PE-Ynet: a novel attention-based multi-task model for pulmonary embolism detection using CT pulmonary angiography (CTPA) scan images
Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography...
Saved in:
Published in | Australasian physical & engineering sciences in medicine Vol. 47; no. 3; pp. 863 - 880 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2662-4729 0158-9938 2662-4737 2662-4737 1879-5447 |
DOI | 10.1007/s13246-024-01410-3 |
Cover
Abstract | Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model’s robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19. |
---|---|
AbstractList | Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model’s robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19. Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model's robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19.Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this study, a novel attention-based multi-task model is proposed for PE segmentation and detection from Computed Tomography Pulmonary Angiography (CTPA) images. A Y-Net architecture is used to implement this model, which facilitates segmentation and classification jointly, improving performance and efficiency. It is leveraged with Multi Head Attention (MHA), which allows the model to focus on important regions of the image while suppressing irrelevant information, improving the accuracy of the segmentation and detection tasks. The proposed PE-YNet model is tested with two public datasets, achieving a maximum mean detection and segmentation accuracy of 99.89% and 99.83%, respectively, on the CAD-PE challenge dataset. Similarly, it also achieves a detection accuracy of 99.75% and a segmentation accuracy of 99.81% on the FUMPE dataset. Additionally, sensitivity analysis also shows a high sensitivity of 0.9885 for the localization error ɛ = 0 for the CAD-PE dataset, demonstrating the model's robustness against false predictions compared to state-of-the-art models. Further, this model also exhibits lower inference time, size, and memory usage compared to representative models. An automated PE-YNet tool can assist physicians with PE diagnosis, treatment, and prognosis monitoring in the clinical management of CoVID-19. |
Author | Mohanarathinam, A. Santhi, D. Sikkandar, Mohamed Yacin Hemalakshmi, G. R. Prakash, N. B. Murugappan, M. |
Author_xml | – sequence: 1 givenname: G. R. surname: Hemalakshmi fullname: Hemalakshmi, G. R. organization: School of Computing Science and Engineering, Vellore Institute of Technology – sequence: 2 givenname: M. orcidid: 0000-0002-5839-4589 surname: Murugappan fullname: Murugappan, M. email: m.murugappan@kcst.edu.kw organization: Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Department of Electronics and Communication Engineering, School of Engineering, Vels Institute of Sciences, Technology, and Advanced Studies, Center of Excellence for Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis – sequence: 3 givenname: Mohamed Yacin surname: Sikkandar fullname: Sikkandar, Mohamed Yacin organization: Biomedical Equipment Technology, College of Applied Medical Sciences, Majmaah University – sequence: 4 givenname: D. surname: Santhi fullname: Santhi, D. organization: Department of Biomedical Engineering, Mepco Schlenk Engineering College – sequence: 5 givenname: N. B. surname: Prakash fullname: Prakash, N. B. organization: Department of Electrical and Electronics Engineering, National Engineering College – sequence: 6 givenname: A. surname: Mohanarathinam fullname: Mohanarathinam, A. organization: Department of Electronics and Communication Engineering, Karpagam Academy of Higher Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38546819$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi0URELIH6BAlmhCYfDX2rt00Sl8SJFIcRRUls-eXRx27cP2RrqeH84eFwJKkcpTPM94Zt7n6CimCAi9ZPQto1S_K0xwqQjlklAmGSXiCTrhSnEitdBH9zXvjtFZKTeUUt4wplXzDB2LtpGqZd0J-nV9Sb5FqO-xxTHdwohtrRBrSJFsbAGPp3msgVRbfuAp-QXoU8bbeZxStHmHYdqkMZQJe6jg9h6eS4gDXq3_o2wcQhqy3X7f4fPV-vriDS7ORhwmO0B5gZ72dixwdveeoq8fLterT-Tqy8fPq4sr4oRuKpHCCec9ky3Q3vWMCeVU550WbENVyzvtO64Et33DbMeo95732vba8ZYBA3GKzg99tzn9nKFUM4XiYBxthDQXIyjnjVKtVAv6-gF6k-Ycl-mMYFRxyanYU6_uqHkzgTfbvCyUd-bvfReAHwCXUykZ-nuEUbPP0RxyNEuO5k-ORixS-0Byodr9aWu2YXxcFQe1LP_EAfK_sR-xfgOG8rED |
CitedBy_id | crossref_primary_10_1088_2631_8695_ada720 crossref_primary_10_1109_ACCESS_2025_3536621 crossref_primary_10_7759_cureus_78217 crossref_primary_10_1038_s41598_024_81703_5 |
Cites_doi | 10.1093/eurheartj/ehaa254 10.1007/s00330-020-06699-8 10.1007/s00330-021-08003-8 10.1038/s41598-020-78888-w 10.1093/eurheartj/ehz405 10.1183/13993003.01365-2020 10.1201/9781003142584-1-1 10.1016/j.jinf.2021.01.003 10.1148/radiol.2020201955 10.1007/s00330-020-06998-0 10.7717/peerj-cs.349 10.3390/app10082945 10.1109/TMI.2009.2013618 10.1001/jama.1990.03440200057023 10.1016/j.measurement.2022.111485 10.1016/j.ajem.2020.04.011 10.1038/sdata.2018.180 10.1016/j.media.2019.101541 10.1038/s41598-021-95249-3 10.1109/ACCESS.2019.2925210 10.1038/s41598-023-34484-2 10.1016/j.scs.2021.103252 10.1109/ACCESS.2021.3099479 10.1109/CVPR.2016.90 10.1038/s41746-019-0211-0 10.1109/ICCV.2017.74 10.1117/12.2628519 |
ContentType | Journal Article |
Copyright | Australasian College of Physical Scientists and Engineers in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. Australasian College of Physical Scientists and Engineers in Medicine. |
Copyright_xml | – notice: Australasian College of Physical Scientists and Engineers in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. Australasian College of Physical Scientists and Engineers in Medicine. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s13246-024-01410-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2662-4737 1879-5447 |
EndPage | 880 |
ExternalDocumentID | 38546819 10_1007_s13246_024_01410_3 |
Genre | Journal Article |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AANZL AASML AATNV AAUYE AAYZH ABAKF ABDZT ABECU ABJNI ABMQK ABSXP ABTEG ABTKH ACAOD ACDTI ACHSB ACMDZ ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AEVLU AFBBN AFLOW AFQWF AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG BGNMA DDRTE DNIVK DPUIP EBLON EBS EMB EMOBN FERAY FIGPU FNLPD GGCAI IKXTQ IWAJR J-C JZLTJ LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SRMVM SSLCW SV3 UOJIU UTJUX ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM ..I 06D 0VY 1N0 203 23N 29~ 2KG 30V 36B 3V. 4.4 408 40D 53G 5GY 67N 7X7 7XB 88E 88I 8AO 8FE 8FG 8FI 8FJ 8FK 8WZ 96X A6W AAIAL AAJKR AARTL AATVU AAWCG AAYIU AAYQN AAZMS ABFTV ABJOX ABKCH ABPLI ABQBU ABTHY ABTMW ABUWG ABXPI ACGFS ACGOD ACKNC ACMLO ADBBV ADHHG ADHIR ADKPE ADRFC ADURQ ADZKW AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AETCA AEXYK AFKRA AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHYZX AIIXL AITGF AJRNO AJZVZ AKMHD ALFXC AMKLP AMYQR ANMIH ARAPS AXYYD AZQEC BENPR BGLVJ CCPQU CSCUP DWQXO EIOEI EN4 ESBYG FRRFC FYJPI FYUFA GGRSB GJIRD GNUQQ GQ7 HCIFZ HMJXF HRMNR HZ~ I0C ITM J0Z JBSCW K9. KOV KTM M1P M2P O9- O93 O9I O9J P2P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U R9I RLLFE S27 S3A S3B SBL SHX SISQX SPISZ SSXJD STPWE T13 TSG U2A U9L UG4 UZXMN VC2 VFIZW W48 WK8 WOQ Z45 ZOVNA ~A9 7X8 |
ID | FETCH-LOGICAL-c375t-43c3cdd148e0fcf1136c69dc731b068297d92632af51a910ddd2f7af7c281e1e3 |
IEDL.DBID | 8FG |
ISSN | 2662-4729 0158-9938 2662-4737 |
IngestDate | Fri Sep 05 07:29:20 EDT 2025 Tue Sep 02 03:47:02 EDT 2025 Mon Jul 21 05:53:38 EDT 2025 Tue Jul 01 02:52:58 EDT 2025 Thu Apr 24 23:07:03 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Pulmonary embolism Segmentation YNet Computed tomography pulmonary angiography (CTPA) Attention |
Language | English |
License | 2024. Australasian College of Physical Scientists and Engineers in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-43c3cdd148e0fcf1136c69dc731b068297d92632af51a910ddd2f7af7c281e1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5839-4589 |
PMID | 38546819 |
PQID | 3106242036 |
PQPubID | 33672 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3022566846 proquest_journals_3106242036 pubmed_primary_38546819 crossref_primary_10_1007_s13246_024_01410_3 crossref_citationtrail_10_1007_s13246_024_01410_3 springer_journals_10_1007_s13246_024_01410_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Dordrecht |
PublicationSubtitle | The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine |
PublicationTitle | Australasian physical & engineering sciences in medicine |
PublicationTitleAbbrev | Phys Eng Sci Med |
PublicationTitleAlternate | Phys Eng Sci Med |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Poyiadji, Cormier, Patel, Hadied, Bhargava, Khanna, Song (CR1) 2020; 297 Prakash, Murugappan, Hemalakshmi, Jayalakshmi, Mahmud (CR5) 2021; 75 Tajbakhsh, Shin, Gotway, Liang (CR22) 2019; 58 Raj, Zhu, Khan, Zhuang, Yang, Mahesh, Karthik (CR30) 2021; 7 CR19 CR38 CR15 CR37 Cano-Espinosa, Cazorla, González (CR23) 2020; 10 Yuan, Shao, Liu, Wang (CR31) 2021; 9 Masoudi, Pourreza, Saadatmand-Tarzjan, Eftekhari, Zargar, Rad (CR34) 2018; 5 CR36 Konstantinides, Meyer, Becattini, Bueno, Geersing, Harjola, Zamorano (CR3) 2020; 41 Mehta, Mercan, Bartlett, Weaver, Elmore, Shapiro (CR35) 2018 Huang, Pareek, Zamanian, Banerjee, Lungren (CR26) 2020; 10 Guo, Liu, Chen, Zhang, Tao, Yu, Wang (CR33) 2022 Huang, Kothari, Banerjee, Chute, Ball, Borus (CR24) 2020; 3 Bompard, Monnier, Saab, Tordjman, Abdoul, Fournier, Revel (CR2) 2020 Danzi, Loffi, Galeazzi, Gherbesi (CR9) 2020; 41 Kwee, Adams, Kwee (CR10) 2021 (CR13) 1990; 263 Weikert, Winkel, Bremerich, Stieltjes, Parmar, Sauter, Sommer (CR28) 2020; 30 CR29 Murugappan, Bourisly, Krishnan, Maruthapillai, Muthusamy (CR6) 2021 CR25 Soffer, Klang, Shimon, Barash, Cahan, Greenspana, Konen (CR7) 2021; 11 Casey, Iteen, Nicolini, Auten (CR8) 2020; 38 Bouma, Sonnemans, Vilanova, Gerritsen (CR12) 2009; 28 Tajbakhsh, Gotway, Liang (CR14) 2015 CR20 Murugappan, Prakash, Jeya, Mohanarathinam, Hemalakshmi, Mahmud (CR4) 2022; 200 García-Ortega, Oscullo, Calvillo, López-Reyes, Méndez, Gómez-Olivas, Martínez-García (CR11) 2021; 82 Yang, Lin, Su, Wang, Li, Lin, Cheng (CR18) 2019; 7 González, Ranem, Pinto dos Santos (CR32) 2023; 13 Xingjian, Chen, Wang, Yeung, Wong, Woo (CR17) 2015; 28 Lin, Su, Wang, Li, Liu, Cheng, Yang (CR21) 2019 Weifang, Liu, Xiaojuan, Peiyao, Zhang, Rongguo, Sheng (CR27) 2020; 30 Ronneberger, Fischer, Brox (CR16) 2015 Pioped Investigators (1410_CR13) 1990; 263 ANJ Raj (1410_CR30) 2021; 7 J Guo (1410_CR33) 2022 S Mehta (1410_CR35) 2018 1410_CR36 M Murugappan (1410_CR4) 2022; 200 NB Prakash (1410_CR5) 2021; 75 H Bouma (1410_CR12) 2009; 28 A García-Ortega (1410_CR11) 2021; 82 N Poyiadji (1410_CR1) 2020; 297 SV Konstantinides (1410_CR3) 2020; 41 H Yuan (1410_CR31) 2021; 9 X Yang (1410_CR18) 2019; 7 M Murugappan (1410_CR6) 2021 Y Lin (1410_CR21) 2019 N Tajbakhsh (1410_CR14) 2015 1410_CR15 1410_CR37 O Ronneberger (1410_CR16) 2015 1410_CR38 1410_CR19 C González (1410_CR32) 2023; 13 1410_CR20 S Soffer (1410_CR7) 2021; 11 GB Danzi (1410_CR9) 2020; 41 SHI Xingjian (1410_CR17) 2015; 28 1410_CR25 M Masoudi (1410_CR34) 2018; 5 K Casey (1410_CR8) 2020; 38 RM Kwee (1410_CR10) 2021 T Weikert (1410_CR28) 2020; 30 SC Huang (1410_CR24) 2020; 3 L Weifang (1410_CR27) 2020; 30 F Bompard (1410_CR2) 2020 SC Huang (1410_CR26) 2020; 10 C Cano-Espinosa (1410_CR23) 2020; 10 N Tajbakhsh (1410_CR22) 2019; 58 1410_CR29 |
References_xml | – volume: 41 start-page: 1858 issue: 19 year: 2020 end-page: 1858 ident: CR9 article-title: Acute pulmonary embolism and CoVID-19 pneumonia: a random association? publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa254 – volume: 30 start-page: 3567 issue: 6 year: 2020 end-page: 3575 ident: CR27 article-title: Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning publication-title: Eur Radiol doi: 10.1007/s00330-020-06699-8 – year: 2021 ident: CR10 article-title: Pulmonary embolism in patients with CoVID-19 and value of D-dimer assessment: a meta-analysis publication-title: Eur Radiol doi: 10.1007/s00330-021-08003-8 – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR26 article-title: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection publication-title: Sci Rep doi: 10.1038/s41598-020-78888-w – volume: 41 start-page: 543 issue: 4 year: 2020 end-page: 603 ident: CR3 publication-title: Eur heart J doi: 10.1093/eurheartj/ehz405 – start-page: 280 year: 2019 end-page: 288 ident: CR21 article-title: Automated pulmonary embolism detection from CTPA images using an end-to-end convolutional neural network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2020 ident: CR2 article-title: Pulmonary embolism in patients with CoVID-19 pneumonia publication-title: Eur Respir J doi: 10.1183/13993003.01365-2020 – ident: CR37 – volume: 28 start-page: 802 year: 2015 end-page: 810 ident: CR17 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Adv Neural Info Process Syst – year: 2021 ident: CR6 article-title: Artificial intelligence based covid-19 detection using medical imaging methods: a review publication-title: Comput Model Imag SARS-CoV-and COVID-19 doi: 10.1201/9781003142584-1-1 – volume: 3 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR24 article-title: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging publication-title: npj Digital Med – volume: 82 start-page: 261 issue: 2 year: 2021 end-page: 269 ident: CR11 article-title: Incidence, risk factors, and thrombotic load of pulmonary embolism in patients hospitalized for CoVID-19 infection publication-title: J Infect doi: 10.1016/j.jinf.2021.01.003 – start-page: 893 year: 2018 end-page: 901 ident: CR35 article-title: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 297 start-page: E335 issue: 3 year: 2020 end-page: E338 ident: CR1 article-title: Acute pulmonary embolism and CoVID-19 publication-title: Radiology doi: 10.1148/radiol.2020201955 – volume: 30 start-page: 6545 issue: 12 year: 2020 end-page: 6553 ident: CR28 article-title: Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm publication-title: Eur Radiol doi: 10.1007/s00330-020-06998-0 – ident: CR29 – volume: 7 year: 2021 ident: CR30 article-title: ADID-UNET—a segmentation model for CoVID-19 infection from lung CT scans publication-title: Peer J Comput Sci doi: 10.7717/peerj-cs.349 – start-page: 234 year: 2015 end-page: 241 ident: CR16 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention – ident: CR25 – volume: 10 start-page: 2945 issue: 8 year: 2020 ident: CR23 article-title: Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation publication-title: Appl Sci doi: 10.3390/app10082945 – start-page: 473 year: 2022 end-page: 483 ident: CR33 article-title: AANet: artery-aware network for pulmonary embolism detection in CTPA images publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings Part I – volume: 28 start-page: 1223 issue: 8 year: 2009 end-page: 1230 ident: CR12 article-title: Automatic detection of pulmonary embolism in CTPA images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2013618 – ident: CR19 – volume: 263 start-page: 2753 issue: 20 year: 1990 end-page: 2759 ident: CR13 article-title: Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED) publication-title: JAMA doi: 10.1001/jama.1990.03440200057023 – volume: 200 year: 2022 ident: CR4 article-title: A novel few-shot classification framework for diabetic retinopathy detection and grading publication-title: Measurement doi: 10.1016/j.measurement.2022.111485 – ident: CR15 – ident: CR38 – volume: 38 start-page: 1544 issue: 7 year: 2020 end-page: e1 ident: CR8 article-title: CoVID-19 pneumonia with hemoptysis: acute segmental pulmonary emboli associated with novel coronavirus infection publication-title: Am J Emerg Med doi: 10.1016/j.ajem.2020.04.011 – volume: 5 year: 2018 ident: CR34 article-title: A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism publication-title: Scientific data doi: 10.1038/sdata.2018.180 – ident: CR36 – volume: 58 year: 2019 ident: CR22 article-title: Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation publication-title: Med Image Anal doi: 10.1016/j.media.2019.101541 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 8 ident: CR7 article-title: Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis publication-title: Sci Rep doi: 10.1038/s41598-021-95249-3 – volume: 7 start-page: 84849 year: 2019 end-page: 84857 ident: CR18 article-title: A two-stage convolutional neural network for pulmonary embolism detection from ctpa images publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925210 – volume: 13 start-page: 9381 year: 2023 ident: CR32 article-title: Lifelong nnU-Net: a framework for standardized medical continual learning publication-title: Sci Rep doi: 10.1038/s41598-023-34484-2 – volume: 75 year: 2021 ident: CR5 article-title: Deep transfer learning for COVID-19 detection and infection localization with superpixel based segmentation publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.103252 – volume: 9 start-page: 105382 year: 2021 end-page: 105392 ident: CR31 article-title: An improved faster R-CNN for pulmonary embolism detection from CTPA images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3099479 – start-page: 62 year: 2015 end-page: 69 ident: CR14 article-title: Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – ident: CR20 – volume: 75 year: 2021 ident: 1410_CR5 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2021.103252 – volume: 28 start-page: 802 year: 2015 ident: 1410_CR17 publication-title: Adv Neural Info Process Syst – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1410_CR26 publication-title: Sci Rep doi: 10.1038/s41598-020-78888-w – ident: 1410_CR19 doi: 10.1109/CVPR.2016.90 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 1410_CR24 publication-title: npj Digital Med doi: 10.1038/s41746-019-0211-0 – volume: 7 year: 2021 ident: 1410_CR30 publication-title: Peer J Comput Sci doi: 10.7717/peerj-cs.349 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 1410_CR7 publication-title: Sci Rep doi: 10.1038/s41598-021-95249-3 – volume: 5 year: 2018 ident: 1410_CR34 publication-title: Scientific data doi: 10.1038/sdata.2018.180 – volume: 7 start-page: 84849 year: 2019 ident: 1410_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925210 – volume: 41 start-page: 543 issue: 4 year: 2020 ident: 1410_CR3 publication-title: Eur heart J doi: 10.1093/eurheartj/ehz405 – volume: 10 start-page: 2945 issue: 8 year: 2020 ident: 1410_CR23 publication-title: Appl Sci doi: 10.3390/app10082945 – volume: 13 start-page: 9381 year: 2023 ident: 1410_CR32 publication-title: Sci Rep doi: 10.1038/s41598-023-34484-2 – ident: 1410_CR38 doi: 10.1109/ICCV.2017.74 – start-page: 234 volume-title: International Conference on Medical image computing and computer-assisted intervention year: 2015 ident: 1410_CR16 – start-page: 893 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2018 ident: 1410_CR35 – volume: 30 start-page: 6545 issue: 12 year: 2020 ident: 1410_CR28 publication-title: Eur Radiol doi: 10.1007/s00330-020-06998-0 – ident: 1410_CR20 – volume: 30 start-page: 3567 issue: 6 year: 2020 ident: 1410_CR27 publication-title: Eur Radiol doi: 10.1007/s00330-020-06699-8 – volume: 9 start-page: 105382 year: 2021 ident: 1410_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3099479 – volume: 82 start-page: 261 issue: 2 year: 2021 ident: 1410_CR11 publication-title: J Infect doi: 10.1016/j.jinf.2021.01.003 – volume: 297 start-page: E335 issue: 3 year: 2020 ident: 1410_CR1 publication-title: Radiology doi: 10.1148/radiol.2020201955 – start-page: 62 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2015 ident: 1410_CR14 – volume: 41 start-page: 1858 issue: 19 year: 2020 ident: 1410_CR9 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa254 – ident: 1410_CR15 – year: 2021 ident: 1410_CR6 publication-title: Comput Model Imag SARS-CoV-and COVID-19 doi: 10.1201/9781003142584-1-1 – start-page: 473 volume-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings Part I year: 2022 ident: 1410_CR33 – ident: 1410_CR36 – year: 2020 ident: 1410_CR2 publication-title: Eur Respir J doi: 10.1183/13993003.01365-2020 – volume: 38 start-page: 1544 issue: 7 year: 2020 ident: 1410_CR8 publication-title: Am J Emerg Med doi: 10.1016/j.ajem.2020.04.011 – year: 2021 ident: 1410_CR10 publication-title: Eur Radiol doi: 10.1007/s00330-021-08003-8 – ident: 1410_CR37 doi: 10.1117/12.2628519 – volume: 28 start-page: 1223 issue: 8 year: 2009 ident: 1410_CR12 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2009.2013618 – volume: 58 year: 2019 ident: 1410_CR22 publication-title: Med Image Anal doi: 10.1016/j.media.2019.101541 – ident: 1410_CR25 – ident: 1410_CR29 – start-page: 280 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2019 ident: 1410_CR21 – volume: 200 year: 2022 ident: 1410_CR4 publication-title: Measurement doi: 10.1016/j.measurement.2022.111485 – volume: 263 start-page: 2753 issue: 20 year: 1990 ident: 1410_CR13 publication-title: JAMA doi: 10.1001/jama.1990.03440200057023 |
SSID | ssj0002511765 ssj0024368 |
Score | 2.352703 |
Snippet | Pulmonary Embolism (PE) has diverse manifestations with different etiologies such as venous thromboembolism, septic embolism, and paradoxical embolism. In this... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | Accuracy Angiography Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics CAD Computed tomography Computer aided design Datasets Error analysis Image segmentation Medical and Radiation Physics Medical imaging Pulmonary embolisms Scientific Paper Sensitivity analysis |
Title | PE-Ynet: a novel attention-based multi-task model for pulmonary embolism detection using CT pulmonary angiography (CTPA) scan images |
URI | https://link.springer.com/article/10.1007/s13246-024-01410-3 https://www.ncbi.nlm.nih.gov/pubmed/38546819 https://www.proquest.com/docview/3106242036 https://www.proquest.com/docview/3022566846 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x7QUeJsZnxlYZiQcQRCxxHCe8oLZqmZCoKtRK5SlybAdNa5NuSZF45w_nzk0_0MReEilx4iR3vvs5_t0dwJvYSiF1LnFuwgvcqNTHaRD3AxuKMFExt4pih7-N4stp9HUmZu0Pt7qlVW5sojPUptL0j_wjwhAKZUCD-3l541PVKFpdbUtoHMBRgJ6G9DwZftnLtedC4dDj4aBOedIGzaxD5xBJEP2WOBgR2aJ_HdMdtHlnpdQ5oOFjOG6RI-uuRX0CD2z5BB7t5RN8Cn_GA_9HaZtPTLGy-mXnjLJnOj6jT-7KMMcf9BtVXzNXA4chZmXL1RzfTt3-ZnaRV_OresGMbRxHq2REjP_J-pO9Vgr7bDNds7f9ybj7jtUoIXa1QONUP4PpcDDpX_ptmQVfcykaP-Kaa2NwXmQvCl1QkRcdp0ZLHuQXMYXempSyuqtCBArRhTEmLKQqpA6TwAaWP4fDsirtS2A2FqFFTJLHaRIpIXMdhDoQOS-KMLG58CDYfONMtznIqRTGPNtlTya5ZCiXzMkl4x68316zXGfguLf12UZ0WTsa62ynOx683p7GcUSLI6q01QrbIJhBaItwzIMXa5Fvu-OJiGKETh582OjA7ub_f5bT-5_lFTwMnf4RYe0MDpvblT1HhNPkHTiQM9lxytyBo-6w1xvhvjcYjb_j0WnY_Qv7Z_nN |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8GChgJJBBENHacBxJC1dJlSx_qYSu1p-DYDqrYzS5NFtQ7v4ffyIyT7C6q6K2XXOLYluf1TTwPgBeRjWWs8xh9E1HgQ6U-ukHCDyyXPFGRsIpyh_cPosFR-OVYHq_Any4XhsIqO53oFLWZaPpH_g5hCKUyoML9OP3hU9coul3tWmg0bLFrz3-hy1Z92PmE9H3JeX972Bv4bVcBX4tY1n4otNDGoBtgNwtdUE8THaVGxyLINyPKNDUpFTFXhQwUGlNjDC9iVcSaJ4ENrMB5r8H1EH07kqKk_3mptp9LvUMLi0okFUmbpNOk6iFyoXBfivkISff9awgvoNsLN7PO4PVvw60WqbKthrXuwIot78LaUv3Ce_D7cNs_KW39nilWTn7aEaNqnS5-0ifzaJiLV_RrVX1nrucOQ4zMprMRnqY6O2d2nE9Gp9WYGVu7mLCSUSD-N9YbLo1SuGZbWZu96g0Pt16zCjmCnY5RGVb34ehKCPAAVstJadeB2Uhyixgoj9IkVDLOdcB1IHNRFDyxufQg6M44023Nc2q9McoW1ZqJLhnSJXN0yYQHb-bfTJuKH5eO3uhIl7XSX2ULXvXg-fw1yi1dxqjSTmY4BsETQmmEfx48bEg-X04kMowQqnnwtuOBxeT_38ujy_fyDG4Mhvt72d7Owe5juMkdL1Kw3Aas1mcz-wTRVZ0_dSzN4OtVy9BfEGgyAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIiF6QHwTKGAkkEAQtYnjOEFCqNp2aSlUe9hK7Sk4tlNV7GaXJgvqnV_Fr2PGSXYXVfTWSy5xbMsznnmO38wAvIytFFLnEs8mvMCHSn08BnE_sKEIExVzqyh2-OtBvHsYfT4SRyvwp4uFIVplZxOdoTYTTf_INxCGUCgDGtyNoqVFDLb7H6c_fKogRTetXTmNRkX27fkvPL5VH_a2UdavwrC_M-zt-m2FAV9zKWo_4pprY_BIYDcLXVB9Ex2nRkse5JsxRZ2alBKaq0IECh2rMSYspCqkDpPABpZjv9fguuQyJTph0v-0lOfPheGht0WDkvKkDdhpwvYQxRD1l_gfEdnBf53iBaR74ZbWOb_-bbjVola21ajZHVix5V1YW8pleA9-D3b849LW75li5eSnHTHK3Om4lD65SsMcd9GvVfWdufo7DPEym85GuJrq7JzZcT4ZnVZjZmzt-GElI1L-CesNl1opHLPNss1e94aDrTesQu1gp2M0jNV9OLwSATyA1XJS2kfAbCxCi3goj9MkUkLmOgh1IHJeFGFic-FB0K1xptv851SGY5QtMjeTXDKUS-bkknEP3s6_mTbZPy5tvd6JLmstQZUt9NaDF_PXuIfpYkaVdjLDNgikEFYjFPTgYSPy-XA8EVGMsM2Dd50OLDr__1weXz6X53ADd0_2Ze9g_wncDJ0qEm9uHVbrs5l9ikCrzp85jWbw7aq30F9yODY1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PE-Ynet%3A+a+novel+attention-based+multi-task+model+for+pulmonary+embolism+detection+using+CT+pulmonary+angiography+%28CTPA%29+scan+images&rft.jtitle=Physical+and+engineering+sciences+in+medicine&rft.au=Hemalakshmi%2C+G.+R.&rft.au=Murugappan%2C+M.&rft.au=Sikkandar%2C+Mohamed+Yacin&rft.au=Santhi%2C+D.&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2662-4729&rft.eissn=2662-4737&rft.volume=47&rft.issue=3&rft.spage=863&rft.epage=880&rft_id=info:doi/10.1007%2Fs13246-024-01410-3&rft.externalDocID=10_1007_s13246_024_01410_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon |