Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma

Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT)...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 30; no. 5; pp. 2984 - 2994
Main Authors Cho, Hwan-ho, Lee, Geewon, Lee, Ho Yun, Park, Hyunjin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-019-06581-2

Cover

Abstract Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness. Methods We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models. Results The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825). Conclusion Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans. Key Points • Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
AbstractList Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness. We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models. The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825). Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans. • Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness. Methods We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models. Results The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825). Conclusion Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans. Key Points • Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.OBJECTIVESLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.METHODSWe identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).RESULTSThe baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.CONCLUSIONOur novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.KEY POINTS• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
ObjectivesLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.MethodsWe identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.ResultsThe baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).ConclusionOur novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.Key Points• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.
Author Cho, Hwan-ho
Lee, Ho Yun
Park, Hyunjin
Lee, Geewon
Author_xml – sequence: 1
  givenname: Hwan-ho
  surname: Cho
  fullname: Cho, Hwan-ho
  organization: Department of Electronic and Computer Engineering, Sungkyunkwan University, Center for Neuroscience Imaging Research, Institute for Basic Science
– sequence: 2
  givenname: Geewon
  surname: Lee
  fullname: Lee, Geewon
  organization: Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine
– sequence: 3
  givenname: Ho Yun
  orcidid: 0000-0001-9960-5648
  surname: Lee
  fullname: Lee, Ho Yun
  email: hoyunlee96@gmail.com
  organization: Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University
– sequence: 4
  givenname: Hyunjin
  surname: Park
  fullname: Park, Hyunjin
  email: hyunjinp@skku.edu
  organization: Center for Neuroscience Imaging Research, Institute for Basic Science, School of Electronic and Electrical Engineering, Sungkyunkwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31965255$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVBboH-BQReqll5Sxx07iY4UoIFFxgbM1cbxbQ9be2gkS_75edttKHDjZ0vveePzeMTsIMTjGzjh84wDteQZAhBq4rqFRHa_FB7bgEkXNoZMHbAEau7rVWh6x45wfAUBz2X5kR8h1o4RSC9b_pLTygcYq0eDj2ttcLR1Nc3K5olz5NRV5VfVFo_TkUpFjqjY0_YpjXHlbnD48U_YxlEs1zgWmwYVoKVkfiuuUHS5pzO7T_jxhDz8u7y-u69u7q5uL77e1xVZNNXaSq7YZur4dSDiHDfQ9ouZtgxKwQSAQSuplQ1ZgT0pIkP3gJAhdvsLxhH3dzd2k-Ht2eTJrn60bRwouztkIlKhAqkYU9Msb9DHOqaSwpTSA0rLdUp_31Nyv3WA2qaSRXszf9AogdoBNMefklv8QDmZbkdlVZEpF5rUis53avTFZP9FU8psS-fF9K-6subwTVi79X_sd1x8UI6PW
CitedBy_id crossref_primary_10_1007_s00405_023_08410_1
crossref_primary_10_1007_s11633_022_1364_x
crossref_primary_10_1111_1759_7714_13580
crossref_primary_10_1186_s12880_021_00564_w
crossref_primary_10_1002_cam4_4719
crossref_primary_10_1186_s12931_022_02016_7
crossref_primary_10_1002_jum_16086
crossref_primary_10_1177_02841851241229597
crossref_primary_10_1186_s12880_022_00862_x
crossref_primary_10_3390_diagnostics12051064
crossref_primary_10_1259_bjr_20210539
crossref_primary_10_3390_cancers13071687
crossref_primary_10_1038_s42003_021_02814_7
crossref_primary_10_1016_j_crad_2020_10_005
crossref_primary_10_3389_fonc_2022_951575
crossref_primary_10_3389_fimmu_2022_1038089
crossref_primary_10_3390_diagnostics11061047
crossref_primary_10_1111_1759_7714_14730
Cites_doi 10.1016/J.ATHORACSUR.2007.03.015
10.1016/S0022-5223(03)00885-7
10.1148/radiol.2451061682
10.1148/radiol.2018180910
10.1158/0008-5472.CAN-17-0339
10.1097/SLA.0b013e3181c0e5f3
10.1371/journal.pone.0118261
10.2967/jnumed.110.082404
10.1038/srep37241
10.1378/CHEST.09-2547
10.1038/nm.3394
10.1097/PAS.0b013e318190157c
10.1038/s41598-018-33473-0
10.1007/s00330-015-3816-y
10.1016/J.CANLET.2016.01.043
10.1200/JCO.1990.8.9.1457
10.1097/JTO.0B013E31829F09A7
10.1038/s41598-017-18310-0
10.1148/radiol.2017161659
10.1007/s00330-017-4917-6
10.1109/TSMC.1973.4309314
10.3978/j.issn.2072-1439.2014.06.09
10.1016/J.EJRAD.2016.09.005
10.1007/s12282-014-0572-9
10.1016/J.MEDIA.2017.07.008
10.1148/radiol.12120628
10.1007/s00330-018-5530-z
10.1016/J.CCR.2012.02.022
10.3174/ajnr.A5173
10.1088/0031-9155/61/13/R150
10.1007/s00330-015-4131-3
10.1148/radiol.2492071956
10.1007/s13244-012-0196-6
10.1634/theoncologist.2017-0538
10.1148/radiol.09090571
10.1097/JTO.0B013E318206A221
10.1148/radiol.10091806
10.3174/ajnr.A5858
10.1007/s00330-016-4637-3
10.1148/radiol.12111793
10.1111/j.2517-6161.1996.tb02080.x
10.1038/ncomms5006
10.1148/radiol.12120240
10.2463/mrms.mp.2017-0044
10.1186/s13058-017-0846-1
10.1148/rg.305095166
ContentType Journal Article
Copyright European Society of Radiology 2020
European Society of Radiology 2020.
Copyright_xml – notice: European Society of Radiology 2020
– notice: European Society of Radiology 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-019-06581-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 2994
ExternalDocumentID 31965255
10_1007_s00330_019_06581_2
Genre Journal Article
GrantInformation_xml – fundername: Korea Health Industry Development Institute (KR)
  grantid: HI17C0086
– fundername: IITP grant funded by the AI Graduate School Support Program
  grantid: 2019-0-00421
– fundername: Ministry of Science and ICT
  grantid: IITP-2019-2018-0-01798
– fundername: National Research Foundation
  grantid: NRF-2019R1H1A2079721; NRF-2017M2A2A7A02018568
– fundername: Institute for Basic Science
  grantid: IBS-R015-D1
– fundername: National Research Foundation
  grantid: NRF-2017M2A2A7A02018568
– fundername: National Research Foundation
  grantid: NRF-2019R1H1A2079721
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-3841576d8b7da2ee360bb3391763403630a02549f6ac23ba52404bde402925513
IEDL.DBID AGYKE
ISSN 0938-7994
1432-1084
IngestDate Fri Sep 05 13:45:29 EDT 2025
Fri Jul 25 19:05:51 EDT 2025
Wed Feb 19 02:29:18 EST 2025
Thu Apr 24 23:08:52 EDT 2025
Tue Jul 01 03:08:12 EDT 2025
Fri Feb 21 02:33:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Lung adenocarcinoma
Tumor microenvironment
Quantitative evaluation
Classification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-3841576d8b7da2ee360bb3391763403630a02549f6ac23ba52404bde402925513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9960-5648
PMID 31965255
PQID 2390059472
PQPubID 54162
PageCount 11
ParticipantIDs proquest_miscellaneous_2343504562
proquest_journals_2390059472
pubmed_primary_31965255
crossref_primary_10_1007_s00330_019_06581_2
crossref_citationtrail_10_1007_s00330_019_06581_2
springer_journals_10_1007_s00330_019_06581_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References NaidichDPBankierAAMacMahonHRecommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner SocietyRadiology201326630431710.1148/radiol.1212062823070270
DavnallFYipCSPLjungqvistGAssessment of tumor heterogeneity: an emerging imaging tool for clinical practice?Insights Imaging2012357358910.1007/s13244-012-0196-6230934863505569
TibshiraniRRegression selection and shrinkage via the LassoJ R Stat Soc B199658267288
GrélardFBaldacciFVialardADomengerJ-PNew methods for the geometrical analysis of tubular organsMed Image Anal2017428910110.1016/J.MEDIA.2017.07.00828780175
QuailDFJoyceJAMicroenvironmental regulation of tumor progression and metastasisNat Med201319142314371:CAS:528:DC%2BC3sXhslCmsrjL10.1038/nm.3394242023953954707
IsmailMHillVStatsevychVShape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite studyAJNR Am J Neuroradiol201839218721931:STN:280:DC%2BB3cvlsleqsA%3D%3D10.3174/ajnr.A5858303854686529206
BeigNKhorramiMAlilouMPerinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomasRadiology201929078379210.1148/radiol.201818091030561278
MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images:from the Fleischner Society 2017. Radiology. https://doi.org/10.1148/radiol.2017161659
UyBicoSJWuCCSuhRDLung cancer staging essentials: the new TNM staging system and potential imaging pitfallsRadiographics2010301163118110.1148/rg.30509516620833843
de HoopBGietemaHvan de VorstSPulmonary ground-glass nodules: increase in mass as an early indicator of growthRadiology201025519920610.1148/radiol.0909057120123896
PrasannaPTiwariPMadabhushiACo-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptorSci Rep20166372411:CAS:528:DC%2BC28XhvFahur7O10.1038/srep37241278724845118705
Son JY, Lee HY, Kim JH et al (2016) Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma:the added value of using iodine mapping. Eur Radiol. https://doi.org/10.1007/s00330-015-3816-y
Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5173
Prasanna P, Patel J, Partovi S et al (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol. https://doi.org/10.1007/s00330-016-4637-3
Wisnivesky JP, Henschke CI, Swanson S et al (2010) Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg. https://doi.org/10.1097/SLA.0b013e3181c0e5f3
AlilouMOroojiMBeigNQuantitative vessel tortuosity:a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomasSci Rep20188152901:CAS:528:DC%2BC1MXhtFWns7g%3D10.1038/s41598-018-33473-0303275076191462
NomoriHOhtsukaTNarukeTSuemasuKHistogram analysis of computed tomography numbers of clinical T1 N0 M0 lung adenocarcinoma, with special reference to lymph node metastasis and tumor invasivenessJ Thorac Cardiovasc Surg20031261584158910.1016/S0022-5223(03)00885-714666037
LeeGLeeHYParkHRadiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management:state of the artEur J Radiol20178629730710.1016/J.EJRAD.2016.09.00527638103
FangWXYZhongCChenQThe IASLC/ATS/ERS classification of lung adenocarcinoma-a surgical point of viewJ Thorac Dis20146S552S56010.3978/j.issn.2072-1439.2014.06.09
Van GriethuysenJJMFedorovAParmarCComputational radiomics system to decode the radiographic phenotypeCancer Res201777e104e1071:CAS:528:DC%2BC2sXhslOltbnL10.1158/0008-5472.CAN-17-0339290929515672828
UematsuTFocal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edemaBreast Cancer201522667010.1007/s12282-014-0572-925336185
WuTDaiYTumor microenvironment and therapeutic responseCancer Lett201738761681:CAS:528:DC%2BC28XhvFSktrY%3D10.1016/J.CANLET.2016.01.04326845449
ZhangJWuJTanQWhy do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classificationJ Thorac Oncol20138119612021:CAS:528:DC%2BC3sXhtlSisbnP10.1097/JTO.0B013E31829F09A723945388
LeeSMParkCMSongYSCT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospitalEur Radiol2017275119512610.1007/s00330-017-4917-628656460
ZhangYShenYQiangJWYeJDZhangJZhaoRYHRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodulesEur Radiol2016262921292810.1007/s00330-015-4131-326662263
BeigNPatelJPrasannaPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaSci Rep201881111:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0
FanLFangMLiZRadiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass noduleEur Radiol20192988989710.1007/s00330-018-5530-z29967956
NakayamaHYamadaKSaitoHSublobar resection for patients with peripheral small adenocarcinomas of the lung:surgical outcome is associated with features on computed tomographic imagingAnn Thorac Surg2007841675167910.1016/J.ATHORACSUR.2007.03.01517954084
LeeGParkHSohnIComprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognosticationOncologist20182380681310.1634/theoncologist.2017-0538296226996058328
Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5. https://doi.org/10.1038/ncomms5006
Borczuk AC, Qian F, Kazeros A et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. AmJ Surg Pathol. https://doi.org/10.1097/PAS.0b013e318190157c
FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley
Austin JHM, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology. https://doi.org/10.1148/radiol.12120240
GroveOBerglundAESchabathMBQuantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinomaPLoS One2015101141:CAS:528:DC%2BC28Xht1yhur4%3D10.1371/journal.pone.0118261
Chae EJ, Song J-W, Seo JB et al (2008) Clinical utility of dualenergy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. https://doi.org/10.1148/radiol.2492071956
KatesMSwansonSWisniveskyJPSurvival following lobectomy and limited resection for the treatment of stage I nonsmall cell lung cancer ≤1 cm in size: a review of SEER dataChest201113949149610.1378/CHEST.09-254720576736
YipSSAertsHJApplications and limitations of radiomicsPhys Med Biol201661R150R1661:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/R150272696454927328
Kunimatsu A, Kunimatsu N, Kamiya K et al (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci. https://doi.org/10.2463/mrms.mp.2017-0044
LeeHYJeongJYLeeKSSolitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkersRadiology201226488489310.1148/radiol.1211179322829686
HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973SMC-361062110.1109/TSMC.1973.4309314
TixierFLe RestCCHattMIntratumor heterogeneity characterized by textural features on baseline 18F-FDGPETimages predicts response to concomitant radio chemotherapy in esophageal cancerJ Nucl Med20115236937810.2967/jnumed.110.082404213212703789272
HanahanDCoussensLMAccessories to the crime: functions of cells recruited to the tumor microenvironmentCancer Cell2012213093221:CAS:528:DC%2BC38Xkt1ykt7w%3D10.1016/J.CCR.2012.02.0222243992622439926
Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. https://doi.org/10.1148/radiol.10091806
LeeAKDeLellisRASilvermanMLPrognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breastJ Clin Oncol19908145714651:STN:280:DyaK3czmt1Wlsw%3D%3D10.1200/JCO.1990.8.9.14572202788
KimHYShimYMLeeKSHanJYiCAKimYKPersistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisonsRadiology200724526727510.1148/radiol.245106168217885195
TravisWDBrambillaENoguchiMInternational Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung AdenocarcinomaJ Thorac Oncol2011624428510.1097/JTO.0B013E318206A221212527164513953
BramanNMEtesamiMPrasannaPIntratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRIBreast Cancer Res201719571:CAS:528:DC%2BC1cXhtlWmtrjE10.1186/s13058-017-0846-1285218215437672
L Fan (6581_CR47) 2019; 29
6581_CR5
M Alilou (6581_CR13) 2018; 8
AK Lee (6581_CR43) 1990; 8
6581_CR2
6581_CR1
M Ismail (6581_CR11) 2018; 39
Y Zhang (6581_CR7) 2016; 26
P Prasanna (6581_CR10) 2016; 6
F Tixier (6581_CR24) 2011; 52
N Beig (6581_CR46) 2018; 8
N Beig (6581_CR45) 2019; 290
F Grélard (6581_CR12) 2017; 42
6581_CR15
G Lee (6581_CR20) 2018; 23
6581_CR37
6581_CR35
6581_CR36
6581_CR39
XY FangW (6581_CR31) 2014; 6
WD Travis (6581_CR38) 2011; 6
F Davnall (6581_CR25) 2012; 3
M Kates (6581_CR4) 2011; 139
DP Naidich (6581_CR16) 2013; 266
SJ UyBico (6581_CR19) 2010; 30
J Zhang (6581_CR3) 2013; 8
NM Braman (6581_CR14) 2017; 19
JJM Van Griethuysen (6581_CR21) 2017; 77
H Nomori (6581_CR41) 2003; 126
H Nakayama (6581_CR30) 2007; 84
JL Fleiss (6581_CR18) 2013
T Wu (6581_CR32) 2017; 387
DF Quail (6581_CR34) 2013; 19
T Uematsu (6581_CR44) 2015; 22
R Tibshirani (6581_CR28) 1996; 58
HY Kim (6581_CR8) 2007; 245
O Grove (6581_CR23) 2015; 10
6581_CR40
HY Lee (6581_CR27) 2012; 264
RM Haralick (6581_CR22) 1973; SMC-3
B de Hoop (6581_CR26) 2010; 255
G Lee (6581_CR42) 2017; 86
SM Lee (6581_CR17) 2017; 27
6581_CR6
D Hanahan (6581_CR33) 2012; 21
SS Yip (6581_CR9) 2016; 61
6581_CR29
References_xml – reference: UematsuTFocal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edemaBreast Cancer201522667010.1007/s12282-014-0572-925336185
– reference: LeeHYJeongJYLeeKSSolitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkersRadiology201226488489310.1148/radiol.1211179322829686
– reference: Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5173
– reference: HanahanDCoussensLMAccessories to the crime: functions of cells recruited to the tumor microenvironmentCancer Cell2012213093221:CAS:528:DC%2BC38Xkt1ykt7w%3D10.1016/J.CCR.2012.02.0222243992622439926
– reference: GroveOBerglundAESchabathMBQuantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinomaPLoS One2015101141:CAS:528:DC%2BC28Xht1yhur4%3D10.1371/journal.pone.0118261
– reference: KatesMSwansonSWisniveskyJPSurvival following lobectomy and limited resection for the treatment of stage I nonsmall cell lung cancer ≤1 cm in size: a review of SEER dataChest201113949149610.1378/CHEST.09-254720576736
– reference: TibshiraniRRegression selection and shrinkage via the LassoJ R Stat Soc B199658267288
– reference: MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images:from the Fleischner Society 2017. Radiology. https://doi.org/10.1148/radiol.2017161659
– reference: Prasanna P, Patel J, Partovi S et al (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol. https://doi.org/10.1007/s00330-016-4637-3
– reference: NakayamaHYamadaKSaitoHSublobar resection for patients with peripheral small adenocarcinomas of the lung:surgical outcome is associated with features on computed tomographic imagingAnn Thorac Surg2007841675167910.1016/J.ATHORACSUR.2007.03.01517954084
– reference: AlilouMOroojiMBeigNQuantitative vessel tortuosity:a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomasSci Rep20188152901:CAS:528:DC%2BC1MXhtFWns7g%3D10.1038/s41598-018-33473-0303275076191462
– reference: LeeAKDeLellisRASilvermanMLPrognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breastJ Clin Oncol19908145714651:STN:280:DyaK3czmt1Wlsw%3D%3D10.1200/JCO.1990.8.9.14572202788
– reference: Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5. https://doi.org/10.1038/ncomms5006
– reference: ZhangYShenYQiangJWYeJDZhangJZhaoRYHRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodulesEur Radiol2016262921292810.1007/s00330-015-4131-326662263
– reference: Kunimatsu A, Kunimatsu N, Kamiya K et al (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci. https://doi.org/10.2463/mrms.mp.2017-0044
– reference: Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. https://doi.org/10.1148/radiol.10091806
– reference: FangWXYZhongCChenQThe IASLC/ATS/ERS classification of lung adenocarcinoma-a surgical point of viewJ Thorac Dis20146S552S56010.3978/j.issn.2072-1439.2014.06.09
– reference: de HoopBGietemaHvan de VorstSPulmonary ground-glass nodules: increase in mass as an early indicator of growthRadiology201025519920610.1148/radiol.0909057120123896
– reference: IsmailMHillVStatsevychVShape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite studyAJNR Am J Neuroradiol201839218721931:STN:280:DC%2BB3cvlsleqsA%3D%3D10.3174/ajnr.A5858303854686529206
– reference: NomoriHOhtsukaTNarukeTSuemasuKHistogram analysis of computed tomography numbers of clinical T1 N0 M0 lung adenocarcinoma, with special reference to lymph node metastasis and tumor invasivenessJ Thorac Cardiovasc Surg20031261584158910.1016/S0022-5223(03)00885-714666037
– reference: LeeSMParkCMSongYSCT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospitalEur Radiol2017275119512610.1007/s00330-017-4917-628656460
– reference: QuailDFJoyceJAMicroenvironmental regulation of tumor progression and metastasisNat Med201319142314371:CAS:528:DC%2BC3sXhslCmsrjL10.1038/nm.3394242023953954707
– reference: Borczuk AC, Qian F, Kazeros A et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. AmJ Surg Pathol. https://doi.org/10.1097/PAS.0b013e318190157c
– reference: UyBicoSJWuCCSuhRDLung cancer staging essentials: the new TNM staging system and potential imaging pitfallsRadiographics2010301163118110.1148/rg.30509516620833843
– reference: BeigNKhorramiMAlilouMPerinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomasRadiology201929078379210.1148/radiol.201818091030561278
– reference: WuTDaiYTumor microenvironment and therapeutic responseCancer Lett201738761681:CAS:528:DC%2BC28XhvFSktrY%3D10.1016/J.CANLET.2016.01.04326845449
– reference: TravisWDBrambillaENoguchiMInternational Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung AdenocarcinomaJ Thorac Oncol2011624428510.1097/JTO.0B013E318206A221212527164513953
– reference: ZhangJWuJTanQWhy do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classificationJ Thorac Oncol20138119612021:CAS:528:DC%2BC3sXhtlSisbnP10.1097/JTO.0B013E31829F09A723945388
– reference: Son JY, Lee HY, Kim JH et al (2016) Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma:the added value of using iodine mapping. Eur Radiol. https://doi.org/10.1007/s00330-015-3816-y
– reference: TixierFLe RestCCHattMIntratumor heterogeneity characterized by textural features on baseline 18F-FDGPETimages predicts response to concomitant radio chemotherapy in esophageal cancerJ Nucl Med20115236937810.2967/jnumed.110.082404213212703789272
– reference: Wisnivesky JP, Henschke CI, Swanson S et al (2010) Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg. https://doi.org/10.1097/SLA.0b013e3181c0e5f3
– reference: FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley
– reference: HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973SMC-361062110.1109/TSMC.1973.4309314
– reference: LeeGParkHSohnIComprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognosticationOncologist20182380681310.1634/theoncologist.2017-0538296226996058328
– reference: DavnallFYipCSPLjungqvistGAssessment of tumor heterogeneity: an emerging imaging tool for clinical practice?Insights Imaging2012357358910.1007/s13244-012-0196-6230934863505569
– reference: FanLFangMLiZRadiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass noduleEur Radiol20192988989710.1007/s00330-018-5530-z29967956
– reference: PrasannaPTiwariPMadabhushiACo-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptorSci Rep20166372411:CAS:528:DC%2BC28XhvFahur7O10.1038/srep37241278724845118705
– reference: Chae EJ, Song J-W, Seo JB et al (2008) Clinical utility of dualenergy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. https://doi.org/10.1148/radiol.2492071956
– reference: Austin JHM, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology. https://doi.org/10.1148/radiol.12120240
– reference: KimHYShimYMLeeKSHanJYiCAKimYKPersistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisonsRadiology200724526727510.1148/radiol.245106168217885195
– reference: NaidichDPBankierAAMacMahonHRecommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner SocietyRadiology201326630431710.1148/radiol.1212062823070270
– reference: Van GriethuysenJJMFedorovAParmarCComputational radiomics system to decode the radiographic phenotypeCancer Res201777e104e1071:CAS:528:DC%2BC2sXhslOltbnL10.1158/0008-5472.CAN-17-0339290929515672828
– reference: LeeGLeeHYParkHRadiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management:state of the artEur J Radiol20178629730710.1016/J.EJRAD.2016.09.00527638103
– reference: YipSSAertsHJApplications and limitations of radiomicsPhys Med Biol201661R150R1661:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/R150272696454927328
– reference: BramanNMEtesamiMPrasannaPIntratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRIBreast Cancer Res201719571:CAS:528:DC%2BC1cXhtlWmtrjE10.1186/s13058-017-0846-1285218215437672
– reference: BeigNPatelJPrasannaPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaSci Rep201881111:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0
– reference: GrélardFBaldacciFVialardADomengerJ-PNew methods for the geometrical analysis of tubular organsMed Image Anal2017428910110.1016/J.MEDIA.2017.07.00828780175
– volume: 84
  start-page: 1675
  year: 2007
  ident: 6581_CR30
  publication-title: Ann Thorac Surg
  doi: 10.1016/J.ATHORACSUR.2007.03.015
– volume: 126
  start-page: 1584
  year: 2003
  ident: 6581_CR41
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/S0022-5223(03)00885-7
– volume: 245
  start-page: 267
  year: 2007
  ident: 6581_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2451061682
– volume: 290
  start-page: 783
  year: 2019
  ident: 6581_CR45
  publication-title: Radiology
  doi: 10.1148/radiol.2018180910
– volume: 77
  start-page: e104
  year: 2017
  ident: 6581_CR21
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: 6581_CR5
  doi: 10.1097/SLA.0b013e3181c0e5f3
– volume: 10
  start-page: 1
  year: 2015
  ident: 6581_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118261
– volume: 52
  start-page: 369
  year: 2011
  ident: 6581_CR24
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082404
– volume: 6
  start-page: 37241
  year: 2016
  ident: 6581_CR10
  publication-title: Sci Rep
  doi: 10.1038/srep37241
– volume: 139
  start-page: 491
  year: 2011
  ident: 6581_CR4
  publication-title: Chest
  doi: 10.1378/CHEST.09-2547
– volume: 19
  start-page: 1423
  year: 2013
  ident: 6581_CR34
  publication-title: Nat Med
  doi: 10.1038/nm.3394
– ident: 6581_CR2
  doi: 10.1097/PAS.0b013e318190157c
– volume: 8
  start-page: 15290
  year: 2018
  ident: 6581_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33473-0
– ident: 6581_CR29
  doi: 10.1007/s00330-015-3816-y
– volume: 387
  start-page: 61
  year: 2017
  ident: 6581_CR32
  publication-title: Cancer Lett
  doi: 10.1016/J.CANLET.2016.01.043
– volume: 8
  start-page: 1457
  year: 1990
  ident: 6581_CR43
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.1990.8.9.1457
– volume: 8
  start-page: 1196
  year: 2013
  ident: 6581_CR3
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0B013E31829F09A7
– volume: 8
  start-page: 1
  year: 2018
  ident: 6581_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-18310-0
– ident: 6581_CR6
  doi: 10.1148/radiol.2017161659
– volume: 27
  start-page: 5119
  year: 2017
  ident: 6581_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4917-6
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 6581_CR22
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 6
  start-page: S552
  year: 2014
  ident: 6581_CR31
  publication-title: J Thorac Dis
  doi: 10.3978/j.issn.2072-1439.2014.06.09
– volume: 86
  start-page: 297
  year: 2017
  ident: 6581_CR42
  publication-title: Eur J Radiol
  doi: 10.1016/J.EJRAD.2016.09.005
– volume: 22
  start-page: 66
  year: 2015
  ident: 6581_CR44
  publication-title: Breast Cancer
  doi: 10.1007/s12282-014-0572-9
– volume: 42
  start-page: 89
  year: 2017
  ident: 6581_CR12
  publication-title: Med Image Anal
  doi: 10.1016/J.MEDIA.2017.07.008
– volume: 266
  start-page: 304
  year: 2013
  ident: 6581_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.12120628
– volume-title: Statistical methods for rates and proportions
  year: 2013
  ident: 6581_CR18
– volume: 29
  start-page: 889
  year: 2019
  ident: 6581_CR47
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5530-z
– volume: 21
  start-page: 309
  year: 2012
  ident: 6581_CR33
  publication-title: Cancer Cell
  doi: 10.1016/J.CCR.2012.02.022
– ident: 6581_CR36
  doi: 10.3174/ajnr.A5173
– volume: 61
  start-page: R150
  year: 2016
  ident: 6581_CR9
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/13/R150
– volume: 26
  start-page: 2921
  year: 2016
  ident: 6581_CR7
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-4131-3
– ident: 6581_CR40
  doi: 10.1148/radiol.2492071956
– volume: 3
  start-page: 573
  year: 2012
  ident: 6581_CR25
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 23
  start-page: 806
  year: 2018
  ident: 6581_CR20
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2017-0538
– volume: 255
  start-page: 199
  year: 2010
  ident: 6581_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.09090571
– volume: 6
  start-page: 244
  year: 2011
  ident: 6581_CR38
  publication-title: J Thorac Oncol
  doi: 10.1097/JTO.0B013E318206A221
– ident: 6581_CR39
  doi: 10.1148/radiol.10091806
– volume: 39
  start-page: 2187
  year: 2018
  ident: 6581_CR11
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5858
– ident: 6581_CR15
  doi: 10.1007/s00330-016-4637-3
– volume: 264
  start-page: 884
  year: 2012
  ident: 6581_CR27
  publication-title: Radiology
  doi: 10.1148/radiol.12111793
– volume: 58
  start-page: 267
  year: 1996
  ident: 6581_CR28
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 6581_CR35
  doi: 10.1038/ncomms5006
– ident: 6581_CR1
  doi: 10.1148/radiol.12120240
– ident: 6581_CR37
  doi: 10.2463/mrms.mp.2017-0044
– volume: 19
  start-page: 57
  year: 2017
  ident: 6581_CR14
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-017-0846-1
– volume: 30
  start-page: 1163
  year: 2010
  ident: 6581_CR19
  publication-title: Radiographics
  doi: 10.1148/rg.305095166
SSID ssj0009147
Score 2.440963
Snippet Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is...
Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical...
ObjectivesLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2984
SubjectTerms Adenocarcinoma
Adenocarcinoma in Situ - diagnostic imaging
Adenocarcinoma in Situ - pathology
Adenocarcinoma in Situ - surgery
Adenocarcinoma of Lung - diagnostic imaging
Adenocarcinoma of Lung - pathology
Adenocarcinoma of Lung - surgery
Adult
Aged
Aged, 80 and over
Area Under Curve
Artificial intelligence
Biomarkers
Classifiers
Computed tomography
Computer engineering
Diagnostic Radiology
Distribution functions
Female
Health sciences
Humans
Identification methods
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Invasiveness
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung Neoplasms - surgery
Lungs
Male
Margins of Excision
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Neoplasm Invasiveness - diagnostic imaging
Neoplasm Invasiveness - pathology
Neuroradiology
Nodules
Radiology
Radiomics
Regularization
Retrospective Studies
Support Vector Machine
Support vector machines
Surgery
Thoracic surgery
Tomography, X-Ray Computed - methods
Training
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sgvSltFVrWisr-KbBZL-SPJUinlI4nzzwLexuNnBgc5qc_v2d2dvcIVLfApvNbmZ2Z3Z2Pn4Ap05ZJ73O00p5nkovitQaNFaKQrs2c63Snjy601t9M5N_7tV9vHAbYljlKBODoG4Wju7ILzga51RbpOC_Hp9SQo0i72qE0PgAOzlHXUuZ4pPrTdHdPACModGOg1eVjEkzIXWOQMwoJIty8FWZp_y1Ynpz2nzjKQ0KaPIZPsWTI_u9YvUX2PLdV9idRt_4HljCrCWMK9abZk7JxgNrfajbOTAzsPnfAEjEKOGeYnJ6bF70jCCJRwHI5t2LoeszfGAPKAaYQbGE2q7HIbDXPswmV3eXN2lEUEidKNQyFSXq50I3pS0aw70XOrNWCDTRtJDkws0MZcNXrTaOC2sU6ndpG49GZcUJ-uUAtrtF5w-BlZluM21MKb2RolVlqR0vMyeRJ85WKoF8JF_tYnlxQrl4qNeFkQPJayR5HUhe8wTO1n0eV8U13n37aORKHTfaUG-WRQIn62bcIuT3MJ1fPNM7eCYMpl4C31bcXA9HEkjhryZwPrJ38_H_z-X7-3P5AR852eUhMPIItpf9s_-Jh5elPQ4r9B9aMud0
  priority: 102
  providerName: ProQuest
Title Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma
URI https://link.springer.com/article/10.1007/s00330-019-06581-2
https://www.ncbi.nlm.nih.gov/pubmed/31965255
https://www.proquest.com/docview/2390059472
https://www.proquest.com/docview/2343504562
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7SBEovadJH6jY1W-itVZD3JeloBzshIaaUGtyT2F2vwCSRi2Tn0F_fmbWk0KYt5CIJdqV9zuyM5vEBfHTKOun1IMqU55H0IomsQWUlSbQrYlco7cmiezXV5zN5MVfzJiisbr3dW5Nk4NRdsBvBjpETFUXNq3QQIePdU6igIDnuDc--X47vk-0OArAYKuvYaJbJJljm71_5_UB6IGU-sJCGg2fyHGZtl7f-Jtcnm7U9cT__yOb42DEdwH4jibLhduscwo4vX8DTq8bW_hIsYeASZharzGJJwcs1K3zIA1ozU7PlbQA4YhTATz4-FRavKkYQxy1DZcvyztDvOHxgN8hWmEE2h6dnhU3gW69gNhl_Oz2PGkSGyIlErSOBs40KyiK1ycJw74WOrRUCVT4tJJmEY0PR9VmhjePCGoXygrQLj0pqxglK5jXslqvSvwGWxrqItTGp9EaKQqWpdjyNnVSZdDZTPRi0y5K7Jl05oWbc5F2i5TB5OU5eHiYv5z341L3zY5us47-1j9vVzhvCrXMuspDCJsHiD10xkhzZUUzpVxuqgzJmUB17cLTdJV1zxNEUDrUHn9sVv__4v_vy9nHV38EzTnp_cLw8ht11tfHvUTha2z48SeYJXtPJWR_pYjIaTfsNfeB9NJ5--YqlMz78BdIQByE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN6BAkaCE0Rk_UwOVVUB1ZZ2e2qlvQXbcaSVSrYkW1D_VH8jM95kV6iit94i-ZnxeMbj8cwH8N4r52XQo7RQgacyCJM6i8aKMdrXma-VDuTRnRzr8an8PlXTDbgaYmHoWeUgE6Ogruae7sg_czTOKbeI4bvnv1JCjSLv6gChsWSLw3D5B022bufgK67vB873v518Gac9qkDqhVGLVOSos4yucmcqy0MQOnNOCDRbtJDk1swsRYgXtbaeC2cV6jzpqoCGVsEJDgX7vQN3JbkYcf-YqVkn-R1FQLOsQCFiikL2QToxVI9A0-gJGMX8q3yU8n8V4bXT7TXPbFR4-1vwsD-psr0laz2CjdA8hnuT3hf_BBxh5BKmFmttNaPg5o7VIeYJ7Zjt2OxnBEBiFOBPb4BaLJ63jCCQB4HLZs1vS9d1-MHOUOwwi2IQtWuLQ2Crp3B6K7R9BpvNvAkvgOWZrjNtbS6DlaJWea49zzMvkQe8K1QCo4F8pe_TmROqxlm5SsQcSV4iyctI8pIn8HHV5nyZzOPG2tvDqpT9xu7KNRsm8G5VjFuS_Cy2CfMLqoNn0GhaJvB8uZqr4UjiKfzVBD4Ny7vu_P9zeXnzXN7C_fHJ5Kg8Ojg-fAUPON0JxEeZ27C5aC_Cazw4LdybyK0Mftz29vgLz5shVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqq4IN4NFDASnCBq1vEjOVQIaFctpasKUam3YDuOtFLJlmQL4i_yq5jxOrtCFb31FsnPjO0Zj-fxAbxy0jrh1Sgtpeep8LlOrUFlRWvlmsw1Unmy6B5P1MGp-HQmz9bgzxALQ26VA08MjLqeOXoj3-GonFNuEc13mugWcbI3fnfxIyUEKbK0DnAaJsIs1Lsh3VgM8jjyv3-hOtfvHu7h2r_mfLz_9eNBGhEHUpdrOU_zAuWZVnVhdW2497nKrM1zVGlULsjkmRmKHi8bZRzPrZEoD4WtPSphJSeoFOz3FmxolPqoCG582J-cfFmlAB4FuLOsRBajy1LEEJ4QyEeQauQgRhkBZDFK-b9i8srd94rdNojD8V24E--x7P1i492DNd_eh83jaKl_AJYQdAlxi3WmnlLoc88aH7KI9sz0bPo9wCMxCv8nD6EOi2cdI4DkgR2zafvT0GMefrBzZErMIJNE2dvhENjqIZzeCHUfwXo7a_0WsCJTTaaMKYQ3Im9kUSjHi8wJ3CHOljKB0UC-ysVk54S5cV4t0zQHkldI8iqQvOIJvFm2uVik-ri29vawKlU89n212qQJvFwW44ElK4xp_eyS6uANNSieCTxerOZyOOKHEn81gbfD8q46__9cnlw_lxewiUel-nw4OXoKtzk9GASPzW1Yn3eX_hnequb2edyuDL7d9An5CyiGLDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+radiomics+features+as+imaging+biomarkers+for+pathological+invasion+in+lung+adenocarcinoma&rft.jtitle=European+radiology&rft.au=Cho%2C+Hwan-ho&rft.au=Lee%2C+Geewon&rft.au=Lee%2C+Ho+Yun&rft.au=Park%2C+Hyunjin&rft.date=2020-05-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=30&rft.issue=5&rft.spage=2984&rft.epage=2994&rft_id=info:doi/10.1007%2Fs00330-019-06581-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_019_06581_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon