Experimental Assessment of 10 Gbps 5G Multicarrier Waveforms for High-Layer Split U-DWDM-PON-Based Fronthaul

The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combinatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 37; no. 10; pp. 2344 - 2351
Main Authors Sarmiento, Samael, Altabas, Jose A., Spadaro, Salvatore, Lazaro, Jose A.
Format Journal Article Publication
LanguageEnglish
Published New York IEEE 15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2019.2904114

Cover

Abstract The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application.
AbstractList The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application.
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application. Peer Reviewed
Author Lazaro, Jose A.
Sarmiento, Samael
Altabas, Jose A.
Spadaro, Salvatore
Author_xml – sequence: 1
  givenname: Samael
  surname: Sarmiento
  fullname: Sarmiento, Samael
  email: samael.sarmiento@tsc.upc.edu
  organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain
– sequence: 2
  givenname: Jose A.
  surname: Altabas
  fullname: Altabas, Jose A.
  email: jaltabas@unizar.es
  organization: Dept. of Electr. Eng. & Commun., Univ. of Zaragoza, Zaragoza, Spain
– sequence: 3
  givenname: Salvatore
  surname: Spadaro
  fullname: Spadaro, Salvatore
  email: spadaro@tsc.upc.edu
  organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain
– sequence: 4
  givenname: Jose A.
  surname: Lazaro
  fullname: Lazaro, Jose A.
  email: jose.lazaro@tsc.upc.edu
  organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain
BookMark eNp9kc1LHDEYh0Ox0HXbe6GXQM9Z8znJHP1YV2WthSoeQzbzjkbGmWmSKfW_N8suFTz0kISX5Hnf8PwO0UE_9IDQV0YXjNH66Gp9u-CU1QteU8mY_IBmTClDOGfiAM2oFoIYzeUndJjSE6VMSqNnqFv-HSGGZ-iz6_BxSpDStsBDixnFq82YsFrh66nLwbsYA0R87_5AO8TnhMuOL8LDI1m7l3Lxa-xCxnfk7P7smvy8-UFOXIIGn8ehz49u6j6jj63rEnzZn3N0d768Pb0g65vV5enxmnihVSbCN7zyWlOjNKMCZAMb3oA0pvaNUfWGetXWvjJgpGOcCg1gBKUgwStdOTFHbNfXp8nbCB6id9kOLrwV28Wp5lZUmgtemO87ZozD7wlStk_DFPvyTVsUymJLFZNzRPed45BShNaORZ6LL5ZRu83BlhzsNge7z6Eg1TvEh-xyKE6iC93_wG87MADAvzmmqmR5Ll4BQc-VDg
CODEN JLTEDG
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102120
crossref_primary_10_1109_JLT_2020_3028492
crossref_primary_10_1016_j_sigpro_2024_109427
crossref_primary_10_1515_joc_2024_0177
crossref_primary_10_1007_s11082_023_06226_1
crossref_primary_10_1109_TVT_2023_3263220
crossref_primary_10_1364_JOCN_468681
crossref_primary_10_1515_joc_2024_0040
crossref_primary_10_1109_TCOMM_2020_3031594
crossref_primary_10_1007_s11277_020_07347_6
crossref_primary_10_1109_ACCESS_2020_2972105
crossref_primary_10_1109_JLT_2021_3096246
crossref_primary_10_3390_app10041212
crossref_primary_10_1007_s11235_021_00855_1
crossref_primary_10_1109_JLT_2021_3113388
crossref_primary_10_1007_s11082_024_07327_1
crossref_primary_10_3390_app11199130
Cites_doi 10.1364/OFC.2018.Tu3J.1
10.1364/OFC.2015.Tu2E.1
10.1364/OFC.2014.Tu2B.6
10.1109/COMST.2017.2773462
10.1109/MCOM.2002.1031841
10.1109/ANTS.2014.7057286
10.1109/ECOC.2014.6964214
10.1109/JPROC.2003.821912
10.1109/JLT.2014.2316369
10.1186/s13638-016-0792-0
10.1109/JLT.2015.2499381
10.1109/RWS.2010.5434093
10.1109/JLT.2016.2629667
10.1109/JLT.2018.2880361
10.1109/MWC.2005.1421929
10.1109/MCOM.2014.6898939
10.1364/JOCN.10.0000A1
10.1109/COMST.2017.2766698
10.1109/JLT.2016.2608138
10.1364/JOCN.7.000B38
10.1364/OFC.2015.M2J.7
10.1109/JLT.1987.1075494
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques
Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: info:eu-repo/semantics/openAccess
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
XX2
DOI 10.1109/JLT.2019.2904114
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Recercat
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 2351
ExternalDocumentID oai_recercat_cat_2072_367232
10_1109_JLT_2019_2904114
8664109
Genre orig-research
GrantInformation_xml – fundername: FOANT
  grantid: TEC2017-85752-R
– fundername: FEDER
  grantid: FPI-BES-2015-074302; FPU-13/00620
– fundername: ALLIANCE
  grantid: TEC2017-90034-C2-2-R
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
RIG
7SP
7U5
8FD
H8D
L7M
XX2
ID FETCH-LOGICAL-c375t-3cd26c770857103e4deb2de4889cd859b0c5f9c68e84a12037ee8300e4ec576a3
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Fri Sep 19 12:24:34 EDT 2025
Mon Jun 30 10:11:26 EDT 2025
Tue Jul 01 01:01:49 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Wed Aug 27 06:00:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3cd26c770857103e4deb2de4889cd859b0c5f9c68e84a12037ee8300e4ec576a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4100-1726
0000-0001-6549-8426
0000-0002-5606-9010
0000-0001-5020-1407
OpenAccessLink https://recercat.cat/handle/2072/367232
PQID 2214448521
PQPubID 85485
PageCount 8
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_367232
crossref_primary_10_1109_JLT_2019_2904114
ieee_primary_8664109
proquest_journals_2214448521
crossref_citationtrail_10_1109_JLT_2019_2904114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers (IEEE)
References ref13
ref15
ref14
ref30
ref11
(ref5) 2017
ref10
kim (ref12) 2016
ref2
ref1
ref17
cerwall (ref4) 2016
ref19
li (ref21) 2006
(ref16) 2016
kani (ref18) 2017; 35
ref23
ref26
ref25
ref20
ref22
barrami (ref24) 2013
ref28
ref27
ref29
ref7
(ref8) 2014
ref9
ref3
ref6
(ref31) 2004
References_xml – year: 2004
  ident: ref31
  article-title: Forward error correction for high bit-rate DWDM submarine systems
– ident: ref15
  doi: 10.1364/OFC.2018.Tu3J.1
– ident: ref10
  doi: 10.1364/OFC.2015.Tu2E.1
– ident: ref11
  doi: 10.1364/OFC.2014.Tu2B.6
– volume: 35
  start-page: 527
  year: 2017
  ident: ref18
  article-title: Solutions for future mobile fronthaul and access-network convergence
  publication-title: J Lightw Technol
– ident: ref7
  doi: 10.1109/COMST.2017.2773462
– ident: ref20
  doi: 10.1109/MCOM.2002.1031841
– year: 2006
  ident: ref21
  publication-title: OFDM for Wireless Communications
– year: 2017
  ident: ref5
  article-title: Cisco visual networking index: Global mobile data traffic forecast update, 2016c2021 white paper
– ident: ref1
  doi: 10.1109/ANTS.2014.7057286
– start-page: 1247
  year: 2013
  ident: ref24
  article-title: A novel FFT/IFFT size efficient technique to generate real time optical OFDM signals compatible with IM/DD systems
  publication-title: Proc Eur Microw Conf
– ident: ref6
  doi: 10.1109/ECOC.2014.6964214
– ident: ref22
  doi: 10.1109/JPROC.2003.821912
– ident: ref17
  doi: 10.1109/JLT.2014.2316369
– ident: ref29
  doi: 10.1186/s13638-016-0792-0
– year: 2014
  ident: ref8
  article-title: Common public radio interface (CPRI)-interface specification
– ident: ref25
  doi: 10.1109/JLT.2015.2499381
– ident: ref28
  doi: 10.1109/RWS.2010.5434093
– ident: ref14
  doi: 10.1109/JLT.2016.2629667
– start-page: 1
  year: 2016
  ident: ref12
  article-title: Optical fronthaul technologies for next-generation mobile communications
  publication-title: Proc Int Conf Transparent Optical Netw
– ident: ref27
  doi: 10.1109/JLT.2018.2880361
– ident: ref30
  doi: 10.1109/MWC.2005.1421929
– ident: ref3
  doi: 10.1109/MCOM.2014.6898939
– ident: ref19
  doi: 10.1364/JOCN.10.0000A1
– ident: ref23
  doi: 10.1109/COMST.2017.2766698
– ident: ref13
  doi: 10.1109/JLT.2016.2608138
– start-page: 1
  year: 2016
  ident: ref4
  article-title: Ericsson mobility report: On the pulse of the networked society
– year: 2016
  ident: ref16
  article-title: 10-gigabit-capable symmetric passive optical network (XGS-PON)
– ident: ref2
  doi: 10.1364/JOCN.7.000B38
– ident: ref9
  doi: 10.1364/OFC.2015.M2J.7
– ident: ref26
  doi: 10.1109/JLT.1987.1075494
SSID ssj0014487
Score 2.4491282
Snippet The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires...
The current constant growth in mobile networks’ traffic demands caused by the popularization of cloud and streaming services on personal devices, requires...
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including...
SourceID csuc
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2344
SubjectTerms Comunicacions mòbils, Sistemes de
Crosstalk
Dense Wavelength Division Multiplexing
Digital media
Energy management
Enginyeria de la telecomunicació
Fibres òptiques
Filter-bank based multi-carrier
Finite impulse response filters
Freqüència modulada
fronthaul
generalised frequency division multiplexing
Mobile communication systems
Modulation
Optical communication
Optical filters
Optical receivers
Optical transmitters
Orthogonal Frequency Division Multiplexing
Peak to average power ratio
Power efficiency
Power management
radio-over-fiber
Ràdio
universal filtered multicarrier
Waveforms
Wireless networks
Àrees temàtiques de la UPC
Title Experimental Assessment of 10 Gbps 5G Multicarrier Waveforms for High-Layer Split U-DWDM-PON-Based Fronthaul
URI https://ieeexplore.ieee.org/document/8664109
https://www.proquest.com/docview/2214448521
https://recercat.cat/handle/2072/367232
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbpQqGXpklaum0adMilpd6VJfmhY9pkE0JSCs2S3IQ0lil02Q1ru4f--s5ovaYvSg42Nli24JvRzFgz3zB2XFFECAr12zuRaFB54qFUiasRfANl5iAmyH7KL-b68i6722Hvh1qYEEJMPgsTuox7-dUKOvpVNi3zXKdUrfcIxWxTqzXsGGCYEUujC6VQw6XebkkKM728uqEcLjORRug01b-ZoBE0HfStVf5aj6ORme2y6-30Nrkl3yZd6yfw4w_mxofO_xl72nub_GQjHntsJyz32W7vefJer5t99jgmgkJzwBZnv1D-85OBt5Ovap4Kfu7vG56d81i3C25N_e74rfseyPdtOJ45ZY4kVw5def4Fv9PyeXJ6e3qdfMZF-wPazIrPiDThq-sWz9l8dnbz8SLpOzIkoIqsTRRUMoeiIFr8VKigKwzMq4CLgIGqzIwXkNUG8jKU2qVSqCKEUgkRdAAMbJx6wUbL1TK8ZFwYX2U1Bj-QBwzSnJPBe5F6Kevc-FqP2XQLkoWerpy6ZixsDFuEsQirJVhtD-uYvR1G3G-oOv7z7DvC3aJVCWtwrSWW7eGGDikKaVVeoMc5ZgeE5fDSHsYxO9xKi-0Vv7GSKOh0iU7Rq3-Pes2e0EQoASHNDtmoXXfhDfo1rT-KAv0T5e3x4Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NRQheGGyglQ3wAy8g0jq28-HHwdaV0U5ItNreLPviCImqnZp0D_z1nNM04kuIh0RJFCeOfj7fXXz3O4DXRfAIUZJ8O8sjhTKNHOYysiWBrzFPLDYBslfpeK4ub5KbPXjX5cJ475vgMz8Ih81afrHCTfhVNszTVMUhW-9eQl5Fvs3W6tYM6FKTHJ1JSTIu1G5Rkuvh5WQWorj0QGiu4lj9ooR6WG2wLa7yx4zcqJnRPkx3HdxGl3wbbGo3wO-_cTf-7xc8hketvclOtwPkCez55QHst7YnayW7OoD7TSgoVoewOP-J9J-ddsydbFWymLMLd1ux5II1mbto16HiHbu2dz5YvxWjPQuxI9HEkjHPvtB7ajaPzq7PptFnmrbfk9Ys2CjQJny1m8VTmI_OZx_GUVuTIUKZJXUksRApZlkgxo-59Kog17zwhIbGIk-045iUGtPc58rGgsvM-1xy7pVHcm2sfAa95Wrpj4Bx7YqkJPcHU09umrXCO8djJ0SZaleqPgx3IBlsCctD3YyFaRwXrg3BagKspoW1D2-6Frdbso5_3Ps24G5Ir_g12toEnu3uJGyCZ8LINCObsw-HAcvuoS2MfTjZjRbTin5lRCChUzmZRc__3uoVPBjPphMz-Xj16Rgehk6FcIQ4OYFevd74F2Tl1O5lM7h_AMaW9TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Assessment+of+10+Gbps+5G+Multicarrier+Waveforms+for+High-Layer+Split+U-DWDM-PON-Based+Fronthaul&rft.jtitle=Journal+of+lightwave+technology&rft.au=Sarmiento%2C+Samael&rft.au=Altabas%2C+Jose+A.&rft.au=Spadaro%2C+Salvatore&rft.au=Lazaro%2C+Jose+A.&rft.date=2019-05-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=37&rft.issue=10&rft.spage=2344&rft.epage=2351&rft_id=info:doi/10.1109%2FJLT.2019.2904114&rft.externalDocID=8664109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon