An effective approach for breast cancer diagnosis based on routine blood analysis features

Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 58; no. 7; pp. 1583 - 1601
Main Authors Yavuz, Erdem, Eyupoglu, Can
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0140-0118
1741-0444
1741-0444
DOI10.1007/s11517-020-02187-9

Cover

Abstract Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract
AbstractList Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract
Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract.
Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase.
Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract.Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract.
Author Yavuz, Erdem
Eyupoglu, Can
Author_xml – sequence: 1
  givenname: Erdem
  orcidid: 0000-0002-3159-2497
  surname: Yavuz
  fullname: Yavuz, Erdem
  email: erdemyavuz29@gmail.com, erdem.yavuz@btu.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University
– sequence: 2
  givenname: Can
  surname: Eyupoglu
  fullname: Eyupoglu, Can
  organization: Department of Computer Engineering, Air Force Academy, National Defence University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32436139$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi0URC6BP0CBLNHQLHj8sd4rowgIUiQaaGisWe84ONqzD3sXKf8eH5eAlCKF5WKex3417xk7STkRY69BvAch7IcKYMB2Qop2YLDd9hnbgNXQCa31CdsI0G0EMJyys1pvRaOM1C_YqZJa9aC2G_bjInEKgfwSfxPH_b5k9D95yIWPhbAu3GPyVPgU8SblGisfsdLEc-Ilr0tMxMc554ljwvnuMA-Ey1qovmTPA86VXt3f5-z7p4_fLq-666-fv1xeXHdeWbN0cjIyDNoMkyQBZBGnrQ0ojNyGUSvfg_S9FqH3VgolUUKwwzgEL_w4iaDUOXt3fLdl_7VSXdwuVk_zjInyWp3Uwihl-t429O0j9DavpQU_UKBBiX4wjXpzT63jjia3L3GH5c49bK0B8gj4kmstFP4hINyhGnesxrVq3N9q3EEaHkk-LrjEnJaCcX5aVUe1tn_SDZX_sZ-w_gB4OaGv
CitedBy_id crossref_primary_10_1007_s00521_024_09915_4
crossref_primary_10_1007_s11517_022_02623_y
crossref_primary_10_1007_s11517_023_02994_w
crossref_primary_10_1080_15440478_2022_2076273
crossref_primary_10_1097_JS9_0000000000000862
crossref_primary_10_35193_bseufbd_742456
crossref_primary_10_1007_s11517_021_02327_9
crossref_primary_10_1186_s13017_024_00571_6
crossref_primary_10_3390_jcm13102868
crossref_primary_10_31590_ejosat_743652
crossref_primary_10_34133_2022_9780569
crossref_primary_10_1080_08839514_2022_2031820
crossref_primary_10_3390_jpm10040224
crossref_primary_10_1007_s41870_023_01361_0
crossref_primary_10_1007_s11227_023_05635_z
crossref_primary_10_1186_s12916_023_02964_x
crossref_primary_10_1007_s11042_022_12385_2
Cites_doi 10.1016/j.asoc.2018.07.060
10.1098/rsos.190485
10.3322/caac.21492
10.1016/j.patrec.2018.11.004
10.1007/s10994-005-0466-3
10.1016/j.asoc.2015.10.005
10.1016/j.eswa.2019.112824
10.1186/s12885-017-3877-1
10.1016/j.cmpb.2016.07.020
10.1162/089976601300014493
10.2307/2347628
10.5120/1325-1799
10.1016/j.compbiomed.2016.10.007
10.1007/s11517-017-1721-z
10.1109/UBMK.2017.8093456
10.1016/j.ejor.2017.12.001
10.1007/s00521-015-2103-9
10.1007/BFb0057597
10.1016/j.bbe.2019.12.004
10.1016/j.bbe.2019.03.001
10.1016/j.bbe.2018.01.002
10.1007/s11517-019-02024-8
10.1007/s00500-019-04157-2
10.3322/caac.21551
10.1016/j.ipm.2009.03.002
10.1198/004017007000000245
10.1109/ISMSIT.2018.8567245
10.1016/j.measurement.2015.04.028
10.1023/A:1010933404324
10.1007/BF00153759
10.1016/j.irbm.2019.05.007
10.3390/make1010028
10.1016/B978-0-7506-8976-2.00008-0
10.1016/j.eswa.2017.05.035
10.18201/ijisae.2018648455
10.11648/j.acm.20180704.15
10.1016/j.tele.2017.01.007
10.1016/j.comnet.2018.11.010
10.1109/72.80341
10.1016/j.ipm.2018.10.014
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2020
International Federation for Medical and Biological Engineering 2020.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2020
– notice: International Federation for Medical and Biological Engineering 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-020-02187-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1601
ExternalDocumentID 32436139
10_1007_s11517_020_02187_9
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-2d52f8458d2e01e7aad97fa0529fb43c612c640f6c72032a21f78b8fc0cbd0f33
IEDL.DBID BENPR
ISSN 0140-0118
1741-0444
IngestDate Thu Sep 04 18:00:51 EDT 2025
Tue Oct 07 05:41:24 EDT 2025
Wed Feb 19 02:28:41 EST 2025
Wed Oct 01 03:37:59 EDT 2025
Thu Apr 24 22:54:26 EDT 2025
Fri Feb 21 02:31:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Routine blood analysis
GRNN
Breast cancer diagnosis
Classification
Median filtering
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-2d52f8458d2e01e7aad97fa0529fb43c612c640f6c72032a21f78b8fc0cbd0f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3159-2497
PMID 32436139
PQID 2414130685
PQPubID 54161
PageCount 19
ParticipantIDs proquest_miscellaneous_2405335667
proquest_journals_2414130685
pubmed_primary_32436139
crossref_primary_10_1007_s11517_020_02187_9
crossref_citationtrail_10_1007_s11517_020_02187_9
springer_journals_10_1007_s11517_020_02187_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200700
2020-07-00
2020-Jul
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References JustussonBIMedian filtering: statistical propertiesTwo-dimensional digital signal processing1981Berlin, HeidelbergSpringer16119610.1007/BFb0057597
Ontiveros-RoblesEMelinPToward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiersSoft Comput2020241839910.1007/s00500-019-04157-2
YavuzEEyupogluCA cepstrum analysis-based classification method for hand movement surface EMG signalsMed Biol Eng Comput201957102179220110.1007/s11517-019-02024-831388900
LiYChenZPerformance evaluation of machine learning methods for breast cancer predictionAppl Comput Math20187421221610.11648/j.acm.20180704.15
Polat K, Sentürk U (2018) A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and AdaBoostM1 classifier. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp 1-4
Abdel-BassetMEl-ShahatDEl-henawyIde AlbuquerqueVHCMirjaliliSA new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selectionExpert Syst Appl202013911282410.1016/j.eswa.2019.112824
American Cancer Society, Cancer Facts & Figures 2019 Report. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html.
DoraLAgrawalSPandaRAbrahamAOptimal breast cancer classification using Gauss–Newton representation based algorithmExpert Syst Appl20178513414510.1016/j.eswa.2017.05.035
MathWorks Statistics and Machine Learning Toolbox. The MathWorks Inc., 2018
Le CessieSVan HouwelingenJCRidge estimators in logistic regressionJ Roy Stat Soc C-App199241119120110.2307/2347628
NilashiMIbrahimOAhmadiHShahmoradiLA knowledge-based system for breast cancer classification using fuzzy logic methodTelematics Inform201734413314410.1016/j.tele.2017.01.007
LivierisIPintelasEKanavosAPintelasPCohenIRLajthaALambrisJDPaolettiRRezaeiNAn improved self-labeled algorithm for cancer predictionAdvances in experimental medicine and biology2018SpringerPublisher110
PengLChenWZhouWLiFYangJZhangJAn immune-inspired semi-supervised algorithm for breast cancer diagnosisComput Methods Prog Biomed201613425926510.1016/j.cmpb.2016.07.020
HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub
Jackson JE (2005) A user’s guide to principal components. John Wiley & Sons
HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl201071371310.5120/1325-1799
Wolberg WH, Street WN, Mangasarian OL (1995) Breast Cancer Wisconsin Data Set, UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/. Accessed 3 January 2019
Silva AraújoVJGuimarãesAJde Campos SouzaPVSilva RezendeTSouza AraújoVUsing resistin, glucose, age and bmi and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancerMach Learn Knowl Extr20191146648210.3390/make1010028
TukeyJWExploratory data analysis1977Reading, MassAddison-Wesley
New Global Cancer DataGLOBOCAN2018https://www.uicc.org/new-global-cancer-data-globocan-2018.
SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010
PowellMJDMasonJCCoxMGRadial basis functions for multivariable interpolation: a reviewAlgorithms for approximation, Publisher: Clarendon Press1987New YorkImprint of Oxford University Press143167
Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 IEEE International Conference on Computer Science and Engineering (UBMK), pp 538-543
SunXLiuJZhuKHuJJiangXLiuYGeneralized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flourR Soc Open Sci20196719048510.1098/rsos.190485314177476689620
PatrícioMPereiraJCrisóstomoJMatafomePGomesMSeiçaRCarameloFUsing Resistin, glucose, age and BMI to predict the presence of breast cancerBMC Cancer2018181291:CAS:528:DC%2BC1cXisFWmtLfP10.1186/s12885-017-3877-1293015005755302
LandwehrNHallMFrankELogistic model treesMach Learn2005591–216120510.1007/s10994-005-0466-3
AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intelli Syst Appl Eng20186428929310.18201/ijisae.2018648455
SinghBKDetermining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: a comparative investigation in machine learning paradigmBiocybern Biomed Eng201939239340910.1016/j.bbe.2019.03.001
AkbenSBDetermination of the blood, hormone and obesity value ranges that indicate the breast cancer, using data mining based expert systemIRBM201940635536010.1016/j.irbm.2019.05.007
JohnGHLangleyPEstimating continuous distributions in Bayesian classifiers10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–3451995MontréalAugust1820
GenkinALewisDDMadiganDLarge-scale Bayesian logistic regression for text categorizationTechnometrics200449329130410.1198/004017007000000245
LiuNQiESXuMGaoBLiuGQA novel intelligent classification model for breast cancer diagnosisComm Com Inf Sc201956360962310.1016/j.ipm.2018.10.014
EyupogluCBreast cancer classification using k-nearest neighbors algorithmOnline J Sci Technol2018832934
Jafari-MarandiRDavarzaniSGharibdoustiMSSmithBKAn optimum ANN-based breast cancer diagnosis: bridging gaps between ANN learning and decision-making goalsAppl Soft Comput20187210812010.1016/j.asoc.2018.07.060
WangHZhengBYoonSWKoHSA support vector machine-based ensemble algorithm for breast cancer diagnosisEur J Oper Res2018267268769910.1016/j.ejor.2017.12.001
WittenIFrankEHallMPalCData mining: practical machine learning tools and techniques20174MorganKaufmann
BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
ClearyJGTriggLEK*: an instance-based learner using an entropic distance measure12th international conference on machine learning, pp 108–1141995Tahoe City, CaliforniaJuly912
JeleńŁKrzyżakAFevensTJeleńMInfluence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsiesComput Biol Med201679809110.1016/j.compbiomed.2016.10.00727768905
ChenSCowanCFGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE T Neural Networ1991223023091:STN:280:DC%2BD1c7hslOrtw%3D%3D10.1109/72.80341
Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA
World Health Organization. https://www.who.int/. Accessed 11 January 2019
YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002
Demuth HB, Beale MH, Hagan MT (2006) Neural network toolbox user’s guide. The MathWorks Inc
SheikhpourRSarramMASheikhpourRParticle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancerAppl Soft Comput20164011313110.1016/j.asoc.2015.10.005
Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F (2018) Breast Cancer Coimbra Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra.
AličkovićESubasiABreast cancer diagnosis using GA feature selection and rotation forestNeural Comput & Applic201728475376310.1007/s00521-015-2103-9
SiegelRLMillerKDJemalACancer statisticsCa-Cancer J Clin20196973410.3322/caac.2155130620402
Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett (In Press) 2018. https://doi.org/10.1016/j.patrec.2018.11.004
KarabatakMA new classifier for breast cancer detection based on Naïve BayesianMeasurement201572323610.1016/j.measurement.2015.04.028
LoweDBroomheadDMultivariable functional interpolation and adaptive networksNonl Phen Compl Syst198823321355
ShiraziAZChabokSJSMMohammadiZA novel and reliable computational intelligence system for breast cancer detectionMed Biol Eng Comput201856572173210.1007/s11517-017-1721-z
KeerthiSSShevadeSKBhattacharyyaCMurthyKRKImprovements to Platt’s SMO algorithm for SVM classifier designNeural Comput200113363764910.1162/089976601300014493
Deep Learning for Java, Deeplearning4j. https://deeplearning4j.org/. Accessed 26 January 2020
SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002
Broesch JD (2008) Digital signal processing: instant access. Elsevier
AhaDWKiblerDAlbertMKInstance-based learning algorithmsMach Learn199161376610.1007/BF00153759
BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCa-Cancer J Clin201868639442410.3322/caac.2149230207593
FreundYSchapireREExperiments with a new boosting algorithm13th International Conference on Machine Learning, pp 148–1561996BariJuly36
International Agency for Research on Cancer. https://www.iarc.fr/. Accessed 15 Jan 2019
DalwinderSBirmohanSManpreetKSimultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancerBiocybern Biomed Eng201940133735110.1016/j.bbe.2019.12.004
BauerMMGeneral regression neural network for technical use1995Master’s thesisUniversity of Wisconsin-Madison
MT Hagan (2187_CR43) 1996
R Jafari-Marandi (2187_CR13) 2018; 72
2187_CR61
S Chen (2187_CR39) 1991; 2
Y Freund (2187_CR52) 1996
A Genkin (2187_CR58) 2004; 49
2187_CR21
M Nilashi (2187_CR18) 2017; 34
S Dalwinder (2187_CR29) 2019; 40
H Wang (2187_CR11) 2018; 267
2187_CR25
M Patrício (2187_CR32) 2018; 18
New Global Cancer Data (2187_CR4) 2018
R Sheikhpour (2187_CR14) 2016; 40
X Sun (2187_CR49) 2019; 6
JW Tukey (2187_CR33) 1977
AZ Shirazi (2187_CR20) 2018; 56
Ł Jeleń (2187_CR8) 2016; 79
VJ Silva Araújo (2187_CR26) 2019; 1
MM Bauer (2187_CR44) 1995
2187_CR9
E Aličković (2187_CR16) 2017; 28
DW Aha (2187_CR59) 1991; 6
I Witten (2187_CR51) 2017
2187_CR5
F Bray (2187_CR2) 2018; 68
2187_CR3
2187_CR1
Y Li (2187_CR22) 2018; 7
S Le Cessie (2187_CR57) 1992; 41
N Landwehr (2187_CR62) 2005; 59
SA Hannan (2187_CR45) 2010; 7
C Eyupoglu (2187_CR7) 2018; 8
GH John (2187_CR56) 1995
2187_CR34
2187_CR36
2187_CR38
M Sokolova (2187_CR50) 2009; 45
I Livieris (2187_CR23) 2018
SB Akben (2187_CR27) 2019; 40
2187_CR40
MF Aslan (2187_CR24) 2018; 6
L Peng (2187_CR15) 2016; 134
E Yavuz (2187_CR46) 2018; 38
N Liu (2187_CR12) 2019; 56
SS Keerthi (2187_CR53) 2001; 13
2187_CR47
M Abdel-Basset (2187_CR31) 2020; 139
L Dora (2187_CR17) 2017; 85
2187_CR10
D Lowe (2187_CR42) 1988; 2
F Salo (2187_CR35) 2019; 148
E Yavuz (2187_CR48) 2019; 57
E Ontiveros-Robles (2187_CR30) 2020; 24
M Karabatak (2187_CR19) 2015; 72
L Breiman (2187_CR54) 2001; 45
RL Siegel (2187_CR6) 2019; 69
2187_CR55
JG Cleary (2187_CR60) 1995
BI Justusson (2187_CR37) 1981
BK Singh (2187_CR28) 2019; 39
MJD Powell (2187_CR41) 1987
References_xml – reference: AhaDWKiblerDAlbertMKInstance-based learning algorithmsMach Learn199161376610.1007/BF00153759
– reference: LandwehrNHallMFrankELogistic model treesMach Learn2005591–216120510.1007/s10994-005-0466-3
– reference: KeerthiSSShevadeSKBhattacharyyaCMurthyKRKImprovements to Platt’s SMO algorithm for SVM classifier designNeural Comput200113363764910.1162/089976601300014493
– reference: YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002
– reference: Wolberg WH, Street WN, Mangasarian OL (1995) Breast Cancer Wisconsin Data Set, UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/. Accessed 3 January 2019
– reference: AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intelli Syst Appl Eng20186428929310.18201/ijisae.2018648455
– reference: JeleńŁKrzyżakAFevensTJeleńMInfluence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsiesComput Biol Med201679809110.1016/j.compbiomed.2016.10.00727768905
– reference: Le CessieSVan HouwelingenJCRidge estimators in logistic regressionJ Roy Stat Soc C-App199241119120110.2307/2347628
– reference: ShiraziAZChabokSJSMMohammadiZA novel and reliable computational intelligence system for breast cancer detectionMed Biol Eng Comput201856572173210.1007/s11517-017-1721-z
– reference: PengLChenWZhouWLiFYangJZhangJAn immune-inspired semi-supervised algorithm for breast cancer diagnosisComput Methods Prog Biomed201613425926510.1016/j.cmpb.2016.07.020
– reference: Ontiveros-RoblesEMelinPToward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiersSoft Comput2020241839910.1007/s00500-019-04157-2
– reference: SheikhpourRSarramMASheikhpourRParticle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancerAppl Soft Comput20164011313110.1016/j.asoc.2015.10.005
– reference: Jafari-MarandiRDavarzaniSGharibdoustiMSSmithBKAn optimum ANN-based breast cancer diagnosis: bridging gaps between ANN learning and decision-making goalsAppl Soft Comput20187210812010.1016/j.asoc.2018.07.060
– reference: AličkovićESubasiABreast cancer diagnosis using GA feature selection and rotation forestNeural Comput & Applic201728475376310.1007/s00521-015-2103-9
– reference: TukeyJWExploratory data analysis1977Reading, MassAddison-Wesley
– reference: KarabatakMA new classifier for breast cancer detection based on Naïve BayesianMeasurement201572323610.1016/j.measurement.2015.04.028
– reference: Jackson JE (2005) A user’s guide to principal components. John Wiley & Sons
– reference: ClearyJGTriggLEK*: an instance-based learner using an entropic distance measure12th international conference on machine learning, pp 108–1141995Tahoe City, CaliforniaJuly912
– reference: AkbenSBDetermination of the blood, hormone and obesity value ranges that indicate the breast cancer, using data mining based expert systemIRBM201940635536010.1016/j.irbm.2019.05.007
– reference: SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002
– reference: PatrícioMPereiraJCrisóstomoJMatafomePGomesMSeiçaRCarameloFUsing Resistin, glucose, age and BMI to predict the presence of breast cancerBMC Cancer2018181291:CAS:528:DC%2BC1cXisFWmtLfP10.1186/s12885-017-3877-1293015005755302
– reference: Silva AraújoVJGuimarãesAJde Campos SouzaPVSilva RezendeTSouza AraújoVUsing resistin, glucose, age and bmi and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancerMach Learn Knowl Extr20191146648210.3390/make1010028
– reference: PowellMJDMasonJCCoxMGRadial basis functions for multivariable interpolation: a reviewAlgorithms for approximation, Publisher: Clarendon Press1987New YorkImprint of Oxford University Press143167
– reference: SunXLiuJZhuKHuJJiangXLiuYGeneralized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flourR Soc Open Sci20196719048510.1098/rsos.190485314177476689620
– reference: ChenSCowanCFGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE T Neural Networ1991223023091:STN:280:DC%2BD1c7hslOrtw%3D%3D10.1109/72.80341
– reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324
– reference: Deep Learning for Java, Deeplearning4j. https://deeplearning4j.org/. Accessed 26 January 2020
– reference: Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA
– reference: Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett (In Press) 2018. https://doi.org/10.1016/j.patrec.2018.11.004
– reference: WangHZhengBYoonSWKoHSA support vector machine-based ensemble algorithm for breast cancer diagnosisEur J Oper Res2018267268769910.1016/j.ejor.2017.12.001
– reference: FreundYSchapireREExperiments with a new boosting algorithm13th International Conference on Machine Learning, pp 148–1561996BariJuly36
– reference: LiuNQiESXuMGaoBLiuGQA novel intelligent classification model for breast cancer diagnosisComm Com Inf Sc201956360962310.1016/j.ipm.2018.10.014
– reference: EyupogluCBreast cancer classification using k-nearest neighbors algorithmOnline J Sci Technol2018832934
– reference: World Health Organization. https://www.who.int/. Accessed 11 January 2019
– reference: YavuzEEyupogluCA cepstrum analysis-based classification method for hand movement surface EMG signalsMed Biol Eng Comput201957102179220110.1007/s11517-019-02024-831388900
– reference: BauerMMGeneral regression neural network for technical use1995Master’s thesisUniversity of Wisconsin-Madison
– reference: Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F (2018) Breast Cancer Coimbra Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra.
– reference: LoweDBroomheadDMultivariable functional interpolation and adaptive networksNonl Phen Compl Syst198823321355
– reference: BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCa-Cancer J Clin201868639442410.3322/caac.2149230207593
– reference: Demuth HB, Beale MH, Hagan MT (2006) Neural network toolbox user’s guide. The MathWorks Inc
– reference: International Agency for Research on Cancer. https://www.iarc.fr/. Accessed 15 Jan 2019
– reference: DoraLAgrawalSPandaRAbrahamAOptimal breast cancer classification using Gauss–Newton representation based algorithmExpert Syst Appl20178513414510.1016/j.eswa.2017.05.035
– reference: New Global Cancer DataGLOBOCAN2018https://www.uicc.org/new-global-cancer-data-globocan-2018.
– reference: DalwinderSBirmohanSManpreetKSimultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancerBiocybern Biomed Eng201940133735110.1016/j.bbe.2019.12.004
– reference: LiYChenZPerformance evaluation of machine learning methods for breast cancer predictionAppl Comput Math20187421221610.11648/j.acm.20180704.15
– reference: Polat K, Sentürk U (2018) A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and AdaBoostM1 classifier. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp 1-4
– reference: SinghBKDetermining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: a comparative investigation in machine learning paradigmBiocybern Biomed Eng201939239340910.1016/j.bbe.2019.03.001
– reference: SiegelRLMillerKDJemalACancer statisticsCa-Cancer J Clin20196973410.3322/caac.2155130620402
– reference: LivierisIPintelasEKanavosAPintelasPCohenIRLajthaALambrisJDPaolettiRRezaeiNAn improved self-labeled algorithm for cancer predictionAdvances in experimental medicine and biology2018SpringerPublisher110
– reference: Abdel-BassetMEl-ShahatDEl-henawyIde AlbuquerqueVHCMirjaliliSA new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selectionExpert Syst Appl202013911282410.1016/j.eswa.2019.112824
– reference: JohnGHLangleyPEstimating continuous distributions in Bayesian classifiers10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–3451995MontréalAugust1820
– reference: MathWorks Statistics and Machine Learning Toolbox. The MathWorks Inc., 2018
– reference: WittenIFrankEHallMPalCData mining: practical machine learning tools and techniques20174MorganKaufmann
– reference: American Cancer Society, Cancer Facts & Figures 2019 Report. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html.
– reference: GenkinALewisDDMadiganDLarge-scale Bayesian logistic regression for text categorizationTechnometrics200449329130410.1198/004017007000000245
– reference: SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010
– reference: Broesch JD (2008) Digital signal processing: instant access. Elsevier
– reference: HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl201071371310.5120/1325-1799
– reference: Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 IEEE International Conference on Computer Science and Engineering (UBMK), pp 538-543
– reference: JustussonBIMedian filtering: statistical propertiesTwo-dimensional digital signal processing1981Berlin, HeidelbergSpringer16119610.1007/BFb0057597
– reference: NilashiMIbrahimOAhmadiHShahmoradiLA knowledge-based system for breast cancer classification using fuzzy logic methodTelematics Inform201734413314410.1016/j.tele.2017.01.007
– reference: HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub
– volume: 72
  start-page: 108
  year: 2018
  ident: 2187_CR13
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.07.060
– volume: 6
  start-page: 190485
  issue: 7
  year: 2019
  ident: 2187_CR49
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.190485
– ident: 2187_CR55
– start-page: 9
  volume-title: 12th international conference on machine learning, pp 108–114
  year: 1995
  ident: 2187_CR60
– volume: 8
  start-page: 29
  issue: 3
  year: 2018
  ident: 2187_CR7
  publication-title: Online J Sci Technol
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: 2187_CR2
  publication-title: Ca-Cancer J Clin
  doi: 10.3322/caac.21492
– ident: 2187_CR10
  doi: 10.1016/j.patrec.2018.11.004
– volume: 59
  start-page: 161
  issue: 1–2
  year: 2005
  ident: 2187_CR62
  publication-title: Mach Learn
  doi: 10.1007/s10994-005-0466-3
– ident: 2187_CR36
– volume: 40
  start-page: 113
  year: 2016
  ident: 2187_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.10.005
– volume: 139
  start-page: 112824
  year: 2020
  ident: 2187_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112824
– volume: 18
  start-page: 29
  issue: 1
  year: 2018
  ident: 2187_CR32
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3877-1
– volume: 134
  start-page: 259
  year: 2016
  ident: 2187_CR15
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2016.07.020
– volume: 13
  start-page: 637
  issue: 3
  year: 2001
  ident: 2187_CR53
  publication-title: Neural Comput
  doi: 10.1162/089976601300014493
– ident: 2187_CR5
– volume: 41
  start-page: 191
  issue: 1
  year: 1992
  ident: 2187_CR57
  publication-title: J Roy Stat Soc C-App
  doi: 10.2307/2347628
– ident: 2187_CR1
– volume: 7
  start-page: 7
  issue: 13
  year: 2010
  ident: 2187_CR45
  publication-title: Int J Comput Appl
  doi: 10.5120/1325-1799
– start-page: 18
  volume-title: 10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–345
  year: 1995
  ident: 2187_CR56
– volume: 79
  start-page: 80
  year: 2016
  ident: 2187_CR8
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.10.007
– ident: 2187_CR61
– ident: 2187_CR9
– volume: 56
  start-page: 721
  issue: 5
  year: 2018
  ident: 2187_CR20
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-017-1721-z
– ident: 2187_CR47
  doi: 10.1109/UBMK.2017.8093456
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2017
  ident: 2187_CR51
– start-page: 3
  volume-title: 13th International Conference on Machine Learning, pp 148–156
  year: 1996
  ident: 2187_CR52
– volume: 267
  start-page: 687
  issue: 2
  year: 2018
  ident: 2187_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.12.001
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 2187_CR16
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2103-9
– start-page: 161
  volume-title: Two-dimensional digital signal processing
  year: 1981
  ident: 2187_CR37
  doi: 10.1007/BFb0057597
– volume: 40
  start-page: 337
  issue: 1
  year: 2019
  ident: 2187_CR29
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2019.12.004
– volume: 39
  start-page: 393
  issue: 2
  year: 2019
  ident: 2187_CR28
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2019.03.001
– volume: 38
  start-page: 201
  issue: 2
  year: 2018
  ident: 2187_CR46
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.01.002
– start-page: 1
  volume-title: Advances in experimental medicine and biology
  year: 2018
  ident: 2187_CR23
– volume: 57
  start-page: 2179
  issue: 10
  year: 2019
  ident: 2187_CR48
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-019-02024-8
– ident: 2187_CR34
– volume: 24
  start-page: 83
  issue: 1
  year: 2020
  ident: 2187_CR30
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04157-2
– start-page: 143
  volume-title: Algorithms for approximation, Publisher: Clarendon Press
  year: 1987
  ident: 2187_CR41
– volume-title: Neural network design
  year: 1996
  ident: 2187_CR43
– volume: 69
  start-page: 7
  year: 2019
  ident: 2187_CR6
  publication-title: Ca-Cancer J Clin
  doi: 10.3322/caac.21551
– volume-title: Exploratory data analysis
  year: 1977
  ident: 2187_CR33
– volume-title: General regression neural network for technical use
  year: 1995
  ident: 2187_CR44
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 2187_CR50
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
– volume: 49
  start-page: 291
  issue: 3
  year: 2004
  ident: 2187_CR58
  publication-title: Technometrics
  doi: 10.1198/004017007000000245
– ident: 2187_CR25
  doi: 10.1109/ISMSIT.2018.8567245
– volume-title: GLOBOCAN
  year: 2018
  ident: 2187_CR4
– volume: 72
  start-page: 32
  year: 2015
  ident: 2187_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.04.028
– ident: 2187_CR3
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2187_CR54
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 321
  issue: 3
  year: 1988
  ident: 2187_CR42
  publication-title: Nonl Phen Compl Syst
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 2187_CR59
  publication-title: Mach Learn
  doi: 10.1007/BF00153759
– ident: 2187_CR40
– volume: 40
  start-page: 355
  issue: 6
  year: 2019
  ident: 2187_CR27
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.05.007
– volume: 1
  start-page: 466
  issue: 1
  year: 2019
  ident: 2187_CR26
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make1010028
– ident: 2187_CR38
  doi: 10.1016/B978-0-7506-8976-2.00008-0
– ident: 2187_CR21
– volume: 85
  start-page: 134
  year: 2017
  ident: 2187_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.035
– volume: 6
  start-page: 289
  issue: 4
  year: 2018
  ident: 2187_CR24
  publication-title: Int J Intelli Syst Appl Eng
  doi: 10.18201/ijisae.2018648455
– volume: 7
  start-page: 212
  issue: 4
  year: 2018
  ident: 2187_CR22
  publication-title: Appl Comput Math
  doi: 10.11648/j.acm.20180704.15
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 2187_CR18
  publication-title: Telematics Inform
  doi: 10.1016/j.tele.2017.01.007
– volume: 148
  start-page: 164
  year: 2019
  ident: 2187_CR35
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2018.11.010
– volume: 2
  start-page: 302
  issue: 2
  year: 1991
  ident: 2187_CR39
  publication-title: IEEE T Neural Networ
  doi: 10.1109/72.80341
– volume: 56
  start-page: 609
  issue: 3
  year: 2019
  ident: 2187_CR12
  publication-title: Comm Com Inf Sc
  doi: 10.1016/j.ipm.2018.10.014
SSID ssj0021524
Score 2.3766978
Snippet Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1583
SubjectTerms Algorithms
Anthropometry
Artificial neural networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood
Blood tests
Breast cancer
Breast Neoplasms - blood
Breast Neoplasms - diagnosis
Computer Applications
Databases, Factual
Datasets
Diagnosis
Diagnosis, Computer-Assisted - methods
Female
Human Physiology
Humans
Imaging
Iterative methods
Medical diagnosis
Neural networks
Neural Networks, Computer
Original Article
Physicians
Prediction models
Principal Component Analysis
Principal components analysis
Radiology
Regression analysis
Regression models
Software
Training
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3oBuKL3x_TKRF804x-pE36OMQ5lPnkQH0pbZqAKJ1s3Yu_3ps27dCp4HPTtE1uck65554AnCNo8CzUDnURWynTXkBTREGaylB5IhM64KbAeXQfDsfs9jF4tEVhs1rtXqcky516UeyG4MSp-d0xuMRptArt0m-rBe3-zdPddfOjhZjEGukiMmhbLPNzL18BaYllLmVIS-AZbMK4fuVKb_LamxdpT358c3P87zdtwYZloqRfhc42rKh8B9ZGNte-C8_9nFRqD9wQSe09TpDkktQo2QsiTcRMSVap9V5mxEBiRiY5mU4wnnNFSlk8SazxCdGqtBGd7cF4cP1wNaT2JAYqfR4U1MsCTwsWiMxTjqt4kmQR14nJEuqU-RJpkgyZo0Npsrpe4rmai1Ro6cg0c7Tv70Mrn-TqEIjvODKMhKOkEsxN_AgJR8SCxHVDKZl2O-DW0xFLa1NuTst4ixcGy2bQYhy0uBy0OOrARXPPe2XS8Wfrbj3LsV2wsxiJjIHzUAQdOGsu41Iz-ZMkV5O5aWMKl5H_8g4cVNHRPA55qY_MCDu_rGd60fnv73L0v-bHsO6VwWLkwl1oFdO5OkFSVKSndg18Aq54_mo
  priority: 102
  providerName: Springer Nature
Title An effective approach for breast cancer diagnosis based on routine blood analysis features
URI https://link.springer.com/article/10.1007/s11517-020-02187-9
https://www.ncbi.nlm.nih.gov/pubmed/32436139
https://www.proquest.com/docview/2414130685
https://www.proquest.com/docview/2405335667
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: ADMLS
  dateStart: 19770101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1741-0444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021524
  issn: 0140-0118
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60CYy9jLW7ZeuCBnvbxGxZtuSHMZKStGw0jLFAthcj6wKFYXdJ-v93jm9hlPbFfrAsi3MkfZ98bgDvETSUy0LEY8RWLoNIeYkoyEubeaGdDqmiAOerVXa5ll836eYIVn0sDLlV9ntis1G72tI_8k-INLTfZjr9cvOXU9Uosq72JTRMV1rBfW5SjB3DWFBmrBGM54vV9x_DEQzRSg5OjcituzCaNpgOwU9xOk4R7ime_w9Vd_jnHdtpA0nLp_Ck45Js1ir_BI58dQqPrjpr-TP4PatY66-BWxrrs4czpKmsJF_0PbOk8y1zrb_d9Y4RqDlWV2xb44ysPGsc25npUpew4JtEoLvnsF4ufp5f8q6WAreJSvdcuFQELVPthI9ir4xxuQqG7HyhlIlFomMzGYXMkl1WGBEHpUsdbGRLF4UkeQGjqq78K2BJFNks15G3XsvYJDlShlymJo4za2WIJxD3Yitsl2ic6l38KQ4pkknUBYq6aERd5BP4MLxz06bZeLD1Wa-Noltyu-IwQSbwbniMi4UsIKby9S21odBjZLBqAi9bLQ6fQ2aZILfBzj_2aj10fv9YXj88ljfwWDRTihx8z2C03976t0hj9uUUjtVG4VUvL6Ywni3n8xXdL359W0y7eYtP12L2Dwki8L0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrQRcEG8WChgJTmCROE7sHCpUoNWWdlcItVLFJXX8kJBQUna3Qvw5fhsziZMVquit5ziONTP29znzAniFoKFcERKeIrZyGUTOa0RBXtvCC-10yBUlOM_mxfREfj7NTzfgz5ALQ2GVw5nYHdSutfSP_B0iDZ23hc7fn__k1DWKvKtDCw0TWyu4na7EWEzsOPS_f-EVbrlz8An1_VqI_b3jj1Meuwxwm6l8xYXLRdAy1074JPXKGFeqYMgDFmqZWaQAtpBJKCx5LIURaVC61sEmtnZJoB-iCAFbMpMlXv62PuzNv3wdr3yIjnIMokQuH9N2-uQ9BFvF6fpGOKt4-S80XuK7l3y1HQTu34Hbkbuy3d7Y7sKGb-7BjVn0zt-Hb7sN6-ND8AhlQ7VyhrSY1RT7vmKWbGzBXB_f933JCEQdaxu2aHEHNJ51gfTMxFIpLPiu8OjyAZxci1QfwmbTNv4xsCxJbFHqxFuvZWqyEilKKXOTpoW1MqQTSAexVTYWNqf-Gj-qdUlmEnWFoq46UVflBN6M75z3ZT2uHL09aKOKW3xZrQ1yAi_Hx7g5yeNiGt9e0BhKdUbGrCbwqNfi-DlkshlyKZz87aDW9eT_X8uTq9fyAm5Oj2dH1dHB_PAp3BKdeVFw8TZsrhYX_hlSqFX9PNopg7Pr3hp_AXawKAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB9E4eiLqG311OoW7FO7mGw22c1DEdEeflTpQ4WjLzHZDxAk0bsT8V_zr3MmH3eI1Ld7TrIJs7Pz-23mN7MAewgayiY-4CFiK5dexLxAFOSFSZzQVvtYUYHzxWVyciXPhvFwAZ67WhiSVXYxsQ7UtjL0j3wfkYbibaLjfd_KIv4cDw7u7jmdIEWZ1u44jcZFzt3TI27fxj9Pj3Guvwkx-PX36IS3JwxwE6l4woWNhdcy1la4IHQqz22qfE7ZL1_IyCD8m0QGPjGUrRS5CL3ShfYmMIUNPP0MxfC_pKIoJTmhGs42e4iLciqfRBbfFuw0ZXsIs4rTxo0QVvH0NSi-YbpvsrQ1-A1WYLllreywcbNVWHDlGvQu2rz8R_h3WLJGGYLBk3V9yhkSYlaQ6n3CDHnXiNlG2XczZgSfllUlG1Xo-6VjtYSe5W2TFOZd3XJ0_Amu5mLTz7BYVqXbABYFgUlSHTjjtAzzKEVykso4D8PEGOnDPoSd2TLTtjSnkzVus1kzZjJ1hqbOalNnaR--T5-5axp6vHv3djcbWbu4x9nMFfvwdXoZlyXlWvLSVQ90DxU5I1dWfVhvZnH6OuSwEbIoHPxHN62zwf__LZvvf8su9HBBZL9PL8-34IOovYtUxduwOBk9uC_InSbFTu2kDK7nvSpeAEUwJaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+approach+for+breast+cancer+diagnosis+based+on+routine+blood+analysis+features&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Erdem%2C+Yavuz&rft.au=Eyupoglu+Can&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=7&rft.spage=1583&rft.epage=1601&rft_id=info:doi/10.1007%2Fs11517-020-02187-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon