PE-Ynet: a novel attention-based multi-task model for pulmonary embolism detection using CT pulmonary angiography (CTPA) scan images

Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 47; no. 3; pp. 863 - 880
Main Authors Hemalakshmi, G. R., Murugappan, M., Sikkandar, Mohamed Yacin, Santhi, D., Prakash, N. B., Mohanarathinam, A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI10.1007/s13246-024-01410-3

Cover

Abstract Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model’s robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19.
AbstractList Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model’s robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19.
Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model's robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19.Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model's robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19.
Author Mohanarathinam, A.
Santhi, D.
Sikkandar, Mohamed Yacin
Hemalakshmi, G. R.
Prakash, N. B.
Murugappan, M.
Author_xml – sequence: 1
  givenname: G. R.
  surname: Hemalakshmi
  fullname: Hemalakshmi, G. R.
  organization: School of Computing Science and Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: M.
  orcidid: 0000-0002-5839-4589
  surname: Murugappan
  fullname: Murugappan, M.
  email: m.murugappan@kcst.edu.kw
  organization: Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Department of Electronics and Communication Engineering, School of Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Center of Excellence for Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis
– sequence: 3
  givenname: Mohamed Yacin
  surname: Sikkandar
  fullname: Sikkandar, Mohamed Yacin
  organization: Biomedical Equipment Technology, College of Applied Medical Sciences, Majmaah University
– sequence: 4
  givenname: D.
  surname: Santhi
  fullname: Santhi, D.
  organization: Department of Biomedical Engineering, Mepco Schlenk Engineering College
– sequence: 5
  givenname: N. B.
  surname: Prakash
  fullname: Prakash, N. B.
  organization: Department of Electrical and Electronics Engineering, National Engineering College
– sequence: 6
  givenname: A.
  surname: Mohanarathinam
  fullname: Mohanarathinam, A.
  organization: Department of Electronics and Communication Engineering, Karpagam Academy of Higher Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38546819$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URELIH6BAlmhCYfDX2rt00Sl8SJFIcRRUls-eXRx27cP2RrqeH84eFwJKkcpTPM94Zt7n6CimCAi9ZPQto1S_K0xwqQjlklAmGSXiCTrhSnEitdBH9zXvjtFZKTeUUt4wplXzDB2LtpGqZd0J-nV9Sb5FqO-xxTHdwohtrRBrSJFsbAGPp3msgVRbfuAp-QXoU8bbeZxStHmHYdqkMZQJe6jg9h6eS4gDXq3_o2wcQhqy3X7f4fPV-vriDS7ORhwmO0B5gZ72dixwdveeoq8fLterT-Tqy8fPq4sr4oRuKpHCCec9ky3Q3vWMCeVU550WbENVyzvtO64Et33DbMeo95732vba8ZYBA3GKzg99tzn9nKFUM4XiYBxthDQXIyjnjVKtVAv6-gF6k-Ycl-mMYFRxyanYU6_uqHkzgTfbvCyUd-bvfReAHwCXUykZ-nuEUbPP0RxyNEuO5k-ORixS-0Byodr9aWu2YXxcFQe1LP_EAfK_sR-xfgOG8rED
CitedBy_id crossref_primary_10_1088_2631_8695_ada720
crossref_primary_10_1109_ACCESS_2025_3536621
crossref_primary_10_7759_cureus_78217
crossref_primary_10_1038_s41598_024_81703_5
Cites_doi 10.1093/eurheartj/ehaa254
10.1007/s00330-020-06699-8
10.1007/s00330-021-08003-8
10.1038/s41598-020-78888-w
10.1093/eurheartj/ehz405
10.1183/13993003.01365-2020
10.1201/9781003142584-1-1
10.1016/j.jinf.2021.01.003
10.1148/radiol.2020201955
10.1007/s00330-020-06998-0
10.7717/peerj-cs.349
10.3390/app10082945
10.1109/TMI.2009.2013618
10.1001/jama.1990.03440200057023
10.1016/j.measurement.2022.111485
10.1016/j.ajem.2020.04.011
10.1038/sdata.2018.180
10.1016/j.media.2019.101541
10.1038/s41598-021-95249-3
10.1109/ACCESS.2019.2925210
10.1038/s41598-023-34484-2
10.1016/j.scs.2021.103252
10.1109/ACCESS.2021.3099479
10.1109/CVPR.2016.90
10.1038/s41746-019-0211-0
10.1109/ICCV.2017.74
10.1117/12.2628519
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. Australasian College of Physical Scientists and Engineers in Medicine.
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. Australasian College of Physical Scientists and Engineers in Medicine.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s13246-024-01410-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 880
ExternalDocumentID 38546819
10_1007_s13246_024_01410_3
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AFBBN
AFLOW
AFQWF
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
3V.
4.4
408
40D
53G
5GY
67N
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABUWG
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
CCPQU
CSCUP
DWQXO
EIOEI
EN4
ESBYG
FRRFC
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
M1P
M2P
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
R9I
RLLFE
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ID FETCH-LOGICAL-c375t-43c3cdd148e0fcf1136c69dc731b068297d92632af51a910ddd2f7af7c281e1e3
IEDL.DBID 8FG
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Fri Sep 05 07:29:20 EDT 2025
Tue Sep 02 03:47:02 EDT 2025
Mon Jul 21 05:53:38 EDT 2025
Tue Jul 01 02:52:58 EDT 2025
Thu Apr 24 23:07:03 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Pulmonary embolism
Segmentation
YNet
Computed tomography pulmonary angiography (CTPA)
Attention
Language English
License 2024. Australasian College of Physical Scientists and Engineers in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-43c3cdd148e0fcf1136c69dc731b068297d92632af51a910ddd2f7af7c281e1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5839-4589
PMID 38546819
PQID 3106242036
PQPubID 33672
PageCount 18
ParticipantIDs proquest_miscellaneous_3022566846
proquest_journals_3106242036
pubmed_primary_38546819
crossref_primary_10_1007_s13246_024_01410_3
crossref_citationtrail_10_1007_s13246_024_01410_3
springer_journals_10_1007_s13246_024_01410_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Poyiadji, Cormier, Patel, Hadied, Bhargava, Khanna, Song (CR1) 2020; 297
Prakash, Murugappan, Hemalakshmi, Jayalakshmi, Mahmud (CR5) 2021; 75
Tajbakhsh, Shin, Gotway, Liang (CR22) 2019; 58
Raj, Zhu, Khan, Zhuang, Yang, Mahesh, Karthik (CR30) 2021; 7
CR19
CR38
CR15
CR37
Cano-Espinosa, Cazorla, González (CR23) 2020; 10
Yuan, Shao, Liu, Wang (CR31) 2021; 9
Masoudi, Pourreza, Saadatmand-Tarzjan, Eftekhari, Zargar, Rad (CR34) 2018; 5
CR36
Konstantinides, Meyer, Becattini, Bueno, Geersing, Harjola, Zamorano (CR3) 2020; 41
Mehta, Mercan, Bartlett, Weaver, Elmore, Shapiro (CR35) 2018
Huang, Pareek, Zamanian, Banerjee, Lungren (CR26) 2020; 10
Guo, Liu, Chen, Zhang, Tao, Yu, Wang (CR33) 2022
Huang, Kothari, Banerjee, Chute, Ball, Borus (CR24) 2020; 3
Bompard, Monnier, Saab, Tordjman, Abdoul, Fournier, Revel (CR2) 2020
Danzi, Loffi, Galeazzi, Gherbesi (CR9) 2020; 41
Kwee, Adams, Kwee (CR10) 2021
(CR13) 1990; 263
Weikert, Winkel, Bremerich, Stieltjes, Parmar, Sauter, Sommer (CR28) 2020; 30
CR29
Murugappan, Bourisly, Krishnan, Maruthapillai, Muthusamy (CR6) 2021
CR25
Soffer, Klang, Shimon, Barash, Cahan, Greenspana, Konen (CR7) 2021; 11
Casey, Iteen, Nicolini, Auten (CR8) 2020; 38
Bouma, Sonnemans, Vilanova, Gerritsen (CR12) 2009; 28
Tajbakhsh, Gotway, Liang (CR14) 2015
CR20
Murugappan, Prakash, Jeya, Mohanarathinam, Hemalakshmi, Mahmud (CR4) 2022; 200
García-Ortega, Oscullo, Calvillo, López-Reyes, Méndez, Gómez-Olivas, Martínez-García (CR11) 2021; 82
Yang, Lin, Su, Wang, Li, Lin, Cheng (CR18) 2019; 7
González, Ranem, Pinto dos Santos (CR32) 2023; 13
Xingjian, Chen, Wang, Yeung, Wong, Woo (CR17) 2015; 28
Lin, Su, Wang, Li, Liu, Cheng, Yang (CR21) 2019
Weifang, Liu, Xiaojuan, Peiyao, Zhang, Rongguo, Sheng (CR27) 2020; 30
Ronneberger, Fischer, Brox (CR16) 2015
Pioped Investigators (1410_CR13) 1990; 263
ANJ Raj (1410_CR30) 2021; 7
J Guo (1410_CR33) 2022
S Mehta (1410_CR35) 2018
1410_CR36
M Murugappan (1410_CR4) 2022; 200
NB Prakash (1410_CR5) 2021; 75
H Bouma (1410_CR12) 2009; 28
A García-Ortega (1410_CR11) 2021; 82
N Poyiadji (1410_CR1) 2020; 297
SV Konstantinides (1410_CR3) 2020; 41
H Yuan (1410_CR31) 2021; 9
X Yang (1410_CR18) 2019; 7
M Murugappan (1410_CR6) 2021
Y Lin (1410_CR21) 2019
N Tajbakhsh (1410_CR14) 2015
1410_CR15
1410_CR37
O Ronneberger (1410_CR16) 2015
1410_CR38
1410_CR19
C González (1410_CR32) 2023; 13
1410_CR20
S Soffer (1410_CR7) 2021; 11
GB Danzi (1410_CR9) 2020; 41
SHI Xingjian (1410_CR17) 2015; 28
1410_CR25
M Masoudi (1410_CR34) 2018; 5
K Casey (1410_CR8) 2020; 38
RM Kwee (1410_CR10) 2021
T Weikert (1410_CR28) 2020; 30
SC Huang (1410_CR24) 2020; 3
L Weifang (1410_CR27) 2020; 30
F Bompard (1410_CR2) 2020
SC Huang (1410_CR26) 2020; 10
C Cano-Espinosa (1410_CR23) 2020; 10
N Tajbakhsh (1410_CR22) 2019; 58
1410_CR29
References_xml – volume: 41
  start-page: 1858
  issue: 19
  year: 2020
  end-page: 1858
  ident: CR9
  article-title: Acute pulmonary embolism and CoVID-19 pneumonia: a random association?
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa254
– volume: 30
  start-page: 3567
  issue: 6
  year: 2020
  end-page: 3575
  ident: CR27
  article-title: Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06699-8
– year: 2021
  ident: CR10
  article-title: Pulmonary embolism in patients with CoVID-19 and value of D-dimer assessment: a meta-analysis
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08003-8
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  ident: CR26
  article-title: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78888-w
– volume: 41
  start-page: 543
  issue: 4
  year: 2020
  end-page: 603
  ident: CR3
  publication-title: Eur heart J
  doi: 10.1093/eurheartj/ehz405
– start-page: 280
  year: 2019
  end-page: 288
  ident: CR21
  article-title: Automated pulmonary embolism detection from CTPA images using an end-to-end convolutional neural network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2020
  ident: CR2
  article-title: Pulmonary embolism in patients with CoVID-19 pneumonia
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01365-2020
– ident: CR37
– volume: 28
  start-page: 802
  year: 2015
  end-page: 810
  ident: CR17
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv Neural Info Process Syst
– year: 2021
  ident: CR6
  article-title: Artificial intelligence based covid-19 detection using medical imaging methods: a review
  publication-title: Comput Model Imag SARS-CoV-and COVID-19
  doi: 10.1201/9781003142584-1-1
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  ident: CR24
  article-title: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
  publication-title: npj Digital Med
– volume: 82
  start-page: 261
  issue: 2
  year: 2021
  end-page: 269
  ident: CR11
  article-title: Incidence, risk factors, and thrombotic load of pulmonary embolism in patients hospitalized for CoVID-19 infection
  publication-title: J Infect
  doi: 10.1016/j.jinf.2021.01.003
– start-page: 893
  year: 2018
  end-page: 901
  ident: CR35
  article-title: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 297
  start-page: E335
  issue: 3
  year: 2020
  end-page: E338
  ident: CR1
  article-title: Acute pulmonary embolism and CoVID-19
  publication-title: Radiology
  doi: 10.1148/radiol.2020201955
– volume: 30
  start-page: 6545
  issue: 12
  year: 2020
  end-page: 6553
  ident: CR28
  article-title: Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06998-0
– ident: CR29
– volume: 7
  year: 2021
  ident: CR30
  article-title: ADID-UNET—a segmentation model for CoVID-19 infection from lung CT scans
  publication-title: Peer J Comput Sci
  doi: 10.7717/peerj-cs.349
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR16
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– ident: CR25
– volume: 10
  start-page: 2945
  issue: 8
  year: 2020
  ident: CR23
  article-title: Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation
  publication-title: Appl Sci
  doi: 10.3390/app10082945
– start-page: 473
  year: 2022
  end-page: 483
  ident: CR33
  article-title: AANet: artery-aware network for pulmonary embolism detection in CTPA images
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings Part I
– volume: 28
  start-page: 1223
  issue: 8
  year: 2009
  end-page: 1230
  ident: CR12
  article-title: Automatic detection of pulmonary embolism in CTPA images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2013618
– ident: CR19
– volume: 263
  start-page: 2753
  issue: 20
  year: 1990
  end-page: 2759
  ident: CR13
  article-title: Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED)
  publication-title: JAMA
  doi: 10.1001/jama.1990.03440200057023
– volume: 200
  year: 2022
  ident: CR4
  article-title: A novel few-shot classification framework for diabetic retinopathy detection and grading
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111485
– ident: CR15
– ident: CR38
– volume: 38
  start-page: 1544
  issue: 7
  year: 2020
  end-page: e1
  ident: CR8
  article-title: CoVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection
  publication-title: Am J Emerg Med
  doi: 10.1016/j.ajem.2020.04.011
– volume: 5
  year: 2018
  ident: CR34
  article-title: A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism
  publication-title: Scientific data
  doi: 10.1038/sdata.2018.180
– ident: CR36
– volume: 58
  year: 2019
  ident: CR22
  article-title: Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101541
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 8
  ident: CR7
  article-title: Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95249-3
– volume: 7
  start-page: 84849
  year: 2019
  end-page: 84857
  ident: CR18
  article-title: A two-stage convolutional neural network for pulmonary embolism detection from ctpa images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925210
– volume: 13
  start-page: 9381
  year: 2023
  ident: CR32
  article-title: Lifelong nnU-Net: a framework for standardized medical continual learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34484-2
– volume: 75
  year: 2021
  ident: CR5
  article-title: Deep transfer learning for COVID-19 detection and infection localization with superpixel based segmentation
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103252
– volume: 9
  start-page: 105382
  year: 2021
  end-page: 105392
  ident: CR31
  article-title: An improved faster R-CNN for pulmonary embolism detection from CTPA images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3099479
– start-page: 62
  year: 2015
  end-page: 69
  ident: CR14
  article-title: Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– ident: CR20
– volume: 75
  year: 2021
  ident: 1410_CR5
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2021.103252
– volume: 28
  start-page: 802
  year: 2015
  ident: 1410_CR17
  publication-title: Adv Neural Info Process Syst
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1410_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78888-w
– ident: 1410_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 1410_CR24
  publication-title: npj Digital Med
  doi: 10.1038/s41746-019-0211-0
– volume: 7
  year: 2021
  ident: 1410_CR30
  publication-title: Peer J Comput Sci
  doi: 10.7717/peerj-cs.349
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 1410_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95249-3
– volume: 5
  year: 2018
  ident: 1410_CR34
  publication-title: Scientific data
  doi: 10.1038/sdata.2018.180
– volume: 7
  start-page: 84849
  year: 2019
  ident: 1410_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925210
– volume: 41
  start-page: 543
  issue: 4
  year: 2020
  ident: 1410_CR3
  publication-title: Eur heart J
  doi: 10.1093/eurheartj/ehz405
– volume: 10
  start-page: 2945
  issue: 8
  year: 2020
  ident: 1410_CR23
  publication-title: Appl Sci
  doi: 10.3390/app10082945
– volume: 13
  start-page: 9381
  year: 2023
  ident: 1410_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34484-2
– ident: 1410_CR38
  doi: 10.1109/ICCV.2017.74
– start-page: 234
  volume-title: International Conference on Medical image computing and computer-assisted intervention
  year: 2015
  ident: 1410_CR16
– start-page: 893
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2018
  ident: 1410_CR35
– volume: 30
  start-page: 6545
  issue: 12
  year: 2020
  ident: 1410_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06998-0
– ident: 1410_CR20
– volume: 30
  start-page: 3567
  issue: 6
  year: 2020
  ident: 1410_CR27
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06699-8
– volume: 9
  start-page: 105382
  year: 2021
  ident: 1410_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3099479
– volume: 82
  start-page: 261
  issue: 2
  year: 2021
  ident: 1410_CR11
  publication-title: J Infect
  doi: 10.1016/j.jinf.2021.01.003
– volume: 297
  start-page: E335
  issue: 3
  year: 2020
  ident: 1410_CR1
  publication-title: Radiology
  doi: 10.1148/radiol.2020201955
– start-page: 62
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2015
  ident: 1410_CR14
– volume: 41
  start-page: 1858
  issue: 19
  year: 2020
  ident: 1410_CR9
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa254
– ident: 1410_CR15
– year: 2021
  ident: 1410_CR6
  publication-title: Comput Model Imag SARS-CoV-and COVID-19
  doi: 10.1201/9781003142584-1-1
– start-page: 473
  volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings Part I
  year: 2022
  ident: 1410_CR33
– ident: 1410_CR36
– year: 2020
  ident: 1410_CR2
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01365-2020
– volume: 38
  start-page: 1544
  issue: 7
  year: 2020
  ident: 1410_CR8
  publication-title: Am J Emerg Med
  doi: 10.1016/j.ajem.2020.04.011
– year: 2021
  ident: 1410_CR10
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08003-8
– ident: 1410_CR37
  doi: 10.1117/12.2628519
– volume: 28
  start-page: 1223
  issue: 8
  year: 2009
  ident: 1410_CR12
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2009.2013618
– volume: 58
  year: 2019
  ident: 1410_CR22
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101541
– ident: 1410_CR25
– ident: 1410_CR29
– start-page: 280
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2019
  ident: 1410_CR21
– volume: 200
  year: 2022
  ident: 1410_CR4
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111485
– volume: 263
  start-page: 2753
  issue: 20
  year: 1990
  ident: 1410_CR13
  publication-title: JAMA
  doi: 10.1001/jama.1990.03440200057023
SSID ssj0002511765
ssj0024368
Score 2.352703
Snippet Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 863
SubjectTerms Accuracy
Angiography
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
CAD
Computed tomography
Computer aided design
Datasets
Error analysis
Image segmentation
Medical and Radiation Physics
Medical imaging
Pulmonary embolisms
Scientific Paper
Sensitivity analysis
Title PE-Ynet: a novel attention-based multi-task model for pulmonary embolism detection using CT pulmonary angiography (CTPA) scan images
URI https://link.springer.com/article/10.1007/s13246-024-01410-3
https://www.ncbi.nlm.nih.gov/pubmed/38546819
https://www.proquest.com/docview/3106242036
https://www.proquest.com/docview/3022566846
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7QUeJsZnxlYZiQcQRCxxHCe8oLZqmZCoKtRK5SlybAdNa5NuSZF45w_nzk0_0MReEilx4iR3vvs5_t0dwJvYSiF1LnFuwgvcqNTHaRD3AxuKMFExt4pih7-N4stp9HUmZu0Pt7qlVW5sojPUptL0j_wjwhAKZUCD-3l541PVKFpdbUtoHMBRgJ6G9DwZftnLtedC4dDj4aBOedIGzaxD5xBJEP2WOBgR2aJ_HdMdtHlnpdQ5oOFjOG6RI-uuRX0CD2z5BB7t5RN8Cn_GA_9HaZtPTLGy-mXnjLJnOj6jT-7KMMcf9BtVXzNXA4chZmXL1RzfTt3-ZnaRV_OresGMbRxHq2REjP_J-pO9Vgr7bDNds7f9ybj7jtUoIXa1QONUP4PpcDDpX_ptmQVfcykaP-Kaa2NwXmQvCl1QkRcdp0ZLHuQXMYXempSyuqtCBArRhTEmLKQqpA6TwAaWP4fDsirtS2A2FqFFTJLHaRIpIXMdhDoQOS-KMLG58CDYfONMtznIqRTGPNtlTya5ZCiXzMkl4x68316zXGfguLf12UZ0WTsa62ynOx683p7GcUSLI6q01QrbIJhBaItwzIMXa5Fvu-OJiGKETh582OjA7ub_f5bT-5_lFTwMnf4RYe0MDpvblT1HhNPkHTiQM9lxytyBo-6w1xvhvjcYjb_j0WnY_Qv7Z_nN
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8GChgJJBBENHacBxJC1dJlSx_qYSu1p-DYDqrYzS5NFtQ7v4ffyIyT7C6q6K2XXOLYluf1TTwPgBeRjWWs8xh9E1HgQ6U-ukHCDyyXPFGRsIpyh_cPosFR-OVYHq_Any4XhsIqO53oFLWZaPpH_g5hCKUyoML9OP3hU9coul3tWmg0bLFrz3-hy1Z92PmE9H3JeX972Bv4bVcBX4tY1n4otNDGoBtgNwtdUE8THaVGxyLINyPKNDUpFTFXhQwUGlNjDC9iVcSaJ4ENrMB5r8H1EH07kqKk_3mptp9LvUMLi0okFUmbpNOk6iFyoXBfivkISff9awgvoNsLN7PO4PVvw60WqbKthrXuwIot78LaUv3Ce_D7cNs_KW39nilWTn7aEaNqnS5-0ifzaJiLV_RrVX1nrucOQ4zMprMRnqY6O2d2nE9Gp9WYGVu7mLCSUSD-N9YbLo1SuGZbWZu96g0Pt16zCjmCnY5RGVb34ehKCPAAVstJadeB2Uhyixgoj9IkVDLOdcB1IHNRFDyxufQg6M44023Nc2q9McoW1ZqJLhnSJXN0yYQHb-bfTJuKH5eO3uhIl7XSX2ULXvXg-fw1yi1dxqjSTmY4BsETQmmEfx48bEg-X04kMowQqnnwtuOBxeT_38ujy_fyDG4Mhvt72d7Owe5juMkdL1Kw3Aas1mcz-wTRVZ0_dSzN4OtVy9BfEGgyAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiF6QHwTKGAkkEAQtYnjOEFCqNp2aSlUe9hK7Sk4tlNV7GaXJgvqnV_Fr2PGSXYXVfTWSy5xbMsznnmO38wAvIytFFLnEs8mvMCHSn08BnE_sKEIExVzqyh2-OtBvHsYfT4SRyvwp4uFIVplZxOdoTYTTf_INxCGUCgDGtyNoqVFDLb7H6c_fKogRTetXTmNRkX27fkvPL5VH_a2UdavwrC_M-zt-m2FAV9zKWo_4pprY_BIYDcLXVB9Ex2nRkse5JsxRZ2alBKaq0IECh2rMSYspCqkDpPABpZjv9fguuQyJTph0v-0lOfPheGht0WDkvKkDdhpwvYQxRD1l_gfEdnBf53iBaR74ZbWOb_-bbjVola21ajZHVix5V1YW8pleA9-D3b849LW75li5eSnHTHK3Om4lD65SsMcd9GvVfWdufo7DPEym85GuJrq7JzZcT4ZnVZjZmzt-GElI1L-CesNl1opHLPNss1e94aDrTesQu1gp2M0jNV9OLwSATyA1XJS2kfAbCxCi3goj9MkUkLmOgh1IHJeFGFic-FB0K1xptv851SGY5QtMjeTXDKUS-bkknEP3s6_mTbZPy5tvd6JLmstQZUt9NaDF_PXuIfpYkaVdjLDNgikEFYjFPTgYSPy-XA8EVGMsM2Dd50OLDr__1weXz6X53ADd0_2Ze9g_wncDJ0qEm9uHVbrs5l9ikCrzp85jWbw7aq30F9yODY1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PE-Ynet%3A+a+novel+attention-based+multi-task+model+for+pulmonary+embolism+detection+using+CT+pulmonary+angiography+%28CTPA%29+scan+images&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Hemalakshmi%2C+G.+R.&rft.au=Murugappan%2C+M.&rft.au=Sikkandar%2C+Mohamed+Yacin&rft.au=Santhi%2C+D.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=47&rft.issue=3&rft.spage=863&rft.epage=880&rft_id=info:doi/10.1007%2Fs13246-024-01410-3&rft.externalDocID=10_1007_s13246_024_01410_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon