Application and impact of Lasso regression in gastroenterology: A systematic review

Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing...

Full description

Saved in:
Bibliographic Details
Published inIndian journal of gastroenterology Vol. 42; no. 6; pp. 780 - 790
Main Authors Ali, Hassam, Shahzad, Maria, Sarfraz, Shiza, Sewell, Kerry B., Alqalyoobi, Shehabaldin, Mohan, Babu P.
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0254-8860
0975-0711
0975-0711
DOI10.1007/s12664-023-01426-9

Cover

Abstract Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases ( Keywords : lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.
AbstractList Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases (Keywords: lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.
Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases (Keywords: lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.
Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases (Keywords: lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases (Keywords: lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.
Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases ( Keywords : lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.
Author Alqalyoobi, Shehabaldin
Ali, Hassam
Sarfraz, Shiza
Sewell, Kerry B.
Mohan, Babu P.
Shahzad, Maria
Author_xml – sequence: 1
  givenname: Hassam
  surname: Ali
  fullname: Ali, Hassam
  organization: Department of Gastroenterology and Hepatology, East Carolina University
– sequence: 2
  givenname: Maria
  surname: Shahzad
  fullname: Shahzad, Maria
  organization: Department of Internal Medicine, University of Health Sciences
– sequence: 3
  givenname: Shiza
  surname: Sarfraz
  fullname: Sarfraz, Shiza
  organization: Department of Internal Medicine, University of Health Sciences
– sequence: 4
  givenname: Kerry B.
  surname: Sewell
  fullname: Sewell, Kerry B.
  organization: Laupus Health Sciences Library, East Carolina University
– sequence: 5
  givenname: Shehabaldin
  surname: Alqalyoobi
  fullname: Alqalyoobi, Shehabaldin
  organization: Department of Pulmonary and Critical Care Medicine, East Carolina University, Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville
– sequence: 6
  givenname: Babu P.
  orcidid: 0000-0002-9512-8693
  surname: Mohan
  fullname: Mohan, Babu P.
  email: dr.babu.pm@gmail.com
  organization: Gastroenterology and Hepatology, Orlando Gastroenterology PA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37594652$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD_gD3BAkbhwCfg7MbdVBS3SShyAs-U4k5WrxA4eL2j_Pd5uAamHnsYjP-_M6H0vyVlMEQh5zeh7Rmn3ARnXWraUi5YyyXVrnpELajrV0o6xs_rmSrZ9r-k5uUS8o8feiBfkXHTKSK34Bfm2Wdc5eFdCio2LYxOW1fnSpKnZOsTUZNhlQDx-h9jsHJacIBbIaU67w8dm0-ABCyx1gq_wrwC_X5Lnk5sRXj3UK_Lj86fv17ft9uvNl-vNtvV1f2mFoJ3WbgA-gvadYoNTgnujJ8-572WvBy4HqUdwRhk_Us1G4cE5IyZNu0FckXenuWtOP_eAxS4BPcyzi5D2aHmvhJHKaF7Rt4_Qu7TPsV5nxdEU2XdaVOrNA7UfFhjtmsPi8sH-tasC_AT4nBAzTP8QRu0xE3vKxNZM7H0m1lRR_0jkQ7k3vGQX5qel4iTFuifuIP8_-wnVH2dBn-Q
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e38101
crossref_primary_10_1016_j_compbiomed_2025_109764
crossref_primary_10_1016_j_prp_2024_155503
crossref_primary_10_2147_JIR_S482047
crossref_primary_10_1016_j_ejso_2024_108703
crossref_primary_10_1016_j_heliyon_2024_e33553
crossref_primary_10_1007_s12664_023_01489_8
crossref_primary_10_1038_s41598_025_88520_4
crossref_primary_10_3389_fpubh_2024_1489848
crossref_primary_10_12998_wjcc_v12_i20_4091
crossref_primary_10_11569_wcjd_v32_i10_774
Cites_doi 10.21037/atm-22-4319
10.1186/s12944-022-01748-1
10.1136/bmj.h3868
10.1002/jhbp.972
10.2147/JIR.S339981
10.1080/10485252.2015.1010532
10.1002/jia2.25756
10.1002/hep.30478
10.1155/2020/8852198
10.3389/fmed.2021.678646
10.1111/1751-2980.13145
10.2147/CLEP.S262558
10.2147/DMSO.S271882
10.1186/s12893-023-01916-9
10.1007/978-0-387-84858-7
10.1007/s10620-022-07768-2
10.1002/sim.6100
10.1038/s41598-018-24868-0
10.1007/s10620-015-3952-x
10.1038/s41598-022-17511-6
10.1007/978-1-4614-7138-7
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright Indian Society of Gastroenterology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Indian Society of Gastroenterology.
Indian Society of Gastroenterology 2023.
Copyright_xml – notice: Indian Society of Gastroenterology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Indian Society of Gastroenterology.
– notice: Indian Society of Gastroenterology 2023.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
04Q
04T
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s12664-023-01426-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
India Database
India Database: Health & Medicine
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One Community College
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Indian Journals: Health & Medicine
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Indian Journals
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 0975-0711
EndPage 790
ExternalDocumentID 37594652
10_1007_s12664_023_01426_9
Genre Systematic Review
Journal Article
GroupedDBID ---
-EM
06D
0R~
0VY
1N0
203
29I
29~
2CU
2KG
2VQ
2WC
30V
4.4
406
408
40D
53G
5GY
5VS
67Z
8TC
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BAWUL
BGNMA
C1A
CAG
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
EN4
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GX1
H13
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OK1
P2P
P9S
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S37
S3B
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
T13
TR2
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W2D
W48
WK8
XSB
Z45
Z7U
Z87
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
04Q
04T
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
K9.
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-330766abe2de6c751ba532c96fc22c8486b24b46dea959cd061d3ceaa93f607b3
IEDL.DBID BENPR
ISSN 0254-8860
0975-0711
IngestDate Thu Oct 02 07:54:09 EDT 2025
Tue Oct 07 07:10:53 EDT 2025
Mon Jul 21 06:04:28 EDT 2025
Thu Apr 24 22:56:27 EDT 2025
Wed Oct 01 04:12:44 EDT 2025
Fri Feb 21 02:41:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords High-dimensional data
Inflammatory bowel disease
Lasso regression
Diagnostic accuracy
Gastroenterology
Liver disease
Machine learning
Clinical decision-making
Regularization
Esophageal cancer
Prediction modeling
Variable selection
Language English
License 2023. Indian Society of Gastroenterology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-330766abe2de6c751ba532c96fc22c8486b24b46dea959cd061d3ceaa93f607b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ORCID 0000-0002-9512-8693
PMID 37594652
PQID 3254948763
PQPubID 2034529
PageCount 11
ParticipantIDs proquest_miscellaneous_2853945962
proquest_journals_3254948763
pubmed_primary_37594652
crossref_primary_10_1007_s12664_023_01426_9
crossref_citationtrail_10_1007_s12664_023_01426_9
springer_journals_10_1007_s12664_023_01426_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: India
– name: Dordrecht
PublicationTitle Indian journal of gastroenterology
PublicationTitleAbbrev Indian J Gastroenterol
PublicationTitleAlternate Indian J Gastroenterol
PublicationYear 2023
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References CR2
Pavlou, Ambler, Seaman (CR4) 2015; 351
Lu, Bowlus, Lindor (CR11) 2020; 12
Yin, Huang, Chen (CR17) 2023; 23
Nattino, Finazzi, Bertolini (CR21) 2014; 33
Feng, Zheng, Li (CR9) 2021; 28
Liu, Sun, Jiang (CR10) 2022; 10
Xu, Zhang, Wang (CR14) 2021; 8
Zou, Zhao, Lv, Ma, Xie (CR15) 2022; 21
Xue, Yang, Zou (CR13) 2021; 14
Uchida, Hirooka, Nakamura (CR18) 2018; 8
Xu, Li, Ye (CR12) 2021; 9
Li, Zhang, Wu, Tan, Li (CR7) 2022; 12
Cai, Aierken, Ahmat (CR6) 2020; 2020
Deng, Yu, Gao (CR20) 2021; 14
Corey, Kartoun, Zheng, Shaw (CR8) 2016; 61
Hastie, Tibshirani, Friedman (CR3) 2009
Brathwaite, Ssewamala, Neilands (CR23) 2021; 24
Tibshirani (CR1) 1996; 58
Lee, Vittinghoff, Hsu (CR5) 2019; 69
Liu, Liu, Zhao (CR19) 2022; 23
Jung, Hu (CR22) 2015; 27
Yuan, Shen, Ji, Wen, Wang, Huang, Li, Xu (CR16) 2023; 68
ZJ Yin (1426_CR17) 2023; 23
CH Liu (1426_CR19) 2022; 23
B Xu (1426_CR12) 2021; 9
F Xu (1426_CR14) 2021; 8
M Xue (1426_CR13) 2021; 14
H Zou (1426_CR15) 2022; 21
R Brathwaite (1426_CR23) 2021; 24
M Pavlou (1426_CR4) 2015; 351
BP Lee (1426_CR5) 2019; 69
X Cai (1426_CR6) 2020; 2020
D Li (1426_CR7) 2022; 12
Y Liu (1426_CR10) 2022; 10
Y Jung (1426_CR22) 2015; 27
KE Corey (1426_CR8) 2016; 61
G Feng (1426_CR9) 2021; 28
M Lu (1426_CR11) 2020; 12
T Hastie (1426_CR3) 2009
L Yuan (1426_CR16) 2023; 68
G Nattino (1426_CR21) 2014; 33
H Deng (1426_CR20) 2021; 14
R Tibshirani (1426_CR1) 1996; 58
1426_CR2
G Uchida (1426_CR18) 2018; 8
References_xml – volume: 10
  start-page: 997
  year: 2022
  ident: CR10
  article-title: Development and validation of a predictive model for in-hospital mortality in patients with sepsis-associated liver injury
  publication-title: Ann Transl Med.
  doi: 10.21037/atm-22-4319
– volume: 21
  start-page: 133
  year: 2022
  ident: CR15
  article-title: Development and validation of a new nomogram to screen for MAFLD
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-022-01748-1
– volume: 351
  year: 2015
  ident: CR4
  article-title: How to develop a more accurate risk prediction model when there are few events
  publication-title: BMJ.
  doi: 10.1136/bmj.h3868
– volume: 28
  start-page: 593
  year: 2021
  end-page: 603
  ident: CR9
  article-title: Machine learning algorithm outperforms fibrosis markers in predicting significant fibrosis in biopsy-confirmed NAFLD
  publication-title: J Hepatobiliary Pancreat Sci.
  doi: 10.1002/jhbp.972
– volume: 14
  start-page: 6657
  year: 2021
  end-page: 6667
  ident: CR20
  article-title: Dynamic nomogram for predicting thrombocytopenia in adults with acute pancreatitis
  publication-title: J Inflamm Res.
  doi: 10.2147/JIR.S339981
– volume: 27
  start-page: 167
  year: 2015
  end-page: 179
  ident: CR22
  article-title: A k-fold averaging cross-validation procedure
  publication-title: J Nonparametr Stat.
  doi: 10.1080/10485252.2015.1010532
– volume: 9
  start-page: 291
  year: 2021
  end-page: 300
  ident: CR12
  article-title: Development and validation of a nomogram based on perioperative factors to predict posthepatectomy liver failure
  publication-title: J Clin Transl Hepatol.
– volume: 24
  year: 2021
  ident: CR23
  article-title: Predicting the individualized risk of poor adherence to ART medication among adolescents living with HIV in Uganda: The Suubi+Adherence study
  publication-title: J Int AIDS Soc.
  doi: 10.1002/jia2.25756
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc Series B Stat Methodol.
– ident: CR2
– volume: 69
  start-page: 1477
  year: 2019
  end-page: 1487
  ident: CR5
  article-title: Predicting low risk for sustained alcohol use after early liver transplant for acute alcoholic hepatitis: The sustained alcohol use post-liver transplant score
  publication-title: Hepatology.
  doi: 10.1002/hep.30478
– volume: 2020
  start-page: 8852198
  year: 2020
  ident: CR6
  article-title: A nomogram model based on noninvasive bioindicators to predict 3-year risk of nonalcoholic fatty liver in nonobese mainland chinese: A prospective cohort study
  publication-title: Biomed Res Int.
  doi: 10.1155/2020/8852198
– volume: 8
  year: 2021
  ident: CR14
  article-title: A new scoring system for predicting in-hospital death in patients having liver cirrhosis with esophageal varices
  publication-title: Front Med (Lausanne).
  doi: 10.3389/fmed.2021.678646
– volume: 23
  start-page: 597
  year: 2022
  end-page: 609
  ident: CR19
  article-title: Development and validation of a nomogram for esophagogastric variceal bleeding in liver cirrhosis: A cohort study in 1099 cases
  publication-title: J Dig Dis.
  doi: 10.1111/1751-2980.13145
– volume: 12
  start-page: 1261
  year: 2020
  end-page: 1267
  ident: CR11
  article-title: Validity of an automated algorithm to identify cirrhosis using electronic health records in patients with primary biliary cholangitis
  publication-title: Clin Epidemiol.
  doi: 10.2147/CLEP.S262558
– volume: 14
  start-page: 443
  year: 2021
  end-page: 454
  ident: CR13
  article-title: A non-invasive prediction model for non-alcoholic fatty liver disease in adults with type 2 diabetes based on the population of Northern Urumqi, China
  publication-title: Diabetes Metab Syndr Obes
  doi: 10.2147/DMSO.S271882
– volume: 23
  start-page: 25
  year: 2023
  ident: CR17
  article-title: Risk factor analysis and a new prediction model of venous thromboembolism after pancreaticoduodenectomy
  publication-title: BMC Surg.
  doi: 10.1186/s12893-023-01916-9
– year: 2009
  ident: CR3
  publication-title: The elements of statistical learning: data mining, inference, and prediction
  doi: 10.1007/978-0-387-84858-7
– volume: 68
  start-page: 2069
  year: 2023
  end-page: 2079
  ident: CR16
  article-title: A new risk score to predict intensive care unit admission for patients with acute pancreatitis 48 hours after admission: multicenter study
  publication-title: Dig Dis Sci.
  doi: 10.1007/s10620-022-07768-2
– volume: 33
  start-page: 2390
  year: 2014
  end-page: 2407
  ident: CR21
  article-title: A new calibration test and a reappraisal of the calibration belt for the assessment of prediction models based on dichotomous outcomes
  publication-title: Stat Med.
  doi: 10.1002/sim.6100
– volume: 8
  start-page: 6378
  year: 2018
  ident: CR18
  article-title: Nomogram-based prediction of rebleeding in small bowel bleeding patients: The “PRSBB” score
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-24868-0
– volume: 61
  start-page: 913
  year: 2016
  end-page: 919
  ident: CR8
  article-title: Development and validation of an algorithm to identify nonalcoholic fatty liver disease in the electronic medical record
  publication-title: Dig Dis Sci.
  doi: 10.1007/s10620-015-3952-x
– volume: 12
  start-page: 13877
  year: 2022
  ident: CR7
  article-title: Risk factors and prediction model for nonalcoholic fatty liver disease in northwest China
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-17511-6
– volume: 69
  start-page: 1477
  year: 2019
  ident: 1426_CR5
  publication-title: Hepatology.
  doi: 10.1002/hep.30478
– volume: 23
  start-page: 597
  year: 2022
  ident: 1426_CR19
  publication-title: J Dig Dis.
  doi: 10.1111/1751-2980.13145
– volume: 23
  start-page: 25
  year: 2023
  ident: 1426_CR17
  publication-title: BMC Surg.
  doi: 10.1186/s12893-023-01916-9
– volume: 8
  start-page: 6378
  year: 2018
  ident: 1426_CR18
  publication-title: Sci Rep.
  doi: 10.1038/s41598-018-24868-0
– volume: 10
  start-page: 997
  year: 2022
  ident: 1426_CR10
  publication-title: Ann Transl Med.
  doi: 10.21037/atm-22-4319
– volume: 21
  start-page: 133
  year: 2022
  ident: 1426_CR15
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-022-01748-1
– volume: 28
  start-page: 593
  year: 2021
  ident: 1426_CR9
  publication-title: J Hepatobiliary Pancreat Sci.
  doi: 10.1002/jhbp.972
– volume: 33
  start-page: 2390
  year: 2014
  ident: 1426_CR21
  publication-title: Stat Med.
  doi: 10.1002/sim.6100
– volume: 351
  year: 2015
  ident: 1426_CR4
  publication-title: BMJ.
  doi: 10.1136/bmj.h3868
– ident: 1426_CR2
  doi: 10.1007/978-1-4614-7138-7
– volume: 68
  start-page: 2069
  year: 2023
  ident: 1426_CR16
  publication-title: Dig Dis Sci.
  doi: 10.1007/s10620-022-07768-2
– volume: 24
  year: 2021
  ident: 1426_CR23
  publication-title: J Int AIDS Soc.
  doi: 10.1002/jia2.25756
– volume: 12
  start-page: 13877
  year: 2022
  ident: 1426_CR7
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-17511-6
– volume: 14
  start-page: 6657
  year: 2021
  ident: 1426_CR20
  publication-title: J Inflamm Res.
  doi: 10.2147/JIR.S339981
– volume: 9
  start-page: 291
  year: 2021
  ident: 1426_CR12
  publication-title: J Clin Transl Hepatol.
– volume: 61
  start-page: 913
  year: 2016
  ident: 1426_CR8
  publication-title: Dig Dis Sci.
  doi: 10.1007/s10620-015-3952-x
– volume: 14
  start-page: 443
  year: 2021
  ident: 1426_CR13
  publication-title: Diabetes Metab Syndr Obes
  doi: 10.2147/DMSO.S271882
– volume: 27
  start-page: 167
  year: 2015
  ident: 1426_CR22
  publication-title: J Nonparametr Stat.
  doi: 10.1080/10485252.2015.1010532
– volume: 58
  start-page: 267
  year: 1996
  ident: 1426_CR1
  publication-title: J R Stat Soc Series B Stat Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 8
  year: 2021
  ident: 1426_CR14
  publication-title: Front Med (Lausanne).
  doi: 10.3389/fmed.2021.678646
– volume: 2020
  start-page: 8852198
  year: 2020
  ident: 1426_CR6
  publication-title: Biomed Res Int.
  doi: 10.1155/2020/8852198
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 1426_CR3
  doi: 10.1007/978-0-387-84858-7
– volume: 12
  start-page: 1261
  year: 2020
  ident: 1426_CR11
  publication-title: Clin Epidemiol.
  doi: 10.2147/CLEP.S262558
SSID ssj0025493
Score 2.421318
SecondaryResourceType review_article
Snippet Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 780
SubjectTerms Alcohol use
Algorithms
Business metrics
Cohort analysis
Fatty liver
Gastroenterology
Gastrointestinal Tract
Hepatitis
Hepatology
Humans
Liver cirrhosis
Liver Diseases
Machine learning
Medicine
Medicine & Public Health
Natural language
Observational studies
Oncology
Pediatrics
Prognosis
Regularization methods
ROC Curve
Systematic Review
Variables
Vocabularies & taxonomies
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9xADLZgkSouUCiPpRQNUm9l0CbzSKa3FeIhXpd2JXqK5hWEQAnazV766-vJY6NCqcQtUiaTie0Z27H9GeBr4lxinHWU28RQngpLlUGvVdhEuIBwzmosvZtbeTHhl3firi0Km3XZ7l1Isj6p-2I31CWcoo5B9xf1ClXLsFLjbQ1gZXz-6-p04Wihz1NHlvGCpqkctcUy_57lb4X0ysp8FSGtFc_ZOky6JTf5Jo_H88oc298v0Bzf-00fYa21RMm4EZ0NWPLFJny4aWPtn-DHuI9tE1040hRUkjIn12hxl2Tq75sk2oI8FORez6ppGRA-p_Wf-u9kTHqYaNKUyGzB5Oz058kFbVswUMsSUVGGR4CU2vjYeYnsi4wWLLZK5jaObcpTaWJuuHReK6GsQ-vAMeu1ViyXo8SwbRgUZeF3gYiRx9kik0cWrQYTKceEzjWTOrK5FPEQoo4PmW3xyUObjKesR1YO1MqQWllNrUwN4dvimecGneO_o_c79mbtTp1lLEgLD7h8Qzhc3MY9FgInuvDlfJbFaNMoHvoUDWGnEYvF65BMitfLP-pY3E_-9lr23jf8M6yGPvdNHs0-DKrp3H9Ba6gyB63w_wHqCv1n
  priority: 102
  providerName: Springer Nature
Title Application and impact of Lasso regression in gastroenterology: A systematic review
URI https://link.springer.com/article/10.1007/s12664-023-01426-9
https://www.ncbi.nlm.nih.gov/pubmed/37594652
https://www.proquest.com/docview/3254948763
https://www.proquest.com/docview/2853945962
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 0975-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: DIK
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 0975-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: GX1
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0975-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: AFBBN
  dateStart: 20090101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 0975-0711
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 0975-0711
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0975-0711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0975-0711
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025493
  issn: 0254-8860
  databaseCode: U2A
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_aOxC_iPV52h4r-E0XL_tKVhBJ9Wq19hD14PwU9pUiSFLvrv-_s3lcKMV-CSGPzTKzm5nZ2fn9AF6m3qfWO0-FSy0VmXRUW4xapUuljwjnvMHSO1-o06X4spKrPVj0tTBxW2X_T2x-1L52cY38DY-RjIj4ae8v_9LIGhWzqz2FhumoFfy7BmJsH8YsImONYHw8X3z7vgvBsI0m54wnNMvUrCujaYvp0FYJijYMw2u0W1RfN1U3_M8budPGJJ3ch3udL0nyVvkHsBeqB3DnvMuWP4Qf-ZCdJqbypC2JJHVJvqLPXJN1uGi3wVbkd0UuzGa7riNG57pZa39LcjIAPZO2yOURLE_mPz-c0o5EgTqeyi3lOImVMjYwHxQqILFGcua0Kh1jLhOZskxYoXwwWmrn0b577oIxmpdqllr-GEZVXYWnQOQsYGuJLROHdt8m2nNpSsOVSVypJJtA0surcB3CeCS6-FMM2MhRxgXKuGhkXOgJvNq9c9nia9z69GGvhqKba5tiGBkTeLG7jbMkpj5MFeqrTcHQK9EiMg1N4Emrvt3nUExaNN1_3etzaPz_fXl2e1-ew93ITN_ufDmE0XZ9FY7Qf9naKeynq3QK4_zTr7P5tBuiePXj5zM8Lln-DzWo7m0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGJgEviG8OxggSPEG0a5qkDdKEbrDpxu5OCDZpbyFfnZBQO-5umvbP8bfh9OMqNLG3vVVqm7q2E9tx_DPAm8z7zHrnKXeZpTwXjiqLUatwmfAR4TytsfSmMzk-5l9OxMka_OlqYeKxym5NrBdqX7m4R76dxkiGR_y0j2e_aewaFbOrXQsN07ZW8Ds1xFhb2HEYLi8whFvsHHxGeb9lbH_v6NOYtl0GqEszsaQY0GdSGhuYDxIpTKwRKXNKFo4xl_NcWsYtlz4YJZTzaAB96oIxKi3kMLMpjnsLNjj-FAZ_G7t7s6_fViEf0lznuPGC5rkctmU7TfEe2kZO0WZiOI92kqp_TeMVf_dKrrY2gfv34V7ru5JRo2wPYC2UD-H2tM3OP4Lvoz4bTkzpSVOCSaqCTNBHr8g8nDbHbkvysySnZrGcVxETdF7v7X8gI9IDS5OmqOYxHN8IO5_AelmV4RkQMQw4WmKLxKGfYRPlU2EKk0qTuEIKNoCk45d2LaJ5bKzxS_dYzJHHGnmsax5rNYB3q3fOGjyPa5_e7MSg27m90L0mDuD16jbOyphqMWWozheaoRekeOxsNICnjfhWn0M2KV6T_76TZz_4_2l5fj0tr-DO-Gg60ZOD2eELuMuiXtWnbjZhfTk_Dy_Rd1rarVZBCfy46TnxF-K8J5k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-sgvRF1Nb2_NyCb3bxkv1I1rfD9vAbwR74tuxXRCiJ3MX_39kkd7FoC30LZHezzOzym8nM_AbgMPM-s955yl1mKc-Fo8qi1ypcJnxkOGcNl971jTyb8It7cf-qir_Jdp-HJNuahsjSVNbHT7447gvfEFc4RbxBVxgxhqoPsMIjUQKe6Ek6Wrhc6P00MWZ8oHkuh13ZzPtr_AlNb-zNN7HSBoLG67DW2Y5k1Cp7A5ZCuQmr1110_BPcjfpoNDGlJ20JJKkKcoU2ckWm4aFNey3JY0kezKyeVpGTc9r8Wz8hI9ITO5O2qOUzTMY_f52e0a5pAnUsEzVleGmlNDakPkgUeGKNYKlTsnBp6nKeS5tyy6UPRgnlPOK5Zy4Yo1ghh5llW7BcVmX4CkQMA66W2CJxiPM2UZ4JUxgmTeIKKdIBJHN5adcxisfGFr91z4UcZaxRxrqRsVYDOFrMeWr5NP45eneuBt3drZlmUas8MukN4NviNd6KGOowZaieZzpFK0Tx2FloAF9a9S0-h2JSvNn-97k--8X_vpft_xt-AKu3P8b66vzmcgc-xib1bRLMLizX0-ewh6ZMbfeb0_oCtSvnjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+and+impact+of+Lasso+regression+in+gastroenterology%3A+A+systematic+review&rft.jtitle=Indian+journal+of+gastroenterology&rft.au=Ali%2C+Hassam&rft.au=Shahzad%2C+Maria&rft.au=Sarfraz%2C+Shiza&rft.au=Sewell%2C+Kerry+B.&rft.date=2023-12-01&rft.issn=0254-8860&rft.eissn=0975-0711&rft.volume=42&rft.issue=6&rft.spage=780&rft.epage=790&rft_id=info:doi/10.1007%2Fs12664-023-01426-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12664_023_01426_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-8860&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-8860&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-8860&client=summon