Experimental Assessment of 10 Gbps 5G Multicarrier Waveforms for High-Layer Split U-DWDM-PON-Based Fronthaul
The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combinatio...
Saved in:
Published in | Journal of lightwave technology Vol. 37; no. 10; pp. 2344 - 2351 |
---|---|
Main Authors | , , , |
Format | Journal Article Publication |
Language | English |
Published |
New York
IEEE
15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2019.2904114 |
Cover
Abstract | The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application. |
---|---|
AbstractList | The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires architectural changes so as to fulfill all new 5G mobile network requirements. Cloud access radio network (C-RAN) architecture in combination with the massive deployment of small cell antenna sites have recently been proposed as a promising solution but will be demanding for high-capacity mobile fronthaul links. An efficient way for performing that connectivity is to make use of the dense wavelength multiplexing passive optical network (DWDM-PON) infrastructure. In this context, orthogonal frequency division multiplexing (OFDM) has been extensively explored as a potential candidate. Nevertheless, the main drawback of OFDM is its high out-of-band radiation. In order to overcome that drawback, new 5G multicarrier waveforms (FBMC, UFMC, and GFDM) have recently been proposed. In this paper, we experimentally assess and compare 10 Gbps 32-QAM-OFDM/FBMC/UFMC/GFDM system performance for high-layer split ultra-DWDM-PON-based fronthaul using a radio-over-fiber technique. The performance has been done in terms of spectral efficiency, peak-to-average power ratio, spectral density, and receiver sensitivity. In particular, intensity-modulation with direct-detection and quasi-coherent-detection have been considered. In order to improve the multicarrier system energy efficiency, the effect of using a hard clipping technique over transmitted signals is also studied. Finally, we evaluated the crosstalk interference between two adjacent channels of the same modulation scheme, as a function of their electrical frequency span for downlink application. Peer Reviewed |
Author | Lazaro, Jose A. Sarmiento, Samael Altabas, Jose A. Spadaro, Salvatore |
Author_xml | – sequence: 1 givenname: Samael surname: Sarmiento fullname: Sarmiento, Samael email: samael.sarmiento@tsc.upc.edu organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain – sequence: 2 givenname: Jose A. surname: Altabas fullname: Altabas, Jose A. email: jaltabas@unizar.es organization: Dept. of Electr. Eng. & Commun., Univ. of Zaragoza, Zaragoza, Spain – sequence: 3 givenname: Salvatore surname: Spadaro fullname: Spadaro, Salvatore email: spadaro@tsc.upc.edu organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain – sequence: 4 givenname: Jose A. surname: Lazaro fullname: Lazaro, Jose A. email: jose.lazaro@tsc.upc.edu organization: Sch. of Telecommun. Eng., Polytech. Univ. of Catalonia, Barcelona, Spain |
BookMark | eNp9kc1LHDEYh0Ox0HXbe6GXQM9Z8znJHP1YV2WthSoeQzbzjkbGmWmSKfW_N8suFTz0kISX5Hnf8PwO0UE_9IDQV0YXjNH66Gp9u-CU1QteU8mY_IBmTClDOGfiAM2oFoIYzeUndJjSE6VMSqNnqFv-HSGGZ-iz6_BxSpDStsBDixnFq82YsFrh66nLwbsYA0R87_5AO8TnhMuOL8LDI1m7l3Lxa-xCxnfk7P7smvy8-UFOXIIGn8ehz49u6j6jj63rEnzZn3N0d768Pb0g65vV5enxmnihVSbCN7zyWlOjNKMCZAMb3oA0pvaNUfWGetXWvjJgpGOcCg1gBKUgwStdOTFHbNfXp8nbCB6id9kOLrwV28Wp5lZUmgtemO87ZozD7wlStk_DFPvyTVsUymJLFZNzRPed45BShNaORZ6LL5ZRu83BlhzsNge7z6Eg1TvEh-xyKE6iC93_wG87MADAvzmmqmR5Ll4BQc-VDg |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102120 crossref_primary_10_1109_JLT_2020_3028492 crossref_primary_10_1016_j_sigpro_2024_109427 crossref_primary_10_1515_joc_2024_0177 crossref_primary_10_1007_s11082_023_06226_1 crossref_primary_10_1109_TVT_2023_3263220 crossref_primary_10_1364_JOCN_468681 crossref_primary_10_1515_joc_2024_0040 crossref_primary_10_1109_TCOMM_2020_3031594 crossref_primary_10_1007_s11277_020_07347_6 crossref_primary_10_1109_ACCESS_2020_2972105 crossref_primary_10_1109_JLT_2021_3096246 crossref_primary_10_3390_app10041212 crossref_primary_10_1007_s11235_021_00855_1 crossref_primary_10_1109_JLT_2021_3113388 crossref_primary_10_1007_s11082_024_07327_1 crossref_primary_10_3390_app11199130 |
Cites_doi | 10.1364/OFC.2018.Tu3J.1 10.1364/OFC.2015.Tu2E.1 10.1364/OFC.2014.Tu2B.6 10.1109/COMST.2017.2773462 10.1109/MCOM.2002.1031841 10.1109/ANTS.2014.7057286 10.1109/ECOC.2014.6964214 10.1109/JPROC.2003.821912 10.1109/JLT.2014.2316369 10.1186/s13638-016-0792-0 10.1109/JLT.2015.2499381 10.1109/RWS.2010.5434093 10.1109/JLT.2016.2629667 10.1109/JLT.2018.2880361 10.1109/MWC.2005.1421929 10.1109/MCOM.2014.6898939 10.1364/JOCN.10.0000A1 10.1109/COMST.2017.2766698 10.1109/JLT.2016.2608138 10.1364/JOCN.7.000B38 10.1364/OFC.2015.M2J.7 10.1109/JLT.1987.1075494 |
ContentType | Journal Article Publication |
Contributor | Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions – sequence: 2 fullname: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions – sequence: 3 fullname: Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 – notice: info:eu-repo/semantics/openAccess |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M XX2 |
DOI | 10.1109/JLT.2019.2904114 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Recercat |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 2351 |
ExternalDocumentID | oai_recercat_cat_2072_367232 10_1109_JLT_2019_2904114 8664109 |
Genre | orig-research |
GrantInformation_xml | – fundername: FOANT grantid: TEC2017-85752-R – fundername: FEDER grantid: FPI-BES-2015-074302; FPU-13/00620 – fundername: ALLIANCE grantid: TEC2017-90034-C2-2-R |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION RIG 7SP 7U5 8FD H8D L7M XX2 |
ID | FETCH-LOGICAL-c375t-3cd26c770857103e4deb2de4889cd859b0c5f9c68e84a12037ee8300e4ec576a3 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Fri Sep 19 12:24:34 EDT 2025 Mon Jun 30 10:11:26 EDT 2025 Tue Jul 01 01:01:49 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Wed Aug 27 06:00:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3cd26c770857103e4deb2de4889cd859b0c5f9c68e84a12037ee8300e4ec576a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4100-1726 0000-0001-6549-8426 0000-0002-5606-9010 0000-0001-5020-1407 |
OpenAccessLink | https://recercat.cat/handle/2072/367232 |
PQID | 2214448521 |
PQPubID | 85485 |
PageCount | 8 |
ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_367232 crossref_primary_10_1109_JLT_2019_2904114 ieee_primary_8664109 proquest_journals_2214448521 crossref_citationtrail_10_1109_JLT_2019_2904114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers (IEEE) |
References | ref13 ref15 ref14 ref30 ref11 (ref5) 2017 ref10 kim (ref12) 2016 ref2 ref1 ref17 cerwall (ref4) 2016 ref19 li (ref21) 2006 (ref16) 2016 kani (ref18) 2017; 35 ref23 ref26 ref25 ref20 ref22 barrami (ref24) 2013 ref28 ref27 ref29 ref7 (ref8) 2014 ref9 ref3 ref6 (ref31) 2004 |
References_xml | – year: 2004 ident: ref31 article-title: Forward error correction for high bit-rate DWDM submarine systems – ident: ref15 doi: 10.1364/OFC.2018.Tu3J.1 – ident: ref10 doi: 10.1364/OFC.2015.Tu2E.1 – ident: ref11 doi: 10.1364/OFC.2014.Tu2B.6 – volume: 35 start-page: 527 year: 2017 ident: ref18 article-title: Solutions for future mobile fronthaul and access-network convergence publication-title: J Lightw Technol – ident: ref7 doi: 10.1109/COMST.2017.2773462 – ident: ref20 doi: 10.1109/MCOM.2002.1031841 – year: 2006 ident: ref21 publication-title: OFDM for Wireless Communications – year: 2017 ident: ref5 article-title: Cisco visual networking index: Global mobile data traffic forecast update, 2016c2021 white paper – ident: ref1 doi: 10.1109/ANTS.2014.7057286 – start-page: 1247 year: 2013 ident: ref24 article-title: A novel FFT/IFFT size efficient technique to generate real time optical OFDM signals compatible with IM/DD systems publication-title: Proc Eur Microw Conf – ident: ref6 doi: 10.1109/ECOC.2014.6964214 – ident: ref22 doi: 10.1109/JPROC.2003.821912 – ident: ref17 doi: 10.1109/JLT.2014.2316369 – ident: ref29 doi: 10.1186/s13638-016-0792-0 – year: 2014 ident: ref8 article-title: Common public radio interface (CPRI)-interface specification – ident: ref25 doi: 10.1109/JLT.2015.2499381 – ident: ref28 doi: 10.1109/RWS.2010.5434093 – ident: ref14 doi: 10.1109/JLT.2016.2629667 – start-page: 1 year: 2016 ident: ref12 article-title: Optical fronthaul technologies for next-generation mobile communications publication-title: Proc Int Conf Transparent Optical Netw – ident: ref27 doi: 10.1109/JLT.2018.2880361 – ident: ref30 doi: 10.1109/MWC.2005.1421929 – ident: ref3 doi: 10.1109/MCOM.2014.6898939 – ident: ref19 doi: 10.1364/JOCN.10.0000A1 – ident: ref23 doi: 10.1109/COMST.2017.2766698 – ident: ref13 doi: 10.1109/JLT.2016.2608138 – start-page: 1 year: 2016 ident: ref4 article-title: Ericsson mobility report: On the pulse of the networked society – year: 2016 ident: ref16 article-title: 10-gigabit-capable symmetric passive optical network (XGS-PON) – ident: ref2 doi: 10.1364/JOCN.7.000B38 – ident: ref9 doi: 10.1364/OFC.2015.M2J.7 – ident: ref26 doi: 10.1109/JLT.1987.1075494 |
SSID | ssj0014487 |
Score | 2.4491282 |
Snippet | The current constant growth in mobile networks' traffic demands caused by the popularization of cloud and streaming services on personal devices, requires... The current constant growth in mobile networks’ traffic demands caused by the popularization of cloud and streaming services on personal devices, requires... © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including... |
SourceID | csuc proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2344 |
SubjectTerms | Comunicacions mòbils, Sistemes de Crosstalk Dense Wavelength Division Multiplexing Digital media Energy management Enginyeria de la telecomunicació Fibres òptiques Filter-bank based multi-carrier Finite impulse response filters Freqüència modulada fronthaul generalised frequency division multiplexing Mobile communication systems Modulation Optical communication Optical filters Optical receivers Optical transmitters Orthogonal Frequency Division Multiplexing Peak to average power ratio Power efficiency Power management radio-over-fiber Ràdio universal filtered multicarrier Waveforms Wireless networks Àrees temàtiques de la UPC |
Title | Experimental Assessment of 10 Gbps 5G Multicarrier Waveforms for High-Layer Split U-DWDM-PON-Based Fronthaul |
URI | https://ieeexplore.ieee.org/document/8664109 https://www.proquest.com/docview/2214448521 https://recercat.cat/handle/2072/367232 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbpQqGXpklaum0adMilpd6VJfmhY9pkE0JSCs2S3IQ0lil02Q1ru4f--s5ovaYvSg42Nli24JvRzFgz3zB2XFFECAr12zuRaFB54qFUiasRfANl5iAmyH7KL-b68i6722Hvh1qYEEJMPgsTuox7-dUKOvpVNi3zXKdUrfcIxWxTqzXsGGCYEUujC6VQw6XebkkKM728uqEcLjORRug01b-ZoBE0HfStVf5aj6ORme2y6-30Nrkl3yZd6yfw4w_mxofO_xl72nub_GQjHntsJyz32W7vefJer5t99jgmgkJzwBZnv1D-85OBt5Ovap4Kfu7vG56d81i3C25N_e74rfseyPdtOJ45ZY4kVw5def4Fv9PyeXJ6e3qdfMZF-wPazIrPiDThq-sWz9l8dnbz8SLpOzIkoIqsTRRUMoeiIFr8VKigKwzMq4CLgIGqzIwXkNUG8jKU2qVSqCKEUgkRdAAMbJx6wUbL1TK8ZFwYX2U1Bj-QBwzSnJPBe5F6Kevc-FqP2XQLkoWerpy6ZixsDFuEsQirJVhtD-uYvR1G3G-oOv7z7DvC3aJVCWtwrSWW7eGGDikKaVVeoMc5ZgeE5fDSHsYxO9xKi-0Vv7GSKOh0iU7Rq3-Pes2e0EQoASHNDtmoXXfhDfo1rT-KAv0T5e3x4Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NRQheGGyglQ3wAy8g0jq28-HHwdaV0U5ItNreLPviCImqnZp0D_z1nNM04kuIh0RJFCeOfj7fXXz3O4DXRfAIUZJ8O8sjhTKNHOYysiWBrzFPLDYBslfpeK4ub5KbPXjX5cJ475vgMz8Ih81afrHCTfhVNszTVMUhW-9eQl5Fvs3W6tYM6FKTHJ1JSTIu1G5Rkuvh5WQWorj0QGiu4lj9ooR6WG2wLa7yx4zcqJnRPkx3HdxGl3wbbGo3wO-_cTf-7xc8hketvclOtwPkCez55QHst7YnayW7OoD7TSgoVoewOP-J9J-ddsydbFWymLMLd1ux5II1mbto16HiHbu2dz5YvxWjPQuxI9HEkjHPvtB7ajaPzq7PptFnmrbfk9Ys2CjQJny1m8VTmI_OZx_GUVuTIUKZJXUksRApZlkgxo-59Kog17zwhIbGIk-045iUGtPc58rGgsvM-1xy7pVHcm2sfAa95Wrpj4Bx7YqkJPcHU09umrXCO8djJ0SZaleqPgx3IBlsCctD3YyFaRwXrg3BagKspoW1D2-6Frdbso5_3Ps24G5Ir_g12toEnu3uJGyCZ8LINCObsw-HAcvuoS2MfTjZjRbTin5lRCChUzmZRc__3uoVPBjPphMz-Xj16Rgehk6FcIQ4OYFevd74F2Tl1O5lM7h_AMaW9TQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Assessment+of+10+Gbps+5G+Multicarrier+Waveforms+for+High-Layer+Split+U-DWDM-PON-Based+Fronthaul&rft.jtitle=Journal+of+lightwave+technology&rft.au=Sarmiento%2C+Samael&rft.au=Altabas%2C+Jose+A.&rft.au=Spadaro%2C+Salvatore&rft.au=Lazaro%2C+Jose+A.&rft.date=2019-05-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=37&rft.issue=10&rft.spage=2344&rft.epage=2351&rft_id=info:doi/10.1109%2FJLT.2019.2904114&rft.externalDocID=8664109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |