Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma
Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT)...
Saved in:
Published in | European radiology Vol. 30; no. 5; pp. 2984 - 2994 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-7994 1432-1084 1432-1084 |
DOI | 10.1007/s00330-019-06581-2 |
Cover
Abstract | Objectives
Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.
Methods
We identified 236 patients from two cohorts (training,
n
= 189; validation,
n
= 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.
Results
The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).
Conclusion
Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.
Key Points
• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma. |
---|---|
AbstractList | Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.
We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.
The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).
Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.
• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma. Objectives Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness. Methods We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models. Results The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825). Conclusion Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans. Key Points • Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma. Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.OBJECTIVESLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.We identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.METHODSWe identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.The baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).RESULTSThe baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).Our novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.CONCLUSIONOur novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma.KEY POINTS• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma. ObjectivesLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical for treatment. Our goal was to evaluate the addition of marginal features to a baseline radiomics model on computed tomography (CT) images to predict the degree of pathologic invasiveness.MethodsWe identified 236 patients from two cohorts (training, n = 189; validation, n = 47) who underwent surgery for GGNs. All GGNs were pathologically confirmed as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The regions of interest were semi-automatically annotated and 40 radiomics features were computed. We selected features using L1-norm regularization to build the baseline radiomics model. Additional marginal features were developed using the cumulative distribution function (CDF) of intratumoral intensities. An improved model was built combining the baseline model with CDF features. Three classifiers were tested for both models.ResultsThe baseline radiomics model included five features and resulted in an average area under the curve (AUC) of 0.8419 (training) and 0.9142 (validation) for the three classifiers. The second model, with the additional marginal features, resulted in AUCs of 0.8560 (training) and 0.9581 (validation). All three classifiers performed better with the added features. The support vector machine showed the most performance improvement (AUC improvement = 0.0790) and the best performance was achieved by the logistic classifier (validation AUC = 0.9825).ConclusionOur novel marginal features, when combined with a baseline radiomics model, can help differentiate IA from AIS and MIA on preoperative CT scans.Key Points• Our novel marginal features could improve the existing radiomics model to predict the degree of pathologic invasiveness in lung adenocarcinoma. |
Author | Cho, Hwan-ho Lee, Ho Yun Park, Hyunjin Lee, Geewon |
Author_xml | – sequence: 1 givenname: Hwan-ho surname: Cho fullname: Cho, Hwan-ho organization: Department of Electronic and Computer Engineering, Sungkyunkwan University, Center for Neuroscience Imaging Research, Institute for Basic Science – sequence: 2 givenname: Geewon surname: Lee fullname: Lee, Geewon organization: Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine – sequence: 3 givenname: Ho Yun orcidid: 0000-0001-9960-5648 surname: Lee fullname: Lee, Ho Yun email: hoyunlee96@gmail.com organization: Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University – sequence: 4 givenname: Hyunjin surname: Park fullname: Park, Hyunjin email: hyunjinp@skku.edu organization: Center for Neuroscience Imaging Research, Institute for Basic Science, School of Electronic and Electrical Engineering, Sungkyunkwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31965255$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAQha0KVBboH-BQReqll5Sxx07iY4UoIFFxgbM1cbxbQ9be2gkS_75edttKHDjZ0vveePzeMTsIMTjGzjh84wDteQZAhBq4rqFRHa_FB7bgEkXNoZMHbAEau7rVWh6x45wfAUBz2X5kR8h1o4RSC9b_pLTygcYq0eDj2ttcLR1Nc3K5olz5NRV5VfVFo_TkUpFjqjY0_YpjXHlbnD48U_YxlEs1zgWmwYVoKVkfiuuUHS5pzO7T_jxhDz8u7y-u69u7q5uL77e1xVZNNXaSq7YZur4dSDiHDfQ9ouZtgxKwQSAQSuplQ1ZgT0pIkP3gJAhdvsLxhH3dzd2k-Ht2eTJrn60bRwouztkIlKhAqkYU9Msb9DHOqaSwpTSA0rLdUp_31Nyv3WA2qaSRXszf9AogdoBNMefklv8QDmZbkdlVZEpF5rUis53avTFZP9FU8psS-fF9K-6subwTVi79X_sd1x8UI6PW |
CitedBy_id | crossref_primary_10_1007_s00405_023_08410_1 crossref_primary_10_1007_s11633_022_1364_x crossref_primary_10_1111_1759_7714_13580 crossref_primary_10_1186_s12880_021_00564_w crossref_primary_10_1002_cam4_4719 crossref_primary_10_1186_s12931_022_02016_7 crossref_primary_10_1002_jum_16086 crossref_primary_10_1177_02841851241229597 crossref_primary_10_1186_s12880_022_00862_x crossref_primary_10_3390_diagnostics12051064 crossref_primary_10_1259_bjr_20210539 crossref_primary_10_3390_cancers13071687 crossref_primary_10_1038_s42003_021_02814_7 crossref_primary_10_1016_j_crad_2020_10_005 crossref_primary_10_3389_fonc_2022_951575 crossref_primary_10_3389_fimmu_2022_1038089 crossref_primary_10_3390_diagnostics11061047 crossref_primary_10_1111_1759_7714_14730 |
Cites_doi | 10.1016/J.ATHORACSUR.2007.03.015 10.1016/S0022-5223(03)00885-7 10.1148/radiol.2451061682 10.1148/radiol.2018180910 10.1158/0008-5472.CAN-17-0339 10.1097/SLA.0b013e3181c0e5f3 10.1371/journal.pone.0118261 10.2967/jnumed.110.082404 10.1038/srep37241 10.1378/CHEST.09-2547 10.1038/nm.3394 10.1097/PAS.0b013e318190157c 10.1038/s41598-018-33473-0 10.1007/s00330-015-3816-y 10.1016/J.CANLET.2016.01.043 10.1200/JCO.1990.8.9.1457 10.1097/JTO.0B013E31829F09A7 10.1038/s41598-017-18310-0 10.1148/radiol.2017161659 10.1007/s00330-017-4917-6 10.1109/TSMC.1973.4309314 10.3978/j.issn.2072-1439.2014.06.09 10.1016/J.EJRAD.2016.09.005 10.1007/s12282-014-0572-9 10.1016/J.MEDIA.2017.07.008 10.1148/radiol.12120628 10.1007/s00330-018-5530-z 10.1016/J.CCR.2012.02.022 10.3174/ajnr.A5173 10.1088/0031-9155/61/13/R150 10.1007/s00330-015-4131-3 10.1148/radiol.2492071956 10.1007/s13244-012-0196-6 10.1634/theoncologist.2017-0538 10.1148/radiol.09090571 10.1097/JTO.0B013E318206A221 10.1148/radiol.10091806 10.3174/ajnr.A5858 10.1007/s00330-016-4637-3 10.1148/radiol.12111793 10.1111/j.2517-6161.1996.tb02080.x 10.1038/ncomms5006 10.1148/radiol.12120240 10.2463/mrms.mp.2017-0044 10.1186/s13058-017-0846-1 10.1148/rg.305095166 |
ContentType | Journal Article |
Copyright | European Society of Radiology 2020 European Society of Radiology 2020. |
Copyright_xml | – notice: European Society of Radiology 2020 – notice: European Society of Radiology 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-019-06581-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 2994 |
ExternalDocumentID | 31965255 10_1007_s00330_019_06581_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Korea Health Industry Development Institute (KR) grantid: HI17C0086 – fundername: IITP grant funded by the AI Graduate School Support Program grantid: 2019-0-00421 – fundername: Ministry of Science and ICT grantid: IITP-2019-2018-0-01798 – fundername: National Research Foundation grantid: NRF-2019R1H1A2079721; NRF-2017M2A2A7A02018568 – fundername: Institute for Basic Science grantid: IBS-R015-D1 – fundername: National Research Foundation grantid: NRF-2017M2A2A7A02018568 – fundername: National Research Foundation grantid: NRF-2019R1H1A2079721 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-3841576d8b7da2ee360bb3391763403630a02549f6ac23ba52404bde402925513 |
IEDL.DBID | AGYKE |
ISSN | 0938-7994 1432-1084 |
IngestDate | Fri Sep 05 13:45:29 EDT 2025 Fri Jul 25 19:05:51 EDT 2025 Wed Feb 19 02:29:18 EST 2025 Thu Apr 24 23:08:52 EDT 2025 Tue Jul 01 03:08:12 EDT 2025 Fri Feb 21 02:33:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Lung adenocarcinoma Tumor microenvironment Quantitative evaluation Classification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-3841576d8b7da2ee360bb3391763403630a02549f6ac23ba52404bde402925513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9960-5648 |
PMID | 31965255 |
PQID | 2390059472 |
PQPubID | 54162 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2343504562 proquest_journals_2390059472 pubmed_primary_31965255 crossref_primary_10_1007_s00330_019_06581_2 crossref_citationtrail_10_1007_s00330_019_06581_2 springer_journals_10_1007_s00330_019_06581_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200500 2020-05-00 2020-May 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | NaidichDPBankierAAMacMahonHRecommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner SocietyRadiology201326630431710.1148/radiol.1212062823070270 DavnallFYipCSPLjungqvistGAssessment of tumor heterogeneity: an emerging imaging tool for clinical practice?Insights Imaging2012357358910.1007/s13244-012-0196-6230934863505569 TibshiraniRRegression selection and shrinkage via the LassoJ R Stat Soc B199658267288 GrélardFBaldacciFVialardADomengerJ-PNew methods for the geometrical analysis of tubular organsMed Image Anal2017428910110.1016/J.MEDIA.2017.07.00828780175 QuailDFJoyceJAMicroenvironmental regulation of tumor progression and metastasisNat Med201319142314371:CAS:528:DC%2BC3sXhslCmsrjL10.1038/nm.3394242023953954707 IsmailMHillVStatsevychVShape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite studyAJNR Am J Neuroradiol201839218721931:STN:280:DC%2BB3cvlsleqsA%3D%3D10.3174/ajnr.A5858303854686529206 BeigNKhorramiMAlilouMPerinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomasRadiology201929078379210.1148/radiol.201818091030561278 MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images:from the Fleischner Society 2017. Radiology. https://doi.org/10.1148/radiol.2017161659 UyBicoSJWuCCSuhRDLung cancer staging essentials: the new TNM staging system and potential imaging pitfallsRadiographics2010301163118110.1148/rg.30509516620833843 de HoopBGietemaHvan de VorstSPulmonary ground-glass nodules: increase in mass as an early indicator of growthRadiology201025519920610.1148/radiol.0909057120123896 PrasannaPTiwariPMadabhushiACo-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptorSci Rep20166372411:CAS:528:DC%2BC28XhvFahur7O10.1038/srep37241278724845118705 Son JY, Lee HY, Kim JH et al (2016) Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma:the added value of using iodine mapping. Eur Radiol. https://doi.org/10.1007/s00330-015-3816-y Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5173 Prasanna P, Patel J, Partovi S et al (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol. https://doi.org/10.1007/s00330-016-4637-3 Wisnivesky JP, Henschke CI, Swanson S et al (2010) Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg. https://doi.org/10.1097/SLA.0b013e3181c0e5f3 AlilouMOroojiMBeigNQuantitative vessel tortuosity:a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomasSci Rep20188152901:CAS:528:DC%2BC1MXhtFWns7g%3D10.1038/s41598-018-33473-0303275076191462 NomoriHOhtsukaTNarukeTSuemasuKHistogram analysis of computed tomography numbers of clinical T1 N0 M0 lung adenocarcinoma, with special reference to lymph node metastasis and tumor invasivenessJ Thorac Cardiovasc Surg20031261584158910.1016/S0022-5223(03)00885-714666037 LeeGLeeHYParkHRadiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management:state of the artEur J Radiol20178629730710.1016/J.EJRAD.2016.09.00527638103 FangWXYZhongCChenQThe IASLC/ATS/ERS classification of lung adenocarcinoma-a surgical point of viewJ Thorac Dis20146S552S56010.3978/j.issn.2072-1439.2014.06.09 Van GriethuysenJJMFedorovAParmarCComputational radiomics system to decode the radiographic phenotypeCancer Res201777e104e1071:CAS:528:DC%2BC2sXhslOltbnL10.1158/0008-5472.CAN-17-0339290929515672828 UematsuTFocal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edemaBreast Cancer201522667010.1007/s12282-014-0572-925336185 WuTDaiYTumor microenvironment and therapeutic responseCancer Lett201738761681:CAS:528:DC%2BC28XhvFSktrY%3D10.1016/J.CANLET.2016.01.04326845449 ZhangJWuJTanQWhy do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classificationJ Thorac Oncol20138119612021:CAS:528:DC%2BC3sXhtlSisbnP10.1097/JTO.0B013E31829F09A723945388 LeeSMParkCMSongYSCT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospitalEur Radiol2017275119512610.1007/s00330-017-4917-628656460 ZhangYShenYQiangJWYeJDZhangJZhaoRYHRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodulesEur Radiol2016262921292810.1007/s00330-015-4131-326662263 BeigNPatelJPrasannaPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaSci Rep201881111:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0 FanLFangMLiZRadiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass noduleEur Radiol20192988989710.1007/s00330-018-5530-z29967956 NakayamaHYamadaKSaitoHSublobar resection for patients with peripheral small adenocarcinomas of the lung:surgical outcome is associated with features on computed tomographic imagingAnn Thorac Surg2007841675167910.1016/J.ATHORACSUR.2007.03.01517954084 LeeGParkHSohnIComprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognosticationOncologist20182380681310.1634/theoncologist.2017-0538296226996058328 Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5. https://doi.org/10.1038/ncomms5006 Borczuk AC, Qian F, Kazeros A et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. AmJ Surg Pathol. https://doi.org/10.1097/PAS.0b013e318190157c FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley Austin JHM, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology. https://doi.org/10.1148/radiol.12120240 GroveOBerglundAESchabathMBQuantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinomaPLoS One2015101141:CAS:528:DC%2BC28Xht1yhur4%3D10.1371/journal.pone.0118261 Chae EJ, Song J-W, Seo JB et al (2008) Clinical utility of dualenergy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. https://doi.org/10.1148/radiol.2492071956 KatesMSwansonSWisniveskyJPSurvival following lobectomy and limited resection for the treatment of stage I nonsmall cell lung cancer ≤1 cm in size: a review of SEER dataChest201113949149610.1378/CHEST.09-254720576736 YipSSAertsHJApplications and limitations of radiomicsPhys Med Biol201661R150R1661:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/R150272696454927328 Kunimatsu A, Kunimatsu N, Kamiya K et al (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci. https://doi.org/10.2463/mrms.mp.2017-0044 LeeHYJeongJYLeeKSSolitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkersRadiology201226488489310.1148/radiol.1211179322829686 HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973SMC-361062110.1109/TSMC.1973.4309314 TixierFLe RestCCHattMIntratumor heterogeneity characterized by textural features on baseline 18F-FDGPETimages predicts response to concomitant radio chemotherapy in esophageal cancerJ Nucl Med20115236937810.2967/jnumed.110.082404213212703789272 HanahanDCoussensLMAccessories to the crime: functions of cells recruited to the tumor microenvironmentCancer Cell2012213093221:CAS:528:DC%2BC38Xkt1ykt7w%3D10.1016/J.CCR.2012.02.0222243992622439926 Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. https://doi.org/10.1148/radiol.10091806 LeeAKDeLellisRASilvermanMLPrognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breastJ Clin Oncol19908145714651:STN:280:DyaK3czmt1Wlsw%3D%3D10.1200/JCO.1990.8.9.14572202788 KimHYShimYMLeeKSHanJYiCAKimYKPersistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisonsRadiology200724526727510.1148/radiol.245106168217885195 TravisWDBrambillaENoguchiMInternational Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung AdenocarcinomaJ Thorac Oncol2011624428510.1097/JTO.0B013E318206A221212527164513953 BramanNMEtesamiMPrasannaPIntratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRIBreast Cancer Res201719571:CAS:528:DC%2BC1cXhtlWmtrjE10.1186/s13058-017-0846-1285218215437672 L Fan (6581_CR47) 2019; 29 6581_CR5 M Alilou (6581_CR13) 2018; 8 AK Lee (6581_CR43) 1990; 8 6581_CR2 6581_CR1 M Ismail (6581_CR11) 2018; 39 Y Zhang (6581_CR7) 2016; 26 P Prasanna (6581_CR10) 2016; 6 F Tixier (6581_CR24) 2011; 52 N Beig (6581_CR46) 2018; 8 N Beig (6581_CR45) 2019; 290 F Grélard (6581_CR12) 2017; 42 6581_CR15 G Lee (6581_CR20) 2018; 23 6581_CR37 6581_CR35 6581_CR36 6581_CR39 XY FangW (6581_CR31) 2014; 6 WD Travis (6581_CR38) 2011; 6 F Davnall (6581_CR25) 2012; 3 M Kates (6581_CR4) 2011; 139 DP Naidich (6581_CR16) 2013; 266 SJ UyBico (6581_CR19) 2010; 30 J Zhang (6581_CR3) 2013; 8 NM Braman (6581_CR14) 2017; 19 JJM Van Griethuysen (6581_CR21) 2017; 77 H Nomori (6581_CR41) 2003; 126 H Nakayama (6581_CR30) 2007; 84 JL Fleiss (6581_CR18) 2013 T Wu (6581_CR32) 2017; 387 DF Quail (6581_CR34) 2013; 19 T Uematsu (6581_CR44) 2015; 22 R Tibshirani (6581_CR28) 1996; 58 HY Kim (6581_CR8) 2007; 245 O Grove (6581_CR23) 2015; 10 6581_CR40 HY Lee (6581_CR27) 2012; 264 RM Haralick (6581_CR22) 1973; SMC-3 B de Hoop (6581_CR26) 2010; 255 G Lee (6581_CR42) 2017; 86 SM Lee (6581_CR17) 2017; 27 6581_CR6 D Hanahan (6581_CR33) 2012; 21 SS Yip (6581_CR9) 2016; 61 6581_CR29 |
References_xml | – reference: UematsuTFocal breast edema associated with malignancy on T2-weighted images of breast MRI: peritumoral edema, prepectoral edema, and subcutaneous edemaBreast Cancer201522667010.1007/s12282-014-0572-925336185 – reference: LeeHYJeongJYLeeKSSolitary pulmonary nodular lung adenocarcinoma: correlation of histopathologic scoring and patient survival with imaging biomarkersRadiology201226488489310.1148/radiol.1211179322829686 – reference: Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A5173 – reference: HanahanDCoussensLMAccessories to the crime: functions of cells recruited to the tumor microenvironmentCancer Cell2012213093221:CAS:528:DC%2BC38Xkt1ykt7w%3D10.1016/J.CCR.2012.02.0222243992622439926 – reference: GroveOBerglundAESchabathMBQuantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinomaPLoS One2015101141:CAS:528:DC%2BC28Xht1yhur4%3D10.1371/journal.pone.0118261 – reference: KatesMSwansonSWisniveskyJPSurvival following lobectomy and limited resection for the treatment of stage I nonsmall cell lung cancer ≤1 cm in size: a review of SEER dataChest201113949149610.1378/CHEST.09-254720576736 – reference: TibshiraniRRegression selection and shrinkage via the LassoJ R Stat Soc B199658267288 – reference: MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images:from the Fleischner Society 2017. Radiology. https://doi.org/10.1148/radiol.2017161659 – reference: Prasanna P, Patel J, Partovi S et al (2016) Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol. https://doi.org/10.1007/s00330-016-4637-3 – reference: NakayamaHYamadaKSaitoHSublobar resection for patients with peripheral small adenocarcinomas of the lung:surgical outcome is associated with features on computed tomographic imagingAnn Thorac Surg2007841675167910.1016/J.ATHORACSUR.2007.03.01517954084 – reference: AlilouMOroojiMBeigNQuantitative vessel tortuosity:a potential CT imaging biomarker for distinguishing lung granulomas from adenocarcinomasSci Rep20188152901:CAS:528:DC%2BC1MXhtFWns7g%3D10.1038/s41598-018-33473-0303275076191462 – reference: LeeAKDeLellisRASilvermanMLPrognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breastJ Clin Oncol19908145714651:STN:280:DyaK3czmt1Wlsw%3D%3D10.1200/JCO.1990.8.9.14572202788 – reference: Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5. https://doi.org/10.1038/ncomms5006 – reference: ZhangYShenYQiangJWYeJDZhangJZhaoRYHRCT features distinguishing pre-invasive from invasive pulmonary adenocarcinomas appearing as ground-glass nodulesEur Radiol2016262921292810.1007/s00330-015-4131-326662263 – reference: Kunimatsu A, Kunimatsu N, Kamiya K et al (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci. https://doi.org/10.2463/mrms.mp.2017-0044 – reference: Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. https://doi.org/10.1148/radiol.10091806 – reference: FangWXYZhongCChenQThe IASLC/ATS/ERS classification of lung adenocarcinoma-a surgical point of viewJ Thorac Dis20146S552S56010.3978/j.issn.2072-1439.2014.06.09 – reference: de HoopBGietemaHvan de VorstSPulmonary ground-glass nodules: increase in mass as an early indicator of growthRadiology201025519920610.1148/radiol.0909057120123896 – reference: IsmailMHillVStatsevychVShape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite studyAJNR Am J Neuroradiol201839218721931:STN:280:DC%2BB3cvlsleqsA%3D%3D10.3174/ajnr.A5858303854686529206 – reference: NomoriHOhtsukaTNarukeTSuemasuKHistogram analysis of computed tomography numbers of clinical T1 N0 M0 lung adenocarcinoma, with special reference to lymph node metastasis and tumor invasivenessJ Thorac Cardiovasc Surg20031261584158910.1016/S0022-5223(03)00885-714666037 – reference: LeeSMParkCMSongYSCT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospitalEur Radiol2017275119512610.1007/s00330-017-4917-628656460 – reference: QuailDFJoyceJAMicroenvironmental regulation of tumor progression and metastasisNat Med201319142314371:CAS:528:DC%2BC3sXhslCmsrjL10.1038/nm.3394242023953954707 – reference: Borczuk AC, Qian F, Kazeros A et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. AmJ Surg Pathol. https://doi.org/10.1097/PAS.0b013e318190157c – reference: UyBicoSJWuCCSuhRDLung cancer staging essentials: the new TNM staging system and potential imaging pitfallsRadiographics2010301163118110.1148/rg.30509516620833843 – reference: BeigNKhorramiMAlilouMPerinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomasRadiology201929078379210.1148/radiol.201818091030561278 – reference: WuTDaiYTumor microenvironment and therapeutic responseCancer Lett201738761681:CAS:528:DC%2BC28XhvFSktrY%3D10.1016/J.CANLET.2016.01.04326845449 – reference: TravisWDBrambillaENoguchiMInternational Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung AdenocarcinomaJ Thorac Oncol2011624428510.1097/JTO.0B013E318206A221212527164513953 – reference: ZhangJWuJTanQWhy do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classificationJ Thorac Oncol20138119612021:CAS:528:DC%2BC3sXhtlSisbnP10.1097/JTO.0B013E31829F09A723945388 – reference: Son JY, Lee HY, Kim JH et al (2016) Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma:the added value of using iodine mapping. Eur Radiol. https://doi.org/10.1007/s00330-015-3816-y – reference: TixierFLe RestCCHattMIntratumor heterogeneity characterized by textural features on baseline 18F-FDGPETimages predicts response to concomitant radio chemotherapy in esophageal cancerJ Nucl Med20115236937810.2967/jnumed.110.082404213212703789272 – reference: Wisnivesky JP, Henschke CI, Swanson S et al (2010) Limited resection for the treatment of patients with stage IA lung cancer. Ann Surg. https://doi.org/10.1097/SLA.0b013e3181c0e5f3 – reference: FleissJLLevinBPaikMCStatistical methods for rates and proportions20133HobokenWiley – reference: HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973SMC-361062110.1109/TSMC.1973.4309314 – reference: LeeGParkHSohnIComprehensive computed tomography radiomics analysis of lung adenocarcinoma for prognosticationOncologist20182380681310.1634/theoncologist.2017-0538296226996058328 – reference: DavnallFYipCSPLjungqvistGAssessment of tumor heterogeneity: an emerging imaging tool for clinical practice?Insights Imaging2012357358910.1007/s13244-012-0196-6230934863505569 – reference: FanLFangMLiZRadiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass noduleEur Radiol20192988989710.1007/s00330-018-5530-z29967956 – reference: PrasannaPTiwariPMadabhushiACo-occurrence of local anisotropic gradient orientations (CoLlAGe): a new radiomics descriptorSci Rep20166372411:CAS:528:DC%2BC28XhvFahur7O10.1038/srep37241278724845118705 – reference: Chae EJ, Song J-W, Seo JB et al (2008) Clinical utility of dualenergy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. https://doi.org/10.1148/radiol.2492071956 – reference: Austin JHM, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology. https://doi.org/10.1148/radiol.12120240 – reference: KimHYShimYMLeeKSHanJYiCAKimYKPersistent pulmonary nodular ground-glass opacity at thin-section CT: histopathologic comparisonsRadiology200724526727510.1148/radiol.245106168217885195 – reference: NaidichDPBankierAAMacMahonHRecommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner SocietyRadiology201326630431710.1148/radiol.1212062823070270 – reference: Van GriethuysenJJMFedorovAParmarCComputational radiomics system to decode the radiographic phenotypeCancer Res201777e104e1071:CAS:528:DC%2BC2sXhslOltbnL10.1158/0008-5472.CAN-17-0339290929515672828 – reference: LeeGLeeHYParkHRadiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management:state of the artEur J Radiol20178629730710.1016/J.EJRAD.2016.09.00527638103 – reference: YipSSAertsHJApplications and limitations of radiomicsPhys Med Biol201661R150R1661:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/R150272696454927328 – reference: BramanNMEtesamiMPrasannaPIntratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRIBreast Cancer Res201719571:CAS:528:DC%2BC1cXhtlWmtrjE10.1186/s13058-017-0846-1285218215437672 – reference: BeigNPatelJPrasannaPRadiogenomic analysis of hypoxia pathway is predictive of overall survival in GlioblastomaSci Rep201881111:CAS:528:DC%2BC1cXhsFGitbrF10.1038/s41598-017-18310-0 – reference: GrélardFBaldacciFVialardADomengerJ-PNew methods for the geometrical analysis of tubular organsMed Image Anal2017428910110.1016/J.MEDIA.2017.07.00828780175 – volume: 84 start-page: 1675 year: 2007 ident: 6581_CR30 publication-title: Ann Thorac Surg doi: 10.1016/J.ATHORACSUR.2007.03.015 – volume: 126 start-page: 1584 year: 2003 ident: 6581_CR41 publication-title: J Thorac Cardiovasc Surg doi: 10.1016/S0022-5223(03)00885-7 – volume: 245 start-page: 267 year: 2007 ident: 6581_CR8 publication-title: Radiology doi: 10.1148/radiol.2451061682 – volume: 290 start-page: 783 year: 2019 ident: 6581_CR45 publication-title: Radiology doi: 10.1148/radiol.2018180910 – volume: 77 start-page: e104 year: 2017 ident: 6581_CR21 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – ident: 6581_CR5 doi: 10.1097/SLA.0b013e3181c0e5f3 – volume: 10 start-page: 1 year: 2015 ident: 6581_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0118261 – volume: 52 start-page: 369 year: 2011 ident: 6581_CR24 publication-title: J Nucl Med doi: 10.2967/jnumed.110.082404 – volume: 6 start-page: 37241 year: 2016 ident: 6581_CR10 publication-title: Sci Rep doi: 10.1038/srep37241 – volume: 139 start-page: 491 year: 2011 ident: 6581_CR4 publication-title: Chest doi: 10.1378/CHEST.09-2547 – volume: 19 start-page: 1423 year: 2013 ident: 6581_CR34 publication-title: Nat Med doi: 10.1038/nm.3394 – ident: 6581_CR2 doi: 10.1097/PAS.0b013e318190157c – volume: 8 start-page: 15290 year: 2018 ident: 6581_CR13 publication-title: Sci Rep doi: 10.1038/s41598-018-33473-0 – ident: 6581_CR29 doi: 10.1007/s00330-015-3816-y – volume: 387 start-page: 61 year: 2017 ident: 6581_CR32 publication-title: Cancer Lett doi: 10.1016/J.CANLET.2016.01.043 – volume: 8 start-page: 1457 year: 1990 ident: 6581_CR43 publication-title: J Clin Oncol doi: 10.1200/JCO.1990.8.9.1457 – volume: 8 start-page: 1196 year: 2013 ident: 6581_CR3 publication-title: J Thorac Oncol doi: 10.1097/JTO.0B013E31829F09A7 – volume: 8 start-page: 1 year: 2018 ident: 6581_CR46 publication-title: Sci Rep doi: 10.1038/s41598-017-18310-0 – ident: 6581_CR6 doi: 10.1148/radiol.2017161659 – volume: 27 start-page: 5119 year: 2017 ident: 6581_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-017-4917-6 – volume: SMC-3 start-page: 610 year: 1973 ident: 6581_CR22 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 6 start-page: S552 year: 2014 ident: 6581_CR31 publication-title: J Thorac Dis doi: 10.3978/j.issn.2072-1439.2014.06.09 – volume: 86 start-page: 297 year: 2017 ident: 6581_CR42 publication-title: Eur J Radiol doi: 10.1016/J.EJRAD.2016.09.005 – volume: 22 start-page: 66 year: 2015 ident: 6581_CR44 publication-title: Breast Cancer doi: 10.1007/s12282-014-0572-9 – volume: 42 start-page: 89 year: 2017 ident: 6581_CR12 publication-title: Med Image Anal doi: 10.1016/J.MEDIA.2017.07.008 – volume: 266 start-page: 304 year: 2013 ident: 6581_CR16 publication-title: Radiology doi: 10.1148/radiol.12120628 – volume-title: Statistical methods for rates and proportions year: 2013 ident: 6581_CR18 – volume: 29 start-page: 889 year: 2019 ident: 6581_CR47 publication-title: Eur Radiol doi: 10.1007/s00330-018-5530-z – volume: 21 start-page: 309 year: 2012 ident: 6581_CR33 publication-title: Cancer Cell doi: 10.1016/J.CCR.2012.02.022 – ident: 6581_CR36 doi: 10.3174/ajnr.A5173 – volume: 61 start-page: R150 year: 2016 ident: 6581_CR9 publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/13/R150 – volume: 26 start-page: 2921 year: 2016 ident: 6581_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-015-4131-3 – ident: 6581_CR40 doi: 10.1148/radiol.2492071956 – volume: 3 start-page: 573 year: 2012 ident: 6581_CR25 publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 23 start-page: 806 year: 2018 ident: 6581_CR20 publication-title: Oncologist doi: 10.1634/theoncologist.2017-0538 – volume: 255 start-page: 199 year: 2010 ident: 6581_CR26 publication-title: Radiology doi: 10.1148/radiol.09090571 – volume: 6 start-page: 244 year: 2011 ident: 6581_CR38 publication-title: J Thorac Oncol doi: 10.1097/JTO.0B013E318206A221 – ident: 6581_CR39 doi: 10.1148/radiol.10091806 – volume: 39 start-page: 2187 year: 2018 ident: 6581_CR11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5858 – ident: 6581_CR15 doi: 10.1007/s00330-016-4637-3 – volume: 264 start-page: 884 year: 2012 ident: 6581_CR27 publication-title: Radiology doi: 10.1148/radiol.12111793 – volume: 58 start-page: 267 year: 1996 ident: 6581_CR28 publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 6581_CR35 doi: 10.1038/ncomms5006 – ident: 6581_CR1 doi: 10.1148/radiol.12120240 – ident: 6581_CR37 doi: 10.2463/mrms.mp.2017-0044 – volume: 19 start-page: 57 year: 2017 ident: 6581_CR14 publication-title: Breast Cancer Res doi: 10.1186/s13058-017-0846-1 – volume: 30 start-page: 1163 year: 2010 ident: 6581_CR19 publication-title: Radiographics doi: 10.1148/rg.305095166 |
SSID | ssj0009147 |
Score | 2.440963 |
Snippet | Objectives
Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is... Lung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is critical... ObjectivesLung adenocarcinomas which manifest as ground-glass nodules (GGNs) have different degrees of pathological invasion and differentiating among them is... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2984 |
SubjectTerms | Adenocarcinoma Adenocarcinoma in Situ - diagnostic imaging Adenocarcinoma in Situ - pathology Adenocarcinoma in Situ - surgery Adenocarcinoma of Lung - diagnostic imaging Adenocarcinoma of Lung - pathology Adenocarcinoma of Lung - surgery Adult Aged Aged, 80 and over Area Under Curve Artificial intelligence Biomarkers Classifiers Computed tomography Computer engineering Diagnostic Radiology Distribution functions Female Health sciences Humans Identification methods Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Invasiveness Lung cancer Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lung Neoplasms - surgery Lungs Male Margins of Excision Medical imaging Medicine Medicine & Public Health Middle Aged Neoplasm Invasiveness - diagnostic imaging Neoplasm Invasiveness - pathology Neuroradiology Nodules Radiology Radiomics Regularization Retrospective Studies Support Vector Machine Support vector machines Surgery Thoracic surgery Tomography, X-Ray Computed - methods Training Ultrasound |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sgvSltFVrWisr-KbBZL-SPJUinlI4nzzwLexuNnBgc5qc_v2d2dvcIVLfApvNbmZ2Z3Z2Pn4Ap05ZJ73O00p5nkovitQaNFaKQrs2c63Snjy601t9M5N_7tV9vHAbYljlKBODoG4Wju7ILzga51RbpOC_Hp9SQo0i72qE0PgAOzlHXUuZ4pPrTdHdPACModGOg1eVjEkzIXWOQMwoJIty8FWZp_y1Ynpz2nzjKQ0KaPIZPsWTI_u9YvUX2PLdV9idRt_4HljCrCWMK9abZk7JxgNrfajbOTAzsPnfAEjEKOGeYnJ6bF70jCCJRwHI5t2LoeszfGAPKAaYQbGE2q7HIbDXPswmV3eXN2lEUEidKNQyFSXq50I3pS0aw70XOrNWCDTRtJDkws0MZcNXrTaOC2sU6ndpG49GZcUJ-uUAtrtF5w-BlZluM21MKb2RolVlqR0vMyeRJ85WKoF8JF_tYnlxQrl4qNeFkQPJayR5HUhe8wTO1n0eV8U13n37aORKHTfaUG-WRQIn62bcIuT3MJ1fPNM7eCYMpl4C31bcXA9HEkjhryZwPrJ38_H_z-X7-3P5AR852eUhMPIItpf9s_-Jh5elPQ4r9B9aMud0 priority: 102 providerName: ProQuest |
Title | Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma |
URI | https://link.springer.com/article/10.1007/s00330-019-06581-2 https://www.ncbi.nlm.nih.gov/pubmed/31965255 https://www.proquest.com/docview/2390059472 https://www.proquest.com/docview/2343504562 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7SBEovadJH6jY1W-itVZD3JeloBzshIaaUGtyT2F2vwCSRi2Tn0F_fmbWk0KYt5CIJdqV9zuyM5vEBfHTKOun1IMqU55H0IomsQWUlSbQrYlco7cmiezXV5zN5MVfzJiisbr3dW5Nk4NRdsBvBjpETFUXNq3QQIePdU6igIDnuDc--X47vk-0OArAYKuvYaJbJJljm71_5_UB6IGU-sJCGg2fyHGZtl7f-Jtcnm7U9cT__yOb42DEdwH4jibLhduscwo4vX8DTq8bW_hIsYeASZharzGJJwcs1K3zIA1ozU7PlbQA4YhTATz4-FRavKkYQxy1DZcvyztDvOHxgN8hWmEE2h6dnhU3gW69gNhl_Oz2PGkSGyIlErSOBs40KyiK1ycJw74WOrRUCVT4tJJmEY0PR9VmhjePCGoXygrQLj0pqxglK5jXslqvSvwGWxrqItTGp9EaKQqWpdjyNnVSZdDZTPRi0y5K7Jl05oWbc5F2i5TB5OU5eHiYv5z341L3zY5us47-1j9vVzhvCrXMuspDCJsHiD10xkhzZUUzpVxuqgzJmUB17cLTdJV1zxNEUDrUHn9sVv__4v_vy9nHV38EzTnp_cLw8ht11tfHvUTha2z48SeYJXtPJWR_pYjIaTfsNfeB9NJ5--YqlMz78BdIQByE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN6BAkaCE0Rk_UwOVVUB1ZZ2e2qlvQXbcaSVSrYkW1D_VH8jM95kV6iit94i-ZnxeMbj8cwH8N4r52XQo7RQgacyCJM6i8aKMdrXma-VDuTRnRzr8an8PlXTDbgaYmHoWeUgE6Ogruae7sg_czTOKbeI4bvnv1JCjSLv6gChsWSLw3D5B022bufgK67vB873v518Gac9qkDqhVGLVOSos4yucmcqy0MQOnNOCDRbtJDk1swsRYgXtbaeC2cV6jzpqoCGVsEJDgX7vQN3JbkYcf-YqVkn-R1FQLOsQCFiikL2QToxVI9A0-gJGMX8q3yU8n8V4bXT7TXPbFR4-1vwsD-psr0laz2CjdA8hnuT3hf_BBxh5BKmFmttNaPg5o7VIeYJ7Zjt2OxnBEBiFOBPb4BaLJ63jCCQB4HLZs1vS9d1-MHOUOwwi2IQtWuLQ2Crp3B6K7R9BpvNvAkvgOWZrjNtbS6DlaJWea49zzMvkQe8K1QCo4F8pe_TmROqxlm5SsQcSV4iyctI8pIn8HHV5nyZzOPG2tvDqpT9xu7KNRsm8G5VjFuS_Cy2CfMLqoNn0GhaJvB8uZqr4UjiKfzVBD4Ny7vu_P9zeXnzXN7C_fHJ5Kg8Ojg-fAUPON0JxEeZ27C5aC_Cazw4LdybyK0Mftz29vgLz5shVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqq4IN4NFDASnCBq1vEjOVQIaFctpasKUam3YDuOtFLJlmQL4i_yq5jxOrtCFb31FsnPjO0Zj-fxAbxy0jrh1Sgtpeep8LlOrUFlRWvlmsw1Unmy6B5P1MGp-HQmz9bgzxALQ26VA08MjLqeOXoj3-GonFNuEc13mugWcbI3fnfxIyUEKbK0DnAaJsIs1Lsh3VgM8jjyv3-hOtfvHu7h2r_mfLz_9eNBGhEHUpdrOU_zAuWZVnVhdW2497nKrM1zVGlULsjkmRmKHi8bZRzPrZEoD4WtPSphJSeoFOz3FmxolPqoCG582J-cfFmlAB4FuLOsRBajy1LEEJ4QyEeQauQgRhkBZDFK-b9i8srd94rdNojD8V24E--x7P1i492DNd_eh83jaKl_AJYQdAlxi3WmnlLoc88aH7KI9sz0bPo9wCMxCv8nD6EOi2cdI4DkgR2zafvT0GMefrBzZErMIJNE2dvhENjqIZzeCHUfwXo7a_0WsCJTTaaMKYQ3Im9kUSjHi8wJ3CHOljKB0UC-ysVk54S5cV4t0zQHkldI8iqQvOIJvFm2uVik-ri29vawKlU89n212qQJvFwW44ElK4xp_eyS6uANNSieCTxerOZyOOKHEn81gbfD8q46__9cnlw_lxewiUel-nw4OXoKtzk9GASPzW1Yn3eX_hnequb2edyuDL7d9An5CyiGLDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+radiomics+features+as+imaging+biomarkers+for+pathological+invasion+in+lung+adenocarcinoma&rft.jtitle=European+radiology&rft.au=Cho%2C+Hwan-ho&rft.au=Lee%2C+Geewon&rft.au=Lee%2C+Ho+Yun&rft.au=Park%2C+Hyunjin&rft.date=2020-05-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=30&rft.issue=5&rft.spage=2984&rft.epage=2994&rft_id=info:doi/10.1007%2Fs00330-019-06581-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_019_06581_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |