An effective approach for breast cancer diagnosis based on routine blood analysis features
Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 58; no. 7; pp. 1583 - 1601 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-020-02187-9 |
Cover
| Abstract | Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase.
Graphical abstract |
|---|---|
| AbstractList | Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase.
Graphical abstract Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract. Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract.Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to assist medical doctors to make early diagnosis of the disease. The aim of this study is to build an effective prediction model for breast cancer diagnosis based on anthropometric data and parameters collected through routine blood analysis. The proposed approach innovatively exploits principal component analysis (PCA) technique cascaded by median filtering so as to transform original features into a form of containing less distractive noise not to cause overfitting. Since a generalized regression neural network (GRNN) model is adopted to classify patterns of the transformed features, the computational load imposed in the training of artificial neural network model is kept minimized thanks to the non-iterative nature of GRNN training. The proposed method has been devised and tested on the recent Breast Cancer Coimbra Dataset (BCCD) that contains 9 clinical features measured for each of 116 subjects. Outperforming all of the existing studies on BCCD, our method achieved a mean accuracy rate of 0.9773. Experimental results evidence that this study achieves the best prediction performance ever reported on this dataset. The fact that our proposed approach has accomplished such a boosted performance of breast cancer diagnosis based on routine blood analysis features offers a great potential to be used in a widespread manner to detect the disease in its inception phase. Graphical abstract. |
| Author | Yavuz, Erdem Eyupoglu, Can |
| Author_xml | – sequence: 1 givenname: Erdem orcidid: 0000-0002-3159-2497 surname: Yavuz fullname: Yavuz, Erdem email: erdemyavuz29@gmail.com, erdem.yavuz@btu.edu.tr organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University – sequence: 2 givenname: Can surname: Eyupoglu fullname: Eyupoglu, Can organization: Department of Computer Engineering, Air Force Academy, National Defence University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32436139$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1vFDEQhi0URC6BP0CBLNHQLHj8sd4rowgIUiQaaGisWe84ONqzD3sXKf8eH5eAlCKF5WKex3417xk7STkRY69BvAch7IcKYMB2Qop2YLDd9hnbgNXQCa31CdsI0G0EMJyys1pvRaOM1C_YqZJa9aC2G_bjInEKgfwSfxPH_b5k9D95yIWPhbAu3GPyVPgU8SblGisfsdLEc-Ilr0tMxMc554ljwvnuMA-Ey1qovmTPA86VXt3f5-z7p4_fLq-666-fv1xeXHdeWbN0cjIyDNoMkyQBZBGnrQ0ojNyGUSvfg_S9FqH3VgolUUKwwzgEL_w4iaDUOXt3fLdl_7VSXdwuVk_zjInyWp3Uwihl-t429O0j9DavpQU_UKBBiX4wjXpzT63jjia3L3GH5c49bK0B8gj4kmstFP4hINyhGnesxrVq3N9q3EEaHkk-LrjEnJaCcX5aVUe1tn_SDZX_sZ-w_gB4OaGv |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09915_4 crossref_primary_10_1007_s11517_022_02623_y crossref_primary_10_1007_s11517_023_02994_w crossref_primary_10_1080_15440478_2022_2076273 crossref_primary_10_1097_JS9_0000000000000862 crossref_primary_10_35193_bseufbd_742456 crossref_primary_10_1007_s11517_021_02327_9 crossref_primary_10_1186_s13017_024_00571_6 crossref_primary_10_3390_jcm13102868 crossref_primary_10_31590_ejosat_743652 crossref_primary_10_34133_2022_9780569 crossref_primary_10_1080_08839514_2022_2031820 crossref_primary_10_3390_jpm10040224 crossref_primary_10_1007_s41870_023_01361_0 crossref_primary_10_1007_s11227_023_05635_z crossref_primary_10_1186_s12916_023_02964_x crossref_primary_10_1007_s11042_022_12385_2 |
| Cites_doi | 10.1016/j.asoc.2018.07.060 10.1098/rsos.190485 10.3322/caac.21492 10.1016/j.patrec.2018.11.004 10.1007/s10994-005-0466-3 10.1016/j.asoc.2015.10.005 10.1016/j.eswa.2019.112824 10.1186/s12885-017-3877-1 10.1016/j.cmpb.2016.07.020 10.1162/089976601300014493 10.2307/2347628 10.5120/1325-1799 10.1016/j.compbiomed.2016.10.007 10.1007/s11517-017-1721-z 10.1109/UBMK.2017.8093456 10.1016/j.ejor.2017.12.001 10.1007/s00521-015-2103-9 10.1007/BFb0057597 10.1016/j.bbe.2019.12.004 10.1016/j.bbe.2019.03.001 10.1016/j.bbe.2018.01.002 10.1007/s11517-019-02024-8 10.1007/s00500-019-04157-2 10.3322/caac.21551 10.1016/j.ipm.2009.03.002 10.1198/004017007000000245 10.1109/ISMSIT.2018.8567245 10.1016/j.measurement.2015.04.028 10.1023/A:1010933404324 10.1007/BF00153759 10.1016/j.irbm.2019.05.007 10.3390/make1010028 10.1016/B978-0-7506-8976-2.00008-0 10.1016/j.eswa.2017.05.035 10.18201/ijisae.2018648455 10.11648/j.acm.20180704.15 10.1016/j.tele.2017.01.007 10.1016/j.comnet.2018.11.010 10.1109/72.80341 10.1016/j.ipm.2018.10.014 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2020 International Federation for Medical and Biological Engineering 2020. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2020 – notice: International Federation for Medical and Biological Engineering 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11517-020-02187-9 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 1601 |
| ExternalDocumentID | 32436139 10_1007_s11517_020_02187_9 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c375t-2d52f8458d2e01e7aad97fa0529fb43c612c640f6c72032a21f78b8fc0cbd0f33 |
| IEDL.DBID | BENPR |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Sep 04 18:00:51 EDT 2025 Tue Oct 07 05:41:24 EDT 2025 Wed Feb 19 02:28:41 EST 2025 Wed Oct 01 03:37:59 EDT 2025 Thu Apr 24 22:54:26 EDT 2025 Fri Feb 21 02:31:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Routine blood analysis GRNN Breast cancer diagnosis Classification Median filtering PCA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-2d52f8458d2e01e7aad97fa0529fb43c612c640f6c72032a21f78b8fc0cbd0f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3159-2497 |
| PMID | 32436139 |
| PQID | 2414130685 |
| PQPubID | 54161 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2405335667 proquest_journals_2414130685 pubmed_primary_32436139 crossref_primary_10_1007_s11517_020_02187_9 crossref_citationtrail_10_1007_s11517_020_02187_9 springer_journals_10_1007_s11517_020_02187_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200700 2020-07-00 2020-Jul 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | JustussonBIMedian filtering: statistical propertiesTwo-dimensional digital signal processing1981Berlin, HeidelbergSpringer16119610.1007/BFb0057597 Ontiveros-RoblesEMelinPToward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiersSoft Comput2020241839910.1007/s00500-019-04157-2 YavuzEEyupogluCA cepstrum analysis-based classification method for hand movement surface EMG signalsMed Biol Eng Comput201957102179220110.1007/s11517-019-02024-831388900 LiYChenZPerformance evaluation of machine learning methods for breast cancer predictionAppl Comput Math20187421221610.11648/j.acm.20180704.15 Polat K, Sentürk U (2018) A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and AdaBoostM1 classifier. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp 1-4 Abdel-BassetMEl-ShahatDEl-henawyIde AlbuquerqueVHCMirjaliliSA new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selectionExpert Syst Appl202013911282410.1016/j.eswa.2019.112824 American Cancer Society, Cancer Facts & Figures 2019 Report. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html. DoraLAgrawalSPandaRAbrahamAOptimal breast cancer classification using Gauss–Newton representation based algorithmExpert Syst Appl20178513414510.1016/j.eswa.2017.05.035 MathWorks Statistics and Machine Learning Toolbox. The MathWorks Inc., 2018 Le CessieSVan HouwelingenJCRidge estimators in logistic regressionJ Roy Stat Soc C-App199241119120110.2307/2347628 NilashiMIbrahimOAhmadiHShahmoradiLA knowledge-based system for breast cancer classification using fuzzy logic methodTelematics Inform201734413314410.1016/j.tele.2017.01.007 LivierisIPintelasEKanavosAPintelasPCohenIRLajthaALambrisJDPaolettiRRezaeiNAn improved self-labeled algorithm for cancer predictionAdvances in experimental medicine and biology2018SpringerPublisher110 PengLChenWZhouWLiFYangJZhangJAn immune-inspired semi-supervised algorithm for breast cancer diagnosisComput Methods Prog Biomed201613425926510.1016/j.cmpb.2016.07.020 HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub Jackson JE (2005) A user’s guide to principal components. John Wiley & Sons HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl201071371310.5120/1325-1799 Wolberg WH, Street WN, Mangasarian OL (1995) Breast Cancer Wisconsin Data Set, UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/. Accessed 3 January 2019 Silva AraújoVJGuimarãesAJde Campos SouzaPVSilva RezendeTSouza AraújoVUsing resistin, glucose, age and bmi and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancerMach Learn Knowl Extr20191146648210.3390/make1010028 TukeyJWExploratory data analysis1977Reading, MassAddison-Wesley New Global Cancer DataGLOBOCAN2018https://www.uicc.org/new-global-cancer-data-globocan-2018. SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010 PowellMJDMasonJCCoxMGRadial basis functions for multivariable interpolation: a reviewAlgorithms for approximation, Publisher: Clarendon Press1987New YorkImprint of Oxford University Press143167 Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 IEEE International Conference on Computer Science and Engineering (UBMK), pp 538-543 SunXLiuJZhuKHuJJiangXLiuYGeneralized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flourR Soc Open Sci20196719048510.1098/rsos.190485314177476689620 PatrícioMPereiraJCrisóstomoJMatafomePGomesMSeiçaRCarameloFUsing Resistin, glucose, age and BMI to predict the presence of breast cancerBMC Cancer2018181291:CAS:528:DC%2BC1cXisFWmtLfP10.1186/s12885-017-3877-1293015005755302 LandwehrNHallMFrankELogistic model treesMach Learn2005591–216120510.1007/s10994-005-0466-3 AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intelli Syst Appl Eng20186428929310.18201/ijisae.2018648455 SinghBKDetermining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: a comparative investigation in machine learning paradigmBiocybern Biomed Eng201939239340910.1016/j.bbe.2019.03.001 AkbenSBDetermination of the blood, hormone and obesity value ranges that indicate the breast cancer, using data mining based expert systemIRBM201940635536010.1016/j.irbm.2019.05.007 JohnGHLangleyPEstimating continuous distributions in Bayesian classifiers10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–3451995MontréalAugust1820 GenkinALewisDDMadiganDLarge-scale Bayesian logistic regression for text categorizationTechnometrics200449329130410.1198/004017007000000245 LiuNQiESXuMGaoBLiuGQA novel intelligent classification model for breast cancer diagnosisComm Com Inf Sc201956360962310.1016/j.ipm.2018.10.014 EyupogluCBreast cancer classification using k-nearest neighbors algorithmOnline J Sci Technol2018832934 Jafari-MarandiRDavarzaniSGharibdoustiMSSmithBKAn optimum ANN-based breast cancer diagnosis: bridging gaps between ANN learning and decision-making goalsAppl Soft Comput20187210812010.1016/j.asoc.2018.07.060 WangHZhengBYoonSWKoHSA support vector machine-based ensemble algorithm for breast cancer diagnosisEur J Oper Res2018267268769910.1016/j.ejor.2017.12.001 WittenIFrankEHallMPalCData mining: practical machine learning tools and techniques20174MorganKaufmann BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 ClearyJGTriggLEK*: an instance-based learner using an entropic distance measure12th international conference on machine learning, pp 108–1141995Tahoe City, CaliforniaJuly912 JeleńŁKrzyżakAFevensTJeleńMInfluence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsiesComput Biol Med201679809110.1016/j.compbiomed.2016.10.00727768905 ChenSCowanCFGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE T Neural Networ1991223023091:STN:280:DC%2BD1c7hslOrtw%3D%3D10.1109/72.80341 Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA World Health Organization. https://www.who.int/. Accessed 11 January 2019 YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002 Demuth HB, Beale MH, Hagan MT (2006) Neural network toolbox user’s guide. The MathWorks Inc SheikhpourRSarramMASheikhpourRParticle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancerAppl Soft Comput20164011313110.1016/j.asoc.2015.10.005 Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F (2018) Breast Cancer Coimbra Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra. AličkovićESubasiABreast cancer diagnosis using GA feature selection and rotation forestNeural Comput & Applic201728475376310.1007/s00521-015-2103-9 SiegelRLMillerKDJemalACancer statisticsCa-Cancer J Clin20196973410.3322/caac.2155130620402 Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett (In Press) 2018. https://doi.org/10.1016/j.patrec.2018.11.004 KarabatakMA new classifier for breast cancer detection based on Naïve BayesianMeasurement201572323610.1016/j.measurement.2015.04.028 LoweDBroomheadDMultivariable functional interpolation and adaptive networksNonl Phen Compl Syst198823321355 ShiraziAZChabokSJSMMohammadiZA novel and reliable computational intelligence system for breast cancer detectionMed Biol Eng Comput201856572173210.1007/s11517-017-1721-z KeerthiSSShevadeSKBhattacharyyaCMurthyKRKImprovements to Platt’s SMO algorithm for SVM classifier designNeural Comput200113363764910.1162/089976601300014493 Deep Learning for Java, Deeplearning4j. https://deeplearning4j.org/. Accessed 26 January 2020 SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002 Broesch JD (2008) Digital signal processing: instant access. Elsevier AhaDWKiblerDAlbertMKInstance-based learning algorithmsMach Learn199161376610.1007/BF00153759 BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCa-Cancer J Clin201868639442410.3322/caac.2149230207593 FreundYSchapireREExperiments with a new boosting algorithm13th International Conference on Machine Learning, pp 148–1561996BariJuly36 International Agency for Research on Cancer. https://www.iarc.fr/. Accessed 15 Jan 2019 DalwinderSBirmohanSManpreetKSimultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancerBiocybern Biomed Eng201940133735110.1016/j.bbe.2019.12.004 BauerMMGeneral regression neural network for technical use1995Master’s thesisUniversity of Wisconsin-Madison MT Hagan (2187_CR43) 1996 R Jafari-Marandi (2187_CR13) 2018; 72 2187_CR61 S Chen (2187_CR39) 1991; 2 Y Freund (2187_CR52) 1996 A Genkin (2187_CR58) 2004; 49 2187_CR21 M Nilashi (2187_CR18) 2017; 34 S Dalwinder (2187_CR29) 2019; 40 H Wang (2187_CR11) 2018; 267 2187_CR25 M Patrício (2187_CR32) 2018; 18 New Global Cancer Data (2187_CR4) 2018 R Sheikhpour (2187_CR14) 2016; 40 X Sun (2187_CR49) 2019; 6 JW Tukey (2187_CR33) 1977 AZ Shirazi (2187_CR20) 2018; 56 Ł Jeleń (2187_CR8) 2016; 79 VJ Silva Araújo (2187_CR26) 2019; 1 MM Bauer (2187_CR44) 1995 2187_CR9 E Aličković (2187_CR16) 2017; 28 DW Aha (2187_CR59) 1991; 6 I Witten (2187_CR51) 2017 2187_CR5 F Bray (2187_CR2) 2018; 68 2187_CR3 2187_CR1 Y Li (2187_CR22) 2018; 7 S Le Cessie (2187_CR57) 1992; 41 N Landwehr (2187_CR62) 2005; 59 SA Hannan (2187_CR45) 2010; 7 C Eyupoglu (2187_CR7) 2018; 8 GH John (2187_CR56) 1995 2187_CR34 2187_CR36 2187_CR38 M Sokolova (2187_CR50) 2009; 45 I Livieris (2187_CR23) 2018 SB Akben (2187_CR27) 2019; 40 2187_CR40 MF Aslan (2187_CR24) 2018; 6 L Peng (2187_CR15) 2016; 134 E Yavuz (2187_CR46) 2018; 38 N Liu (2187_CR12) 2019; 56 SS Keerthi (2187_CR53) 2001; 13 2187_CR47 M Abdel-Basset (2187_CR31) 2020; 139 L Dora (2187_CR17) 2017; 85 2187_CR10 D Lowe (2187_CR42) 1988; 2 F Salo (2187_CR35) 2019; 148 E Yavuz (2187_CR48) 2019; 57 E Ontiveros-Robles (2187_CR30) 2020; 24 M Karabatak (2187_CR19) 2015; 72 L Breiman (2187_CR54) 2001; 45 RL Siegel (2187_CR6) 2019; 69 2187_CR55 JG Cleary (2187_CR60) 1995 BI Justusson (2187_CR37) 1981 BK Singh (2187_CR28) 2019; 39 MJD Powell (2187_CR41) 1987 |
| References_xml | – reference: AhaDWKiblerDAlbertMKInstance-based learning algorithmsMach Learn199161376610.1007/BF00153759 – reference: LandwehrNHallMFrankELogistic model treesMach Learn2005591–216120510.1007/s10994-005-0466-3 – reference: KeerthiSSShevadeSKBhattacharyyaCMurthyKRKImprovements to Platt’s SMO algorithm for SVM classifier designNeural Comput200113363764910.1162/089976601300014493 – reference: YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002 – reference: Wolberg WH, Street WN, Mangasarian OL (1995) Breast Cancer Wisconsin Data Set, UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/. Accessed 3 January 2019 – reference: AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intelli Syst Appl Eng20186428929310.18201/ijisae.2018648455 – reference: JeleńŁKrzyżakAFevensTJeleńMInfluence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsiesComput Biol Med201679809110.1016/j.compbiomed.2016.10.00727768905 – reference: Le CessieSVan HouwelingenJCRidge estimators in logistic regressionJ Roy Stat Soc C-App199241119120110.2307/2347628 – reference: ShiraziAZChabokSJSMMohammadiZA novel and reliable computational intelligence system for breast cancer detectionMed Biol Eng Comput201856572173210.1007/s11517-017-1721-z – reference: PengLChenWZhouWLiFYangJZhangJAn immune-inspired semi-supervised algorithm for breast cancer diagnosisComput Methods Prog Biomed201613425926510.1016/j.cmpb.2016.07.020 – reference: Ontiveros-RoblesEMelinPToward a development of general type-2 fuzzy classifiers applied in diagnosis problems through embedded type-1 fuzzy classifiersSoft Comput2020241839910.1007/s00500-019-04157-2 – reference: SheikhpourRSarramMASheikhpourRParticle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancerAppl Soft Comput20164011313110.1016/j.asoc.2015.10.005 – reference: Jafari-MarandiRDavarzaniSGharibdoustiMSSmithBKAn optimum ANN-based breast cancer diagnosis: bridging gaps between ANN learning and decision-making goalsAppl Soft Comput20187210812010.1016/j.asoc.2018.07.060 – reference: AličkovićESubasiABreast cancer diagnosis using GA feature selection and rotation forestNeural Comput & Applic201728475376310.1007/s00521-015-2103-9 – reference: TukeyJWExploratory data analysis1977Reading, MassAddison-Wesley – reference: KarabatakMA new classifier for breast cancer detection based on Naïve BayesianMeasurement201572323610.1016/j.measurement.2015.04.028 – reference: Jackson JE (2005) A user’s guide to principal components. John Wiley & Sons – reference: ClearyJGTriggLEK*: an instance-based learner using an entropic distance measure12th international conference on machine learning, pp 108–1141995Tahoe City, CaliforniaJuly912 – reference: AkbenSBDetermination of the blood, hormone and obesity value ranges that indicate the breast cancer, using data mining based expert systemIRBM201940635536010.1016/j.irbm.2019.05.007 – reference: SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002 – reference: PatrícioMPereiraJCrisóstomoJMatafomePGomesMSeiçaRCarameloFUsing Resistin, glucose, age and BMI to predict the presence of breast cancerBMC Cancer2018181291:CAS:528:DC%2BC1cXisFWmtLfP10.1186/s12885-017-3877-1293015005755302 – reference: Silva AraújoVJGuimarãesAJde Campos SouzaPVSilva RezendeTSouza AraújoVUsing resistin, glucose, age and bmi and pruning fuzzy neural network for the construction of expert systems in the prediction of breast cancerMach Learn Knowl Extr20191146648210.3390/make1010028 – reference: PowellMJDMasonJCCoxMGRadial basis functions for multivariable interpolation: a reviewAlgorithms for approximation, Publisher: Clarendon Press1987New YorkImprint of Oxford University Press143167 – reference: SunXLiuJZhuKHuJJiangXLiuYGeneralized regression neural network association with terahertz spectroscopy for quantitative analysis of benzoic acid additive in wheat flourR Soc Open Sci20196719048510.1098/rsos.190485314177476689620 – reference: ChenSCowanCFGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE T Neural Networ1991223023091:STN:280:DC%2BD1c7hslOrtw%3D%3D10.1109/72.80341 – reference: BreimanLRandom forestsMach Learn200145153210.1023/A:1010933404324 – reference: Deep Learning for Java, Deeplearning4j. https://deeplearning4j.org/. Accessed 26 January 2020 – reference: Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA – reference: Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, Gururajan R (2018) A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recogn Lett (In Press) 2018. https://doi.org/10.1016/j.patrec.2018.11.004 – reference: WangHZhengBYoonSWKoHSA support vector machine-based ensemble algorithm for breast cancer diagnosisEur J Oper Res2018267268769910.1016/j.ejor.2017.12.001 – reference: FreundYSchapireREExperiments with a new boosting algorithm13th International Conference on Machine Learning, pp 148–1561996BariJuly36 – reference: LiuNQiESXuMGaoBLiuGQA novel intelligent classification model for breast cancer diagnosisComm Com Inf Sc201956360962310.1016/j.ipm.2018.10.014 – reference: EyupogluCBreast cancer classification using k-nearest neighbors algorithmOnline J Sci Technol2018832934 – reference: World Health Organization. https://www.who.int/. Accessed 11 January 2019 – reference: YavuzEEyupogluCA cepstrum analysis-based classification method for hand movement surface EMG signalsMed Biol Eng Comput201957102179220110.1007/s11517-019-02024-831388900 – reference: BauerMMGeneral regression neural network for technical use1995Master’s thesisUniversity of Wisconsin-Madison – reference: Patrício M, Pereira J, Crisóstomo J, Matafome P, Gomes M, Seiça R, Caramelo F (2018) Breast Cancer Coimbra Data Set, UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra. – reference: LoweDBroomheadDMultivariable functional interpolation and adaptive networksNonl Phen Compl Syst198823321355 – reference: BrayFFerlayJSoerjomataramISiegelRLTorreLAJemalAGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countriesCa-Cancer J Clin201868639442410.3322/caac.2149230207593 – reference: Demuth HB, Beale MH, Hagan MT (2006) Neural network toolbox user’s guide. The MathWorks Inc – reference: International Agency for Research on Cancer. https://www.iarc.fr/. Accessed 15 Jan 2019 – reference: DoraLAgrawalSPandaRAbrahamAOptimal breast cancer classification using Gauss–Newton representation based algorithmExpert Syst Appl20178513414510.1016/j.eswa.2017.05.035 – reference: New Global Cancer DataGLOBOCAN2018https://www.uicc.org/new-global-cancer-data-globocan-2018. – reference: DalwinderSBirmohanSManpreetKSimultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancerBiocybern Biomed Eng201940133735110.1016/j.bbe.2019.12.004 – reference: LiYChenZPerformance evaluation of machine learning methods for breast cancer predictionAppl Comput Math20187421221610.11648/j.acm.20180704.15 – reference: Polat K, Sentürk U (2018) A novel ML approach to prediction of breast cancer: combining of mad normalization, KMC based feature weighting and AdaBoostM1 classifier. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2018, pp 1-4 – reference: SinghBKDetermining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: a comparative investigation in machine learning paradigmBiocybern Biomed Eng201939239340910.1016/j.bbe.2019.03.001 – reference: SiegelRLMillerKDJemalACancer statisticsCa-Cancer J Clin20196973410.3322/caac.2155130620402 – reference: LivierisIPintelasEKanavosAPintelasPCohenIRLajthaALambrisJDPaolettiRRezaeiNAn improved self-labeled algorithm for cancer predictionAdvances in experimental medicine and biology2018SpringerPublisher110 – reference: Abdel-BassetMEl-ShahatDEl-henawyIde AlbuquerqueVHCMirjaliliSA new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selectionExpert Syst Appl202013911282410.1016/j.eswa.2019.112824 – reference: JohnGHLangleyPEstimating continuous distributions in Bayesian classifiers10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–3451995MontréalAugust1820 – reference: MathWorks Statistics and Machine Learning Toolbox. The MathWorks Inc., 2018 – reference: WittenIFrankEHallMPalCData mining: practical machine learning tools and techniques20174MorganKaufmann – reference: American Cancer Society, Cancer Facts & Figures 2019 Report. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2019.html. – reference: GenkinALewisDDMadiganDLarge-scale Bayesian logistic regression for text categorizationTechnometrics200449329130410.1198/004017007000000245 – reference: SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010 – reference: Broesch JD (2008) Digital signal processing: instant access. Elsevier – reference: HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl201071371310.5120/1325-1799 – reference: Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 IEEE International Conference on Computer Science and Engineering (UBMK), pp 538-543 – reference: JustussonBIMedian filtering: statistical propertiesTwo-dimensional digital signal processing1981Berlin, HeidelbergSpringer16119610.1007/BFb0057597 – reference: NilashiMIbrahimOAhmadiHShahmoradiLA knowledge-based system for breast cancer classification using fuzzy logic methodTelematics Inform201734413314410.1016/j.tele.2017.01.007 – reference: HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub – volume: 72 start-page: 108 year: 2018 ident: 2187_CR13 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.07.060 – volume: 6 start-page: 190485 issue: 7 year: 2019 ident: 2187_CR49 publication-title: R Soc Open Sci doi: 10.1098/rsos.190485 – ident: 2187_CR55 – start-page: 9 volume-title: 12th international conference on machine learning, pp 108–114 year: 1995 ident: 2187_CR60 – volume: 8 start-page: 29 issue: 3 year: 2018 ident: 2187_CR7 publication-title: Online J Sci Technol – volume: 68 start-page: 394 issue: 6 year: 2018 ident: 2187_CR2 publication-title: Ca-Cancer J Clin doi: 10.3322/caac.21492 – ident: 2187_CR10 doi: 10.1016/j.patrec.2018.11.004 – volume: 59 start-page: 161 issue: 1–2 year: 2005 ident: 2187_CR62 publication-title: Mach Learn doi: 10.1007/s10994-005-0466-3 – ident: 2187_CR36 – volume: 40 start-page: 113 year: 2016 ident: 2187_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.005 – volume: 139 start-page: 112824 year: 2020 ident: 2187_CR31 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112824 – volume: 18 start-page: 29 issue: 1 year: 2018 ident: 2187_CR32 publication-title: BMC Cancer doi: 10.1186/s12885-017-3877-1 – volume: 134 start-page: 259 year: 2016 ident: 2187_CR15 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2016.07.020 – volume: 13 start-page: 637 issue: 3 year: 2001 ident: 2187_CR53 publication-title: Neural Comput doi: 10.1162/089976601300014493 – ident: 2187_CR5 – volume: 41 start-page: 191 issue: 1 year: 1992 ident: 2187_CR57 publication-title: J Roy Stat Soc C-App doi: 10.2307/2347628 – ident: 2187_CR1 – volume: 7 start-page: 7 issue: 13 year: 2010 ident: 2187_CR45 publication-title: Int J Comput Appl doi: 10.5120/1325-1799 – start-page: 18 volume-title: 10th Conference on Uncertainty in Artificial Intelligence (UAI’95), pp 338–345 year: 1995 ident: 2187_CR56 – volume: 79 start-page: 80 year: 2016 ident: 2187_CR8 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.10.007 – ident: 2187_CR61 – ident: 2187_CR9 – volume: 56 start-page: 721 issue: 5 year: 2018 ident: 2187_CR20 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-017-1721-z – ident: 2187_CR47 doi: 10.1109/UBMK.2017.8093456 – volume-title: Data mining: practical machine learning tools and techniques year: 2017 ident: 2187_CR51 – start-page: 3 volume-title: 13th International Conference on Machine Learning, pp 148–156 year: 1996 ident: 2187_CR52 – volume: 267 start-page: 687 issue: 2 year: 2018 ident: 2187_CR11 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2017.12.001 – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 2187_CR16 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2103-9 – start-page: 161 volume-title: Two-dimensional digital signal processing year: 1981 ident: 2187_CR37 doi: 10.1007/BFb0057597 – volume: 40 start-page: 337 issue: 1 year: 2019 ident: 2187_CR29 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2019.12.004 – volume: 39 start-page: 393 issue: 2 year: 2019 ident: 2187_CR28 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2019.03.001 – volume: 38 start-page: 201 issue: 2 year: 2018 ident: 2187_CR46 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.01.002 – start-page: 1 volume-title: Advances in experimental medicine and biology year: 2018 ident: 2187_CR23 – volume: 57 start-page: 2179 issue: 10 year: 2019 ident: 2187_CR48 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-019-02024-8 – ident: 2187_CR34 – volume: 24 start-page: 83 issue: 1 year: 2020 ident: 2187_CR30 publication-title: Soft Comput doi: 10.1007/s00500-019-04157-2 – start-page: 143 volume-title: Algorithms for approximation, Publisher: Clarendon Press year: 1987 ident: 2187_CR41 – volume-title: Neural network design year: 1996 ident: 2187_CR43 – volume: 69 start-page: 7 year: 2019 ident: 2187_CR6 publication-title: Ca-Cancer J Clin doi: 10.3322/caac.21551 – volume-title: Exploratory data analysis year: 1977 ident: 2187_CR33 – volume-title: General regression neural network for technical use year: 1995 ident: 2187_CR44 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 2187_CR50 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2009.03.002 – volume: 49 start-page: 291 issue: 3 year: 2004 ident: 2187_CR58 publication-title: Technometrics doi: 10.1198/004017007000000245 – ident: 2187_CR25 doi: 10.1109/ISMSIT.2018.8567245 – volume-title: GLOBOCAN year: 2018 ident: 2187_CR4 – volume: 72 start-page: 32 year: 2015 ident: 2187_CR19 publication-title: Measurement doi: 10.1016/j.measurement.2015.04.028 – ident: 2187_CR3 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2187_CR54 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 2 start-page: 321 issue: 3 year: 1988 ident: 2187_CR42 publication-title: Nonl Phen Compl Syst – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 2187_CR59 publication-title: Mach Learn doi: 10.1007/BF00153759 – ident: 2187_CR40 – volume: 40 start-page: 355 issue: 6 year: 2019 ident: 2187_CR27 publication-title: IRBM doi: 10.1016/j.irbm.2019.05.007 – volume: 1 start-page: 466 issue: 1 year: 2019 ident: 2187_CR26 publication-title: Mach Learn Knowl Extr doi: 10.3390/make1010028 – ident: 2187_CR38 doi: 10.1016/B978-0-7506-8976-2.00008-0 – ident: 2187_CR21 – volume: 85 start-page: 134 year: 2017 ident: 2187_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.035 – volume: 6 start-page: 289 issue: 4 year: 2018 ident: 2187_CR24 publication-title: Int J Intelli Syst Appl Eng doi: 10.18201/ijisae.2018648455 – volume: 7 start-page: 212 issue: 4 year: 2018 ident: 2187_CR22 publication-title: Appl Comput Math doi: 10.11648/j.acm.20180704.15 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 2187_CR18 publication-title: Telematics Inform doi: 10.1016/j.tele.2017.01.007 – volume: 148 start-page: 164 year: 2019 ident: 2187_CR35 publication-title: Comput Netw doi: 10.1016/j.comnet.2018.11.010 – volume: 2 start-page: 302 issue: 2 year: 1991 ident: 2187_CR39 publication-title: IEEE T Neural Networ doi: 10.1109/72.80341 – volume: 56 start-page: 609 issue: 3 year: 2019 ident: 2187_CR12 publication-title: Comm Com Inf Sc doi: 10.1016/j.ipm.2018.10.014 |
| SSID | ssj0021524 |
| Score | 2.3766978 |
| Snippet | Breast cancer is a widespread disease and one of the primary causes of cancer mortality among women all over the world. Computer-aided methods are used to... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1583 |
| SubjectTerms | Algorithms Anthropometry Artificial neural networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blood Blood tests Breast cancer Breast Neoplasms - blood Breast Neoplasms - diagnosis Computer Applications Databases, Factual Datasets Diagnosis Diagnosis, Computer-Assisted - methods Female Human Physiology Humans Imaging Iterative methods Medical diagnosis Neural networks Neural Networks, Computer Original Article Physicians Prediction models Principal Component Analysis Principal components analysis Radiology Regression analysis Regression models Software Training |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3oBuKL3x_TKRF804x-pE36OMQ5lPnkQH0pbZqAKJ1s3Yu_3ps27dCp4HPTtE1uck65554AnCNo8CzUDnURWynTXkBTREGaylB5IhM64KbAeXQfDsfs9jF4tEVhs1rtXqcky516UeyG4MSp-d0xuMRptArt0m-rBe3-zdPddfOjhZjEGukiMmhbLPNzL18BaYllLmVIS-AZbMK4fuVKb_LamxdpT358c3P87zdtwYZloqRfhc42rKh8B9ZGNte-C8_9nFRqD9wQSe09TpDkktQo2QsiTcRMSVap9V5mxEBiRiY5mU4wnnNFSlk8SazxCdGqtBGd7cF4cP1wNaT2JAYqfR4U1MsCTwsWiMxTjqt4kmQR14nJEuqU-RJpkgyZo0Npsrpe4rmai1Ro6cg0c7Tv70Mrn-TqEIjvODKMhKOkEsxN_AgJR8SCxHVDKZl2O-DW0xFLa1NuTst4ixcGy2bQYhy0uBy0OOrARXPPe2XS8Wfrbj3LsV2wsxiJjIHzUAQdOGsu41Iz-ZMkV5O5aWMKl5H_8g4cVNHRPA55qY_MCDu_rGd60fnv73L0v-bHsO6VwWLkwl1oFdO5OkFSVKSndg18Aq54_mo priority: 102 providerName: Springer Nature |
| Title | An effective approach for breast cancer diagnosis based on routine blood analysis features |
| URI | https://link.springer.com/article/10.1007/s11517-020-02187-9 https://www.ncbi.nlm.nih.gov/pubmed/32436139 https://www.proquest.com/docview/2414130685 https://www.proquest.com/docview/2405335667 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60CYy9jLW7ZeuCBnvbxGxZtuSHMZKStGw0jLFAthcj6wKFYXdJ-v93jm9hlPbFfrAsi3MkfZ98bgDvETSUy0LEY8RWLoNIeYkoyEubeaGdDqmiAOerVXa5ll836eYIVn0sDLlV9ntis1G72tI_8k-INLTfZjr9cvOXU9Uosq72JTRMV1rBfW5SjB3DWFBmrBGM54vV9x_DEQzRSg5OjcituzCaNpgOwU9xOk4R7ime_w9Vd_jnHdtpA0nLp_Ck45Js1ir_BI58dQqPrjpr-TP4PatY66-BWxrrs4czpKmsJF_0PbOk8y1zrb_d9Y4RqDlWV2xb44ysPGsc25npUpew4JtEoLvnsF4ufp5f8q6WAreJSvdcuFQELVPthI9ir4xxuQqG7HyhlIlFomMzGYXMkl1WGBEHpUsdbGRLF4UkeQGjqq78K2BJFNks15G3XsvYJDlShlymJo4za2WIJxD3Yitsl2ic6l38KQ4pkknUBYq6aERd5BP4MLxz06bZeLD1Wa-Noltyu-IwQSbwbniMi4UsIKby9S21odBjZLBqAi9bLQ6fQ2aZILfBzj_2aj10fv9YXj88ljfwWDRTihx8z2C03976t0hj9uUUjtVG4VUvL6Ywni3n8xXdL359W0y7eYtP12L2Dwki8L0 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrQRcEG8WChgJTmCROE7sHCpUoNWWdlcItVLFJXX8kJBQUna3Qvw5fhsziZMVquit5ziONTP29znzAniFoKFcERKeIrZyGUTOa0RBXtvCC-10yBUlOM_mxfREfj7NTzfgz5ALQ2GVw5nYHdSutfSP_B0iDZ23hc7fn__k1DWKvKtDCw0TWyu4na7EWEzsOPS_f-EVbrlz8An1_VqI_b3jj1Meuwxwm6l8xYXLRdAy1074JPXKGFeqYMgDFmqZWaQAtpBJKCx5LIURaVC61sEmtnZJoB-iCAFbMpMlXv62PuzNv3wdr3yIjnIMokQuH9N2-uQ9BFvF6fpGOKt4-S80XuK7l3y1HQTu34Hbkbuy3d7Y7sKGb-7BjVn0zt-Hb7sN6-ND8AhlQ7VyhrSY1RT7vmKWbGzBXB_f933JCEQdaxu2aHEHNJ51gfTMxFIpLPiu8OjyAZxci1QfwmbTNv4xsCxJbFHqxFuvZWqyEilKKXOTpoW1MqQTSAexVTYWNqf-Gj-qdUlmEnWFoq46UVflBN6M75z3ZT2uHL09aKOKW3xZrQ1yAi_Hx7g5yeNiGt9e0BhKdUbGrCbwqNfi-DlkshlyKZz87aDW9eT_X8uTq9fyAm5Oj2dH1dHB_PAp3BKdeVFw8TZsrhYX_hlSqFX9PNopg7Pr3hp_AXawKAg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB9E4eiLqG311OoW7FO7mGw22c1DEdEeflTpQ4WjLzHZDxAk0bsT8V_zr3MmH3eI1Ld7TrIJs7Pz-23mN7MAewgayiY-4CFiK5dexLxAFOSFSZzQVvtYUYHzxWVyciXPhvFwAZ67WhiSVXYxsQ7UtjL0j3wfkYbibaLjfd_KIv4cDw7u7jmdIEWZ1u44jcZFzt3TI27fxj9Pj3Guvwkx-PX36IS3JwxwE6l4woWNhdcy1la4IHQqz22qfE7ZL1_IyCD8m0QGPjGUrRS5CL3ShfYmMIUNPP0MxfC_pKIoJTmhGs42e4iLciqfRBbfFuw0ZXsIs4rTxo0QVvH0NSi-YbpvsrQ1-A1WYLllreywcbNVWHDlGvQu2rz8R_h3WLJGGYLBk3V9yhkSYlaQ6n3CDHnXiNlG2XczZgSfllUlG1Xo-6VjtYSe5W2TFOZd3XJ0_Amu5mLTz7BYVqXbABYFgUlSHTjjtAzzKEVykso4D8PEGOnDPoSd2TLTtjSnkzVus1kzZjJ1hqbOalNnaR--T5-5axp6vHv3djcbWbu4x9nMFfvwdXoZlyXlWvLSVQ90DxU5I1dWfVhvZnH6OuSwEbIoHPxHN62zwf__LZvvf8su9HBBZL9PL8-34IOovYtUxduwOBk9uC_InSbFTu2kDK7nvSpeAEUwJaI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+approach+for+breast+cancer+diagnosis+based+on+routine+blood+analysis+features&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Erdem%2C+Yavuz&rft.au=Eyupoglu+Can&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=7&rft.spage=1583&rft.epage=1601&rft_id=info:doi/10.1007%2Fs11517-020-02187-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |