Q2UJtK-2_kbxLECjRF9MvfbX7HXjXK7672EhoySCuYt22LsWMYUt8ZawDD99P5l6_72IzvY53MbTqOfaoKNJpApmMtW9lXZeQMJ_5vqrqBP2_snbYp6fI-3AtYkkw64z-AI1uewp1OXfL6FO7Owr75Q_gza2smLQkiET-I64uySKBNbUlpd01dbX6u1gQjdi39N31fpErwGIdbzRyCGJf0bEpS7RpcPEtkacjKE00Cneua1F3prSWrkqwxnhCJ8Q3TZo3zqX7JR7C4nH77cBUHKYZYJ4I3MUNclzidq9RxY3KZ-Ub2LtHOSJkZLWkqdSYy6cZK67FWNpU2Q3RxoQRFQKqTxzAoq9KeAbFG5poqLoVWGKV9v33JcmZZYoSwikdw0a96oUOfci-XsS4OHZa9pQq0VNFaqmARvNr_Z9N16bj11-e9MYvwxG6Lg39F8GI_jM-aX2xZ2mq3LSgO-3c-QSN40jnB_nYJQlcMZmkEr3uvOFz8_3N5evtcnsEJbT3SVxyew6Cpd_Y5oqBGjeBYLMUIhpOP3z9PR8HR8eyCTv4CtBEJlw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVlxeEJSbocAiwRNYpOtdXx4qxKVVSpsIoVbq23avECnYwXGE8hX8Ed_GrL1OhCr61rdIG9urnfHMWe-cOQAvDZPU8dTFnKssZnlqYpUZFztpGGYUWfCWxz0ap8NT9vmMn23An54L48sq-5jYBmpTaf-N_G2CWIGmiH75u9nP2KtG-dPVXkJDBmkFs9e2GAvEjiO7_IVbuPne4Se09ytKD_ZPPg7joDIQ6yTjTcwQsiROFyp13JhC5r5Hu0u0M1LmRkuaSp1nuXQDpfVAK5tKm2Pi3FUZRaylE7zvNdhiCStw87f1YX_85esqF-D-r5PVTQexT42BthPIe6xlR_sqkILhQv2bGi_g3QtntW0KPLgDtwN2Je87Z7sLG7bchuudmuVyG26Mwjn9Pfg9ams0LQmiFN-I64vASKBpzUlpF01dzb5PpgQzRC39GYIviiX4G4dbjR6CmJr07E1SLRo0liWyNGTiiS2BPrYkdVfqa8mkJFOMX0RiPMU0XeN8qh_yPpxeiVEewGZZlfYREGtkoaniMtMKs4Lv7y9ZwSxLTJZZxSPY7Vdd6NAX3ctzTMW6o7O3lEBLidZSgkXwenXNrOsKcum_d3pjihAh5mLtzxG8WA3ju-0XW5a2WswFxWG_x8xoBA87J1g9LkGojMEzjeBN7xXrm_9_Lo8vn8tzuDk8GR2L48Px0RO4RVvv9NWOO7DZ1Av7FBFYo54FNydwftVv1l986kUN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VIqpeKigfNRRYJDiB1XS967UPCCFK1FJScaBSbmY_aaTUDo6jKr-C_8OvY9ZeJ0IVvfUWaRNntTM789b73gzAa8MkdTx1MedKxCxLTayEcbGThmFGkTlvddyjs_T4nH0Z8_EG_Om1MJ5W2cfENlCbSvt35AcJYgWaIvrlBy7QIr4dDT_MfsW-g5S_ae3baXQucmqXV3h8m78_OUJbv6F0-Pn7p-M4dBiIdSJ4EzOEK4nTuUodNyaXma_P7hLtjJSZ0ZKmUmcik26gtB5oZVNpM0yah0pQxFk6wefegbsiSXJPJxTj1WFvgCe_rqFuOoh9UgyCnSDbY60u2vM_coZL9G9SvIZ0r93StslveB92AmolHzs3ewAbttyFe10fy-UubI3CDf1D-D1q2ZmWhHYUP4nr6V8kCLTmpLSLpq5mF5MpwQWupb898HRYgp9xuO3OQxBNk163SapFg2ayRJaGTLykJQjHlqTuSL6WTEoyxchFJEZSTNA1zqe6lI_g_FZM8hg2y6q0e0CskbmmikuhFeYDX9lfspxZlhghrOIRHParXuhQEd035pgW61rO3lIFWqpoLVWwCN6ufjPr6oHc-O393phFiA3zYu3JEbxaDeOu9ostS1st5gXFYX-6FDSCJ50TrP4uQZCMYTON4F3vFeuH_38uT2-ey0vYwv1UfD05O30G27R1Tk9z3IfNpl7Y5wi9GvWi9XECP257U_0FnRpCpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+framework+develops+neutrophil+extracellular+traps+model+for+clinical+outcome+and+immunotherapy+response+in+lung+adenocarcinoma&rft.jtitle=Apoptosis+%28London%29&rft.au=Han%2C+A+Xuan&rft.au=Long%2C+B+Yaping&rft.au=Li%2C+C+Yao&rft.au=Huang%2C+D+Di&rft.date=2024-08-01&rft.issn=1573-675X&rft.eissn=1573-675X&rft.volume=29&rft.issue=7-8&rft.spage=1090&rft_id=info:doi/10.1007%2Fs10495-024-01947-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-8185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-8185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-8185&client=summon |