Intrahepatic cholestasis of pregnancy: machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data

Purpose Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements. Methods This retrospective study included 336 pregnant women with a chief complaint...

Full description

Saved in:
Bibliographic Details
Published inArchives of gynecology and obstetrics Vol. 304; no. 3; pp. 641 - 647
Main Authors Asali, Aula, Ravid, Dorit, Shalev, Hila, David, Liron, Yogev, Eran, Yogev, Sabina Sapunar, Schonman, Ron, Biron-Shental, Tal, Miller, Netanella
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0932-0067
1432-0711
1432-0711
DOI10.1007/s00404-021-05994-z

Cover

Abstract Purpose Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements. Methods This retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels. Results Among 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels ( p  = 0.001), higher parity ( p  = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) ( p  = 0.001) and glutamic-pyruvic transaminase (GPT) levels ( p  = 0.001). Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13). Conclusion Machine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.
AbstractList Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements.PURPOSEApplying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements.This retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels.METHODSThis retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels.Among 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels (p = 0.001), higher parity (p = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) (p = 0.001) and glutamic-pyruvic transaminase (GPT) levels (p = 0.001). Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13).RESULTSAmong 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels (p = 0.001), higher parity (p = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) (p = 0.001) and glutamic-pyruvic transaminase (GPT) levels (p = 0.001). Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13).Machine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.CONCLUSIONMachine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.
Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements. This retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels. Among 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels (p = 0.001), higher parity (p = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) (p = 0.001) and glutamic-pyruvic transaminase (GPT) levels (p = 0.001). Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13). Machine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.
Purpose Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements. Methods This retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels. Results Among 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels ( p  = 0.001), higher parity ( p  = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) ( p  = 0.001) and glutamic-pyruvic transaminase (GPT) levels ( p  = 0.001). Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13). Conclusion Machine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.
PurposeApplying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to identify these patients without bile acid measurements.MethodsThis retrospective study included 336 pregnant women with a chief complaint of pruritis without rash during the second/third trimesters. Data extracted included: demographics, obstetric, clinical and laboratory features. The primary outcome was an elevated bile acid measurement  ≥ 10 µmol/L, regardless of liver enzyme levels. We used different machine-learning models and statistical regression to predict elevated bile acid levels.ResultsAmong 336 women who complained about pruritis, 167 had bile acids  ≥ 10 µmol/L and 169 had normal levels. Women with elevated bile acids were older than those with normal levels (p = 0.001), higher parity (p = 0.001), and higher glutamic oxaloacetic transaminase ( GOT) (p = 0.001) and glutamic-pyruvic transaminase (GPT) levels (p = 0.001).Using machine-learning models, the XGB Classifier model was the most accurate (area under the curve (AUC), 0.9) followed by the K-neighbors model (AUC, 0.86); and then the Support Vector Classification (SVC) model (AUC, 0.82). The model with the lowest predicative ability was the logistic regression (AUC, 0.72). The maximum sensitivity of the XGB model was 86% and specificity 75%. The best predictive parameters of the XGB model were elevated GOT (Importance 0.17), elevated GPT (Importance 0.16), family history of bile disease (0.16) and previous pregnancy with ICP (0.13).ConclusionMachine-learning models using clinical data may predict ICP more accurately than logistic regression does. Using detection algorithms derived from these techniques may improve identification of ICP, especially when bile acid testing is not available.
Author Yogev, Sabina Sapunar
Yogev, Eran
Ravid, Dorit
Miller, Netanella
Asali, Aula
Schonman, Ron
David, Liron
Biron-Shental, Tal
Shalev, Hila
Author_xml – sequence: 1
  givenname: Aula
  orcidid: 0000-0001-5416-026X
  surname: Asali
  fullname: Asali, Aula
  email: aula_atamna@yahoo.com
  organization: Department of Obstetrics and Gynecology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University
– sequence: 2
  givenname: Dorit
  surname: Ravid
  fullname: Ravid, Dorit
  organization: Department of Obstetrics and Gynecology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University
– sequence: 3
  givenname: Hila
  surname: Shalev
  fullname: Shalev, Hila
  organization: Technion—Israel Institute of Technology
– sequence: 4
  givenname: Liron
  surname: David
  fullname: David, Liron
  organization: Sackler School of Medicine, Tel Aviv University
– sequence: 5
  givenname: Eran
  surname: Yogev
  fullname: Yogev, Eran
  organization: Ben Gurion University of the Negev
– sequence: 6
  givenname: Sabina Sapunar
  surname: Yogev
  fullname: Yogev, Sabina Sapunar
  organization: Ben Gurion University of the Negev
– sequence: 7
  givenname: Ron
  surname: Schonman
  fullname: Schonman, Ron
  organization: Department of Obstetrics and Gynecology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University
– sequence: 8
  givenname: Tal
  surname: Biron-Shental
  fullname: Biron-Shental, Tal
  organization: Department of Obstetrics and Gynecology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University
– sequence: 9
  givenname: Netanella
  surname: Miller
  fullname: Miller, Netanella
  organization: Department of Obstetrics and Gynecology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33608801$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaTZJv0APRdBLL25GsmxZvZXQP4FALs1ZjGV5V0GWtpK2sLn3e1fbTSjkkIPQDPzeMPPeGTkJMVhC3jH4xADkZQYQIBrgrIFOKdE8vCIrJlregGTshKxAHWro5Sk5y_kegPFh6N-Q07btYRiArcif61ASbuwWizPUbKK3uWB2mcaZbpNdBwxm_5kuaDYu2MZbTMGFNUW_jsmVzUJLPICTM4Vab39jsRMdnbcUjasV5trHQI13wRn0FMNEPY4xYYlpTycseEFez-izffv4n5O7b19_Xv1obm6_X199uWlMK7vStJOSgpmej5wDH1uAidtJciUHnNRc71MDiI6DYaPhnDFlBY71zVwyGKE9Jx-Pc7cp_trVS_XisrHeY7BxlzUXiikhul5W9MMz9D7uUqjbad51vYKOsbZS7x-p3bjYSW-TWzDt9ZPBFRiOgEkx52RnbVypXseD7c5rBvqQpT5mqWuW-l-W-qFK-TPp0_QXRe1RlCsc1jb9X_sF1V92RLH2
CitedBy_id crossref_primary_10_1016_j_envpol_2024_124583
crossref_primary_10_1111_jog_15837
crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_primary_10_1080_14767058_2024_2413854
crossref_primary_10_5468_ogs_21234
Cites_doi 10.1002/hep.26617
10.1007/s00404-019-05247-0
10.1016/j.ajog.2015.02.012
10.1038/ajg.2013.406
10.1002/14651858.CD012546.pub2
10.1055/s-0033-1333673
10.1016/j.cld.2015.08.010
10.1016/S0140-6736(16)31472-6
10.3109/14767058.2015.1079612
10.3748/wjg.v21.i23.7134
10.1111/aogs.13695
10.1258/0004563021901856
10.1097/HCO.0000000000000491
10.1016/S0031-3203(96)00142-2
10.1097/CCM.0000000000001571
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00404-021-05994-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Central (New)
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-0711
EndPage 647
ExternalDocumentID 33608801
10_1007_s00404_021_05994_z
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7X7
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACULB
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
NPM
3V.
7XB
8FK
K9.
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-3d9741c62b2202b300d2ed72978ad9f0019804520c1bc22119e4abe4af2710b03
IEDL.DBID U2A
ISSN 0932-0067
1432-0711
IngestDate Mon Sep 29 05:26:32 EDT 2025
Tue Oct 07 07:05:07 EDT 2025
Wed Feb 19 02:28:24 EST 2025
Thu Apr 24 23:08:24 EDT 2025
Wed Oct 01 02:18:30 EDT 2025
Fri Feb 21 02:48:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Intrahepatic cholestasis of pregnancy
Liver enzymes
Bile acid
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3d9741c62b2202b300d2ed72978ad9f0019804520c1bc22119e4abe4af2710b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5416-026X
PMID 33608801
PQID 2556905113
PQPubID 4408561
PageCount 7
ParticipantIDs proquest_miscellaneous_2491944567
proquest_journals_2556905113
pubmed_primary_33608801
crossref_citationtrail_10_1007_s00404_021_05994_z
crossref_primary_10_1007_s00404_021_05994_z
springer_journals_10_1007_s00404_021_05994_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Archives of gynecology and obstetrics
PublicationTitleAbbrev Arch Gynecol Obstet
PublicationTitleAlternate Arch Gynecol Obstet
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bradley (CR12) 1997; 30
Heinonen, Kirkinen (CR14) 1999; 94
Miller, Abalos, Chamillard, Ciapponi, Colaci, Comandé (CR13) 2016; 388
Manzotti, Casazza, Stimac, Nikolova, Gluud (CR3) 2019
Diken, Usta, Nassar (CR15) 2014; 31
Puljic, Kim, Page, Esakoff, Shaffer, LaCoursiere (CR10) 2015; 212
Hämäläinen, Turunen, Mattila, Kosunen, Sumanen (CR1) 2019
Floreani, Gervasi (CR6) 2016; 20
Geenes, Chappell, Seed, Steer, Knight, Williamson (CR9) 2014; 59
Dixon, Wadsworth, Chambers, Donnelly, Cooley, Buckley (CR16) 2014; 109
CR11
Sheiner, Ohel, Levy (CR7) 2006; 51
Ozkan, Ceylan, Ozkan, Yildirim (CR2) 2015; 21
Al, Nelson-Piercy, Williamson (CR4) 2002; 39
Churpek, Yuen, Winslow, Meltzer, Kattan, Edelson (CR17) 2016; 44
Batsry, Zloto, Kalter, Baum, Mazaki-Tovi, Yinon (CR8) 2019
Awan, Sohel, Sanfilippo, Bennamoun, Dwivedi (CR18) 2018; 33
Liu, Landon, Chen, Cheng (CR5) 2016; 29
S Miller (5994_CR13) 2016; 388
S Ozkan (5994_CR2) 2015; 21
S Heinonen (5994_CR14) 1999; 94
C Manzotti (5994_CR3) 2019
5994_CR11
L Batsry (5994_CR8) 2019
S-T Hämäläinen (5994_CR1) 2019
V Geenes (5994_CR9) 2014; 59
E Sheiner (5994_CR7) 2006; 51
WI Al (5994_CR4) 2002; 39
X Liu (5994_CR5) 2016; 29
A Floreani (5994_CR6) 2016; 20
AP Bradley (5994_CR12) 1997; 30
PH Dixon (5994_CR16) 2014; 109
Z Diken (5994_CR15) 2014; 31
A Puljic (5994_CR10) 2015; 212
MM Churpek (5994_CR17) 2016; 44
SE Awan (5994_CR18) 2018; 33
References_xml – volume: 59
  start-page: 1482
  issue: 4
  year: 2014
  end-page: 1491
  ident: CR9
  article-title: Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case–control study
  publication-title: Hepatology
  doi: 10.1002/hep.26617
– year: 2019
  ident: CR8
  article-title: Perinatal outcomes of intrahepatic cholestasis of pregnancy in twin versus singleton pregnancies: is plurality associated with adverse outcomes?
  publication-title: Arch Gynecol Obstet
  doi: 10.1007/s00404-019-05247-0
– volume: 212
  start-page: 667.e1
  issue: 5
  year: 2015
  end-page: 5
  ident: CR10
  article-title: The risk of infant and fetal death by each additional week of expectant management in intrahepatic cholestasis of pregnancy by gestational age
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2015.02.012
– volume: 109
  start-page: 76
  issue: 1
  year: 2014
  end-page: 84
  ident: CR16
  article-title: A comprehensive analysis of common genetic variation around six candidate loci for intrahepatic cholestasis of pregnancy
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2013.406
– year: 2019
  ident: CR3
  article-title: Total serum bile acids or serum bile acid profile, or both, for the diagnosis of intrahepatic cholestasis of pregnancy
  publication-title: Cochrane database Syst Rev
  doi: 10.1002/14651858.CD012546.pub2
– volume: 31
  start-page: 1
  issue: 1
  year: 2014
  end-page: 8
  ident: CR15
  article-title: A clinical approach to intrahepatic cholestasis of pregnancy
  publication-title: Am J Perinatol
  doi: 10.1055/s-0033-1333673
– volume: 20
  start-page: 177
  issue: 1
  year: 2016
  end-page: 189
  ident: CR6
  article-title: New insights on intrahepatic cholestasis of pregnancy
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2015.08.010
– volume: 94
  start-page: 189
  issue: 2
  year: 1999
  end-page: 193
  ident: CR14
  article-title: Pregnancy outcome with intrahepatic cholestasis
  publication-title: Obstet Gynecol
– volume: 388
  start-page: 2176
  issue: 10056
  year: 2016
  end-page: 2192
  ident: CR13
  article-title: Beyond too little, too late and too much, too soon: a pathway towards evidence-based, respectful maternity care worldwide
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31472-6
– ident: CR11
– volume: 51
  start-page: 394
  year: 2006
  end-page: 398
  ident: CR7
  article-title: Pregnancy outcome in women with pruritus gravidarum
  publication-title: J Reprod Med
– volume: 29
  start-page: 2176
  issue: 13
  year: 2016
  end-page: 2181
  ident: CR5
  article-title: Perinatal outcomes with intrahepatic cholestasis of pregnancy in twin pregnancies
  publication-title: J Matern Fetal Neonatal Med
  doi: 10.3109/14767058.2015.1079612
– volume: 21
  start-page: 7134
  issue: 23
  year: 2015
  end-page: 7141
  ident: CR2
  article-title: Review of a challenging clinical issue: intrahepatic cholestasis of pregnancy
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v21.i23.7134
– year: 2019
  ident: CR1
  article-title: Intrahepatic cholestasis of pregnancy and comorbidity: a 44-year follow-up study
  publication-title: Acta Obstet Gynecol Scand
  doi: 10.1111/aogs.13695
– volume: 39
  start-page: 105
  issue: 2
  year: 2002
  end-page: 113
  ident: CR4
  article-title: Role of bile acid measurement in pregnancy
  publication-title: Ann Clin Biochem
  doi: 10.1258/0004563021901856
– volume: 33
  start-page: 190
  issue: 2
  year: 2018
  end-page: 195
  ident: CR18
  article-title: Machine learning in heart failure: ready for prime time
  publication-title: Curr Opin Cardiol
  doi: 10.1097/HCO.0000000000000491
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: CR12
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 44
  start-page: 368
  issue: 2
  year: 2016
  end-page: 374
  ident: CR17
  article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001571
– volume: 59
  start-page: 1482
  issue: 4
  year: 2014
  ident: 5994_CR9
  publication-title: Hepatology
  doi: 10.1002/hep.26617
– volume: 94
  start-page: 189
  issue: 2
  year: 1999
  ident: 5994_CR14
  publication-title: Obstet Gynecol
– volume: 44
  start-page: 368
  issue: 2
  year: 2016
  ident: 5994_CR17
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001571
– volume: 388
  start-page: 2176
  issue: 10056
  year: 2016
  ident: 5994_CR13
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)31472-6
– volume: 30
  start-page: 1145
  year: 1997
  ident: 5994_CR12
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 31
  start-page: 1
  issue: 1
  year: 2014
  ident: 5994_CR15
  publication-title: Am J Perinatol
  doi: 10.1055/s-0033-1333673
– year: 2019
  ident: 5994_CR8
  publication-title: Arch Gynecol Obstet
  doi: 10.1007/s00404-019-05247-0
– ident: 5994_CR11
– year: 2019
  ident: 5994_CR3
  publication-title: Cochrane database Syst Rev
  doi: 10.1002/14651858.CD012546.pub2
– volume: 51
  start-page: 394
  year: 2006
  ident: 5994_CR7
  publication-title: J Reprod Med
– volume: 212
  start-page: 667.e1
  issue: 5
  year: 2015
  ident: 5994_CR10
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2015.02.012
– year: 2019
  ident: 5994_CR1
  publication-title: Acta Obstet Gynecol Scand
  doi: 10.1111/aogs.13695
– volume: 39
  start-page: 105
  issue: 2
  year: 2002
  ident: 5994_CR4
  publication-title: Ann Clin Biochem
  doi: 10.1258/0004563021901856
– volume: 20
  start-page: 177
  issue: 1
  year: 2016
  ident: 5994_CR6
  publication-title: Clin Liver Dis
  doi: 10.1016/j.cld.2015.08.010
– volume: 109
  start-page: 76
  issue: 1
  year: 2014
  ident: 5994_CR16
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2013.406
– volume: 33
  start-page: 190
  issue: 2
  year: 2018
  ident: 5994_CR18
  publication-title: Curr Opin Cardiol
  doi: 10.1097/HCO.0000000000000491
– volume: 29
  start-page: 2176
  issue: 13
  year: 2016
  ident: 5994_CR5
  publication-title: J Matern Fetal Neonatal Med
  doi: 10.3109/14767058.2015.1079612
– volume: 21
  start-page: 7134
  issue: 23
  year: 2015
  ident: 5994_CR2
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v21.i23.7134
SSID ssj0012886
Score 2.324303
Snippet Purpose Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm...
Applying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to...
PurposeApplying machine-learning models to clinical and laboratory features of women with intrahepatic cholestasis of pregnancy (ICP) and creating algorithm to...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 641
SubjectTerms Acids
Bile
Endocrinology
Gallbladder diseases
Gynecology
Human Genetics
Laboratories
Maternal-Fetal Medicine
Medicine
Medicine & Public Health
Obstetrics/Perinatology/Midwifery
Pregnancy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcQXaf2MbWUF33Qx2c3HRRCp0lIFDxELfQub3cm10CbnXfrQvvt_d2ZvkyLFPgQC2Ww2mcnsb3dmfgPwVudZ0eTKSYfsZkTrpFFFLJMCdWFVYxLno3xn-dFx-v0kO9mA2ZALw2GVg030htp1lvfIPzBVFnNJJfrz4o_kqlHsXR1KaJhQWsF98hRjD2BTMTPWBDa_HMx-_hr9Cmrqaz_SMl5JNtQhjcYn07E-p5JDFpizJJXX_05Vd_DnHd-pn5IOt-BxwJJify38bdjA9gk8_BG85U_h7zfeuT1FDpq2gu0cdWxWZyvRNWKxxDmTbVx9FBc-oBJlqCAxF-Z8Tq_en16IvuOG1GEvOBGdgKkTNRkSYewZndEU6ETXiiG_UpjWiaBX3fJKcPzpMzg-PPj99UiGsgvS6iLrpXa0xkhsrmqlYlXrOHYKHYHwYmpc2TAonDIRe2yT2ipmiMPU1HQ0iuBKHevnMGm7Fl-CIFE0mNGSBktOqM1MaaiXqU7zGDFHFUEyfOHKBk5yLo1xXo1syl4qFUml8lKpriN4N96zWDNy3Nt6dxBcFf7OVXWrSxG8GS_Tf8XOEtNid0lt0jIpU4KXRQQv1gIfH6d1TsY5TiJ4P2jAbef_H8ur-8eyA4-U1z4OYNuFSb-8xD1CPH39OqjxDaPE-8Q
  priority: 102
  providerName: ProQuest
Title Intrahepatic cholestasis of pregnancy: machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data
URI https://link.springer.com/article/10.1007/s00404-021-05994-z
https://www.ncbi.nlm.nih.gov/pubmed/33608801
https://www.proquest.com/docview/2556905113
https://www.proquest.com/docview/2491944567
Volume 304
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012886
  issn: 0932-0067
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5sC-KL-LvReqzgmy5kd5Ns0rdTrlbFIuLB-RQ2u5vrQZuUu_Shfe__7UxuE5Gq4ENIIJNJyExmv83MfAvwWmWprjPpuPOUZvTWcSN1zIX2SltZG-H6Kt-T7HiefFqki9AUthmq3YeUZB-px2Y38reEU0kBcYok_HoH9lKi80IvnsvpmDuQeb--I07VJadgHFpl_qzj9-HoFsa8lR_th52jB3A_4EU23Rr4IdzxzSO4-yVkxB_DzUf6O3vqqTDaMoplqNhsVhvW1uxi7ZdEqHF1yM77oknPwyoRS2bOlu161Z2es64lQVTYMWo2R_DpWIXBghm7wiMc5hxrGzb0UDLTOBZ8p11fMaoxfQLzo9n398c8LK3ArdJpx5XDeYSwmaykjGWl4thJ7xBo69y4oibglxPZemxFZSWxwPnEVLjVEiFJFaunsNu0jd8Hloq89ilOW3xBTbOpKQxqyVWSxd5nXkYghjdc2sA7TstfnJUjY3JvlRKtUvZWKa8jeDNec7Fl3fin9MFguDJ8gZuSqNWIe0yoCF6Np_HboYSIaXx7iTJJIYoEIaSO4NnW4OPtlMowAMcigreDB_xS_vdnef5_4i_gnuy9kYrWDmC3W1_6l4hyumoCO3qhJ7A3_fDj8wz372YnX79Nelf_CYPW9s0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC-qL-G206gr6pIvJbj4uQhE_Wu5se4i00Ld0s7u5FtrkvEuR67v_ln-bM3ubFCn2rQ8HB7eZC5nZmd9mZn4D8FqmSValwnBjKc1oteFKZCGPMiszLSoVGVflO06H-_G3g-RgBf50vTBUVtn5ROeoTaPpHfl7osoiLqlIfpz-5DQ1irKr3QgN5UcrmA1HMeYbO7bt4hce4eYbo6-o7zdCbG3ufRlyP2WAa5klLZcGIXWkU1EKEYpShqER1iDmzAbK5BVhoAHxjoc6KrUgQjQbqxI_lcDoXIYS5d6AtVjGOR7-1j5vjr__6PMYYuBmTYaIkjgFBt-245r3aP_EnEokiCMl5uf_hsZLePdSrtaFwK27cMdjV_ZpaWz3YMXW9-Hmrs_OP4DfI3pTfGSpSFsz8qsoWM2P56yp2HRmJ0TusfjATl0Bp-V-YsWEqZMJPur26JS1DS1EgS2jxncEwoaV6LiY0sf4DUOuYU3Nun5OpmrDvB03swWjeteHsH8tCngEq3VT2yfAUPWVTfAIZXNq4E1UrlDKQMZpaG1qRQBR94QL7TnQaRTHSdGzNzutFKiVwmmlOA_gbX_NdMkAcuXq9U5xhfcG8-LCdgN41f-M-5iSM6q2zRmuifMojxHOZgE8Xiq8_zspUwwGYRTAu84CLoT__16eXn0vL-HWcG93p9gZjbefwW3hLJGK59ZhtZ2d2eeIttryhTdpBofXvYv-AsEYNrc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RkFAvVQttSaFgpN5ai9jOZ2-osALaoh66ErfIsZ1lJUhWu-EAd_53Z7xJ2opSiUOkSJlMoszYfs7MvAH4oJI4rRJpuXUUZnTGci3TkIvUqdTISgvrs3zPk5NxdHYRX_xRxe-z3fuQ5LKmgVia6vZgZquDofCNfC_ilF5A_CIRv3sGaxERJaBHj-XhEEeQme_1iNt2yWli7spm_q3j76XpAd58ECv1S9DoJbzosCM7XBr7Fay4egPWv3fR8U24P6U_tZeOkqQNo3kNFevFdMGais3mbkLkGref2bVPoHS86xgxYfpq0syn7eU1axsSRIUto8JzBKKWlThxMG2meIZLnmVNzfp6SqZryzo_aua3jPJNX8N4dPzzywnv2ixwo9K45crinkKYRJZShrJUYWilswi600zbvCIQmBHxemhEaSQxwrlIl3hUEuFJGao3sFo3tdsCFouscjFuYVxOBbSxzjVqyVSUhM4lTgYg-i9cmI6DnFphXBUDe7K3SoFWKbxVirsAPg73zJYMHP-V3ukNV3SjcVEQzRrxkAkVwP5wGccRBUd07ZoblIlykUcIJ9MA3i4NPjxOqQQn41AE8Kn3gN_KH3-Xd08T34P1H0ej4tvp-ddteC69Y1Iu2w6stvMb9x7BT1vuev_-BSZT-eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrahepatic+cholestasis+of+pregnancy%3A+machine-learning+algorithm+to+predict+elevated+bile+acid+based+on+clinical+and+laboratory+data&rft.jtitle=Archives+of+gynecology+and+obstetrics&rft.au=Asali%2C+Aula&rft.au=Ravid%2C+Dorit&rft.au=Shalev%2C+Hila&rft.au=David%2C+Liron&rft.date=2021-09-01&rft.issn=0932-0067&rft.eissn=1432-0711&rft.volume=304&rft.issue=3&rft.spage=641&rft.epage=647&rft_id=info:doi/10.1007%2Fs00404-021-05994-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00404_021_05994_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-0067&client=summon