Research on Intelligent Generation of Line Drawings from Point Clouds for Ancient Architectural Heritage
Addressing the inefficiency, subjective errors, and limited adaptability of existing methods for surveying complex ancient structures, this study presents an intelligent hierarchical algorithm for generating line drawings guided by structured architectural features. Leveraging point cloud data, our...
Saved in:
| Published in | Buildings (Basel) Vol. 15; no. 18; p. 3341 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-5309 2075-5309 |
| DOI | 10.3390/buildings15183341 |
Cover
| Summary: | Addressing the inefficiency, subjective errors, and limited adaptability of existing methods for surveying complex ancient structures, this study presents an intelligent hierarchical algorithm for generating line drawings guided by structured architectural features. Leveraging point cloud data, our approach integrates prior semantic and structural knowledge of ancient buildings to establish a multi-granularity feature extraction framework encompassing local geometric features (normal vectors, curvature, Simplified Point Feature Histograms-SPFH), component-level semantic features (utilizing enhanced PointNet++ segmentation and geometric graph matching for specialized elements), and structural relationships (adjacency analysis, hierarchical support inference). This framework autonomously achieves intelligent layer assignment, line type/width selection based on component semantics, vectorization optimization via orthogonal and hierarchical topological constraints, and the intelligent generation of sectional views and symbolic annotations. We implemented an algorithmic toolchain using the AutoCAD Python API (pyautocad version 0.5.0) within the AutoCAD 2023 environment. Validation on point cloud datasets from two representative ancient structures—Guanchang No. 11 (Luoyuan County, Fujian) and Li Tianda’s Residence (Langxi County, Anhui)—demonstrates the method’s effectiveness in accurately identifying key components (e.g., columns, beams, Dougong brackets), generating engineering-standard line drawings with significantly enhanced efficiency over traditional approaches, and robustly handling complex architectural geometries. This research delivers an efficient, reliable, and intelligent solution for digital preservation, restoration design, and information archiving of ancient architectural heritage. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2075-5309 2075-5309 |
| DOI: | 10.3390/buildings15183341 |