Long-term inter-platform reproducibility, bias, and linearity of commercial PDFF MRI methods for fat quantification: a multi-center, multi-vendor phantom study

Objectives Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 31; no. 10; pp. 7566 - 7574
Main Authors Schneider, Erika, Remer, Erick M., Obuchowski, Nancy A., McKenzie, Charles A., Ding, Xiaobo, Navaneethan, Sankar D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-021-07851-8

Cover

Abstract Objectives Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors. Methods Over 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject’s examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed. Results Three hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor ( p < 0.001) and field strength ( p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%). Conclusions This study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength–dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference. Key Points • Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated. • Non-linear effects were negligible (linear slope of 0.94) over 0–100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0–100 weight% fat, respectively. • Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.
AbstractList Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors.OBJECTIVESProton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors.Over 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject's examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed.METHODSOver 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject's examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed.Three hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor (p < 0.001) and field strength (p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%).RESULTSThree hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor (p < 0.001) and field strength (p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%).This study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength-dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference.CONCLUSIONSThis study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength-dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference.• Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated. • Non-linear effects were negligible (linear slope of 0.94) over 0-100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0-100 weight% fat, respectively. • Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.KEY POINTS• Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated. • Non-linear effects were negligible (linear slope of 0.94) over 0-100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0-100 weight% fat, respectively. • Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.
ObjectivesProton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors.MethodsOver 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject’s examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed.ResultsThree hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor (p < 0.001) and field strength (p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%).ConclusionsThis study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength–dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference.Key Points• Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated.• Non-linear effects were negligible (linear slope of 0.94) over 0–100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0–100 weight% fat, respectively.• Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.
Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors. Over 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject's examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed. Three hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor (p < 0.001) and field strength (p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%). This study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength-dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference. • Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated. • Non-linear effects were negligible (linear slope of 0.94) over 0-100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0-100 weight% fat, respectively. • Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.
Objectives Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center series using non-FDA-approved software. Thus, we assess the bias, linearity, and long-term reproducibility of PDFF obtained using commercial PDFF packages from several vendors. Methods Over 35 months, 438 subjects and 16 volunteers from a multi-center observational trial underwent PDFF MRI measurements using a 3-T MR system from one of three different vendors or a 1.5-T system from one vendor. Fat-water phantom sets were measured as part of each subject’s examination. Manual region-of-interest measurements on the %fat image, then cross-sectional bias, linearity, and long-term reproducibility were assessed. Results Three hundred ninety-two phantom measurements were evaluable (90%). Bias ranged from 2.4 to - 3.8% for the lowest to the highest weight %fat. Regression fits of PDFF against synthesis weight %fat showed negligible non-linear effects and a linear slope of 0.94 (95% confidence interval: 0.938, 0.947). We observed significant vendor ( p < 0.001) and field strength ( p < 0.001) differences in bias and longitudinal variability. When the results were pooled across sites, vendors, and field strengths, the estimated reproducibility coefficient was 6.93% (95% CI: 6.25%, 7.81%). Conclusions This study demonstrated good linearity, accuracy, and reproducibility for all investigated manufacturers and field strengths. However, significant vendor-dependent and field strength–dependent bias were found. While longitudinal PDFF measurements may be made using different field strength or vendor MR systems, if the MR system is not the same, based on these results, only PDFF changes ≥ 7% can be considered a true difference. Key Points • Phantom fat fraction (PDFF) MRI measurements over 35 months demonstrated good linearity, accuracy, and reproducibility for the vendor systems investigated. • Non-linear effects were negligible (linear slope of 0.94) over 0–100% fat; however, significant vendor (p < 0.001) and field strength (p<0.001) differences in bias and longitudinal variability were identified. Bias ranged from 2.4 to - 3.8% for 0–100 weight% fat, respectively. • Measurement bias could affect the accuracy of PDFF in clinical use. As the reproducibility coefficient was 6.93%, only greater changes in % fat can be considered true differences when making longitudinal PDFF measurements on different MR systems.
Author Ding, Xiaobo
Schneider, Erika
McKenzie, Charles A.
Navaneethan, Sankar D.
Obuchowski, Nancy A.
Remer, Erick M.
Author_xml – sequence: 1
  givenname: Erika
  surname: Schneider
  fullname: Schneider, Erika
  organization: Imaging Institute, Cleveland Clinic
– sequence: 2
  givenname: Erick M.
  orcidid: 0000-0003-0379-606X
  surname: Remer
  fullname: Remer, Erick M.
  email: remere1@ccf.org
  organization: Imaging Institute, Cleveland Clinic, Glickman Urological and Kidney Institute, Cleveland Clinic
– sequence: 3
  givenname: Nancy A.
  surname: Obuchowski
  fullname: Obuchowski, Nancy A.
  organization: Imaging Institute, Cleveland Clinic, Department of Quantitative Health Sciences, Cleveland Clinic
– sequence: 4
  givenname: Charles A.
  surname: McKenzie
  fullname: McKenzie, Charles A.
  organization: CAnatomical Research Services and Medical Biophysics, University of Western Ontario
– sequence: 5
  givenname: Xiaobo
  surname: Ding
  fullname: Ding, Xiaobo
  organization: Imaging Institute, Cleveland Clinic, Department of Radiology, First Hospital of Jilin University
– sequence: 6
  givenname: Sankar D.
  surname: Navaneethan
  fullname: Navaneethan, Sankar D.
  organization: Glickman Urological and Kidney Institute, Cleveland Clinic, Department of Medicine-Nephrology, Baylor College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33768291$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuEzEUhi3UiqaFF2CBLLFhEbe-TTxmVxUClVKBEKwtx5fW1Yyd2h6kPA2vitMEkLro6ugcff-5_afgKKboAHhD8DnBWFwUjBnDCFOCsOg7gvoXYEY4o4jgnh-BGZasR0JKfgJOS7nHGEvCxUtwwphY9FSSGfi9SvEWVZdHGGILaDPo6lNLs9vkZCcT1mEIdTuH66DLHOpo4RCi07kVYfLQpHF02QQ9wG8fl0t48_0ajq7eJVtgawS9rvBh0rEGH4yuIcUPUMNxGmpAxu1mzg_ZLxdtE2zuGpxGWOpkt6_AsddDca8P8Qz8XH76cfUFrb5-vr66XCHDRFcRMY5i53vupW9Hd1LqVvBMdwxrToVg2nJLhbR0Qb1x2BrBJJXcCuPXpGNn4P2-bzv6YXKlqjEU44ZBR5emomiHF7Q9uduh756g92nKsW3XKMG7biGlbNTbAzWtR2fVJodR5636-_oG0D1gciolO_8PIVjt_FV7f1XzVz36q_om6p-ITKiPT61Zh-F5KdtLS5sTb13-v_Yzqj9rZbsM
CitedBy_id crossref_primary_10_1007_s10334_024_01148_9
crossref_primary_10_1016_S2468_1253_23_00064_X
crossref_primary_10_1007_s00330_024_11164_x
crossref_primary_10_1007_s00261_024_04448_9
crossref_primary_10_1109_TIM_2023_3268480
crossref_primary_10_1002_jmri_29756
crossref_primary_10_1038_s41598_023_42422_5
crossref_primary_10_1007_s10334_022_01053_z
crossref_primary_10_1007_s10334_024_01181_8
crossref_primary_10_1002_jcsm_13192
crossref_primary_10_1016_j_mri_2024_110223
crossref_primary_10_1186_s12903_023_03024_9
crossref_primary_10_14309_ajg_0000000000002020
Cites_doi 10.1002/mrm.23016
10.1002/jmri.20831
10.1148/radiol.13121360
10.1002/jmri.23741
10.1148/rg.295085186
10.1148/radiol.2017170550
10.1152/ajpendo.00064.2004
10.1111/j.1365-2036.2012.05121.x
10.1002/jmri.21957
10.1016/j.jbi.2008.08.010
10.1148/radiol.2017161786
10.1002/mrm.26228
10.1002/jmri.24842
10.1002/jmri.22580
10.1007/s10334-017-0642-z
10.1148/radiol.2017160606
10.1002/mrm.1201
10.1002/mrm.22840
10.1002/mrm.27065
10.1002/jmri.24526
10.1016/j.mric.2014.04.010
10.1148/radiol.10100659
10.1002/jmri.23928
10.1007/s00330-020-06858-x
10.1097/01.ASN.0000070149.78399.CE
10.1002/mrm.28669
ContentType Journal Article
Copyright European Society of Radiology 2021
European Society of Radiology 2021.
2021. European Society of Radiology.
Copyright_xml – notice: European Society of Radiology 2021
– notice: European Society of Radiology 2021.
– notice: 2021. European Society of Radiology.
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-021-07851-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 7574
ExternalDocumentID 33768291
10_1007_s00330_021_07851_8
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  grantid: R01DK101500-01
  funderid: http://dx.doi.org/10.13039/100000062
– fundername: NIDDK NIH HHS
  grantid: R01DK101500-01
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-1ce20ef84f9f938599ae20f3a530a42773ad4d279d262fce0dc739294d7cfb153
IEDL.DBID BENPR
ISSN 0938-7994
1432-1084
IngestDate Fri Sep 05 10:26:08 EDT 2025
Tue Oct 07 06:17:42 EDT 2025
Mon Jul 21 06:00:38 EDT 2025
Wed Oct 01 03:47:39 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Fri Feb 21 02:48:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Abdominal fat
Adipose tissue
Magnetic resonance imaging
Quality control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1ce20ef84f9f938599ae20f3a530a42773ad4d279d262fce0dc739294d7cfb153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0379-606X
PMID 33768291
PQID 2574556999
PQPubID 54162
PageCount 9
ParticipantIDs proquest_miscellaneous_2506278555
proquest_journals_2574556999
pubmed_primary_33768291
crossref_primary_10_1007_s00330_021_07851_8
crossref_citationtrail_10_1007_s00330_021_07851_8
springer_journals_10_1007_s00330_021_07851_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Mamidipalli, Fowler, Hamilton (CR27) 2020; 30
Szczepaniak, Nurenberg, Leonard (CR24) 2005; 288
Ma, Holalkere, Kambadakone, Mino-Kenudson, Hahn, Sahani (CR3) 2009; 29
CR17
Alecci, Collins, Smith, Jezzard (CR21) 2001; 46
Yu, Shimakawa, Hines (CR5) 2011; 66
Wermter, Mitschke, Bock (CR20) 2017; 30
Reeder, McKenzie, Pineda (CR7) 2007; 25
Serai, Dillman, Trout (CR11) 2017; 284
Yokoo, Shiehmorteza, Hamilton (CR12) 2011; 258
Artz, Haufe, Hooker (CR15) 2015; 42
Reeder, Hu, Sirlin (CR2) 2012; 36
Feldman, Appel, Chertow (CR16) 2003; 14
Mashhood, Railkar, Yokoo (CR13) 2013; 37
Reeder, Bice, Yu, Hernando, Pineda (CR4) 2012; 67
Harris, Taylor, Thielke, Payne, Gonzalez, Conde (CR18) 2009; 42
Addeman, Kutty, Perkins (CR19) 2015; 41
Roberts, Hernando, Holmes, Wiens, Reeder (CR28) 2018; 80
Hines, Yu, Shimakawa, McKenzie, Brittain, Reeder (CR6) 2009; 30
Yokoo, Serai, Pirasteh (CR9) 2018; 286
Reeder, Cruite, Hamilton, Sirlin (CR1) 2011; 34
Hernando, Sharma, Aliyari Ghasabeh (CR10) 2017; 77
Reeder, Hines, Yu, McKenzie, Brittain (CR22) 2009; 17
CR23
Permutt, Le, Peterson (CR25) 2012; 36
Middleton, Haufe, Hooker (CR14) 2017; 283
Wells (CR8) 2014; 22
Idilman, Aniktar, Idilman (CR26) 2013; 267
7851_CR17
HI Feldman (7851_CR16) 2003; 14
BY Addeman (7851_CR19) 2015; 41
NS Artz (7851_CR15) 2015; 42
SB Reeder (7851_CR22) 2009; 17
Z Permutt (7851_CR25) 2012; 36
SB Reeder (7851_CR7) 2007; 25
T Yokoo (7851_CR9) 2018; 286
IS Idilman (7851_CR26) 2013; 267
SB Reeder (7851_CR2) 2012; 36
NT Roberts (7851_CR28) 2018; 80
A Mamidipalli (7851_CR27) 2020; 30
SB Reeder (7851_CR4) 2012; 67
CD Hines (7851_CR6) 2009; 30
T Yokoo (7851_CR12) 2011; 258
PA Harris (7851_CR18) 2009; 42
7851_CR23
SA Wells (7851_CR8) 2014; 22
LS Szczepaniak (7851_CR24) 2005; 288
SD Serai (7851_CR11) 2017; 284
MS Middleton (7851_CR14) 2017; 283
H Yu (7851_CR5) 2011; 66
A Mashhood (7851_CR13) 2013; 37
D Hernando (7851_CR10) 2017; 77
FC Wermter (7851_CR20) 2017; 30
X Ma (7851_CR3) 2009; 29
M Alecci (7851_CR21) 2001; 46
SB Reeder (7851_CR1) 2011; 34
References_xml – volume: 67
  start-page: 389
  year: 2012
  end-page: 404
  ident: CR4
  article-title: On the performance of T2* correction methods for quantification of hepatic fat content
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23016
– volume: 25
  start-page: 644
  year: 2007
  end-page: 652
  ident: CR7
  article-title: Water-fat separation with IDEAL gradient-echo imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20831
– volume: 267
  start-page: 767
  year: 2013
  end-page: 775
  ident: CR26
  article-title: Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy
  publication-title: Radiology
  doi: 10.1148/radiol.13121360
– volume: 36
  start-page: 1011
  year: 2012
  end-page: 1014
  ident: CR2
  article-title: Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23741
– volume: 29
  start-page: 1253
  year: 2009
  end-page: 1277
  ident: CR3
  article-title: Imaging-based quantification of hepatic fat: methods and clinical applications
  publication-title: Radiographics
  doi: 10.1148/rg.295085186
– volume: 286
  start-page: 486
  year: 2018
  end-page: 498
  ident: CR9
  article-title: RSNA-QIBA PDFF Biomarker Committee. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.2017170550
– volume: 288
  start-page: E462
  year: 2005
  end-page: E468
  ident: CR24
  article-title: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00064.2004
– volume: 36
  start-page: 22
  year: 2012
  end-page: 29
  ident: CR25
  article-title: Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease – MRI accurately quantifies hepatic steatosis in NAFLD
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/j.1365-2036.2012.05121.x
– volume: 30
  start-page: 1215
  year: 2009
  end-page: 1222
  ident: CR6
  article-title: T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21957
– volume: 42
  start-page: 377
  year: 2009
  end-page: 381
  ident: CR18
  article-title: Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.08.010
– ident: CR23
– volume: 284
  start-page: 244
  year: 2017
  end-page: 254
  ident: CR11
  article-title: Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers
  publication-title: Radiology
  doi: 10.1148/radiol.2017161786
– volume: 77
  start-page: 1516
  year: 2017
  end-page: 1524
  ident: CR10
  article-title: Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26228
– volume: 42
  start-page: 811
  year: 2015
  end-page: 817
  ident: CR15
  article-title: Reproducibility of MR-based liver fat quantification across field strength: same-day comparison between 1.5T and 3T in obese subjects
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24842
– volume: 34
  start-page: 729
  year: 2011
  end-page: 749
  ident: CR1
  article-title: Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22580
– ident: CR17
– volume: 30
  start-page: 579
  year: 2017
  end-page: 590
  ident: CR20
  article-title: Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations
  publication-title: Magn Reson Mater Phys
  doi: 10.1007/s10334-017-0642-z
– volume: 283
  start-page: 438
  year: 2017
  end-page: 449
  ident: CR14
  article-title: Quantifying abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction: repeatability and accuracy of an MR imaging–based, semi-automated analysis method
  publication-title: Radiology
  doi: 10.1148/radiol.2017160606
– volume: 46
  start-page: 379
  year: 2001
  end-page: 385
  ident: CR21
  article-title: Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1201
– volume: 66
  start-page: 199
  year: 2011
  end-page: 206
  ident: CR5
  article-title: Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22840
– volume: 80
  start-page: 685
  year: 2018
  end-page: 695
  ident: CR28
  article-title: Noise properties of proton density fat fraction estimated using chemical shift-encoded MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27065
– volume: 41
  start-page: 233
  year: 2015
  end-page: 241
  ident: CR19
  article-title: Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24526
– volume: 22
  start-page: 397
  year: 2014
  end-page: 416
  ident: CR8
  article-title: Quantification of hepatic fat and iron with magnetic resonance imaging
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2014.04.010
– volume: 258
  start-page: 749
  year: 2011
  end-page: 759
  ident: CR12
  article-title: Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T
  publication-title: Radiology
  doi: 10.1148/radiol.10100659
– volume: 37
  start-page: 1359
  issue: 6
  year: 2013
  end-page: 1370
  ident: CR13
  article-title: Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23928
– volume: 17
  start-page: 211
  year: 2009
  ident: CR22
  article-title: On the definition of fat-fraction for in vivo fat quantification with magnetic resonance imaging
  publication-title: Proc Int Soc Mag Reson Med
– volume: 30
  start-page: 5120
  year: 2020
  end-page: 5129
  ident: CR27
  article-title: Prospective comparison of longitudinal change in hepatic proton density fat fraction (PDFF) estimated by magnitude-based MRI and complex-base MRI
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06858-x
– volume: 14
  start-page: S148
  year: 2003
  end-page: S153
  ident: CR16
  article-title: Chronic Renal Insufficiency Cohort (CRIC) study investigators. The Chronic Renal Insufficiency Cohort (CRIC) Study: design and methods
  publication-title: J Am Soc Nephrol
  doi: 10.1097/01.ASN.0000070149.78399.CE
– volume: 25
  start-page: 644
  year: 2007
  ident: 7851_CR7
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20831
– volume: 22
  start-page: 397
  year: 2014
  ident: 7851_CR8
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2014.04.010
– volume: 258
  start-page: 749
  year: 2011
  ident: 7851_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.10100659
– volume: 14
  start-page: S148
  year: 2003
  ident: 7851_CR16
  publication-title: J Am Soc Nephrol
  doi: 10.1097/01.ASN.0000070149.78399.CE
– volume: 41
  start-page: 233
  year: 2015
  ident: 7851_CR19
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24526
– volume: 66
  start-page: 199
  year: 2011
  ident: 7851_CR5
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22840
– volume: 36
  start-page: 22
  year: 2012
  ident: 7851_CR25
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/j.1365-2036.2012.05121.x
– volume: 267
  start-page: 767
  year: 2013
  ident: 7851_CR26
  publication-title: Radiology
  doi: 10.1148/radiol.13121360
– volume: 36
  start-page: 1011
  year: 2012
  ident: 7851_CR2
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23741
– volume: 284
  start-page: 244
  year: 2017
  ident: 7851_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2017161786
– volume: 30
  start-page: 579
  year: 2017
  ident: 7851_CR20
  publication-title: Magn Reson Mater Phys
  doi: 10.1007/s10334-017-0642-z
– volume: 42
  start-page: 377
  year: 2009
  ident: 7851_CR18
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.08.010
– volume: 288
  start-page: E462
  year: 2005
  ident: 7851_CR24
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00064.2004
– volume: 77
  start-page: 1516
  year: 2017
  ident: 7851_CR10
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26228
– ident: 7851_CR23
  doi: 10.1002/mrm.28669
– volume: 30
  start-page: 1215
  year: 2009
  ident: 7851_CR6
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21957
– volume: 286
  start-page: 486
  year: 2018
  ident: 7851_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2017170550
– volume: 46
  start-page: 379
  year: 2001
  ident: 7851_CR21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1201
– volume: 34
  start-page: 729
  year: 2011
  ident: 7851_CR1
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22580
– volume: 67
  start-page: 389
  year: 2012
  ident: 7851_CR4
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23016
– volume: 37
  start-page: 1359
  issue: 6
  year: 2013
  ident: 7851_CR13
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.23928
– volume: 42
  start-page: 811
  year: 2015
  ident: 7851_CR15
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24842
– volume: 283
  start-page: 438
  year: 2017
  ident: 7851_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.2017160606
– ident: 7851_CR17
– volume: 17
  start-page: 211
  year: 2009
  ident: 7851_CR22
  publication-title: Proc Int Soc Mag Reson Med
– volume: 30
  start-page: 5120
  year: 2020
  ident: 7851_CR27
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06858-x
– volume: 29
  start-page: 1253
  year: 2009
  ident: 7851_CR3
  publication-title: Radiographics
  doi: 10.1148/rg.295085186
– volume: 80
  start-page: 685
  year: 2018
  ident: 7851_CR28
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27065
SSID ssj0009147
Score 2.44237
Snippet Objectives Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or...
Proton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or multi-center...
ObjectivesProton density fat fraction (PDFF) is a validated biomarker of tissue fat quantification. However, validation has been limited to single-center or...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7566
SubjectTerms Accuracy
Bias
Biomarkers
Confidence intervals
Diagnostic Radiology
Field strength
Imaging
Internal Medicine
Interventional Radiology
Linearity
Magnetic Resonance
Magnetic resonance imaging
Medicine
Medicine & Public Health
Neuroradiology
Nonlinear systems
Proton density (concentration)
Radiology
Reproducibility
Statistical analysis
Ultrasound
Variability
Weight
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyEuCFoeCwUZiRtrKevH2uZWAau26iJUsVJvkeMHILXZZTd76K_pX2XGeVSogMQxydhJPOPxWDP-PkLeJq5ELJxgskIKM2MCM8pb5nHt16kqdMKN4vzz9HghTy_URXcobNNXu_cpyeyph8NuSDtWMCwpKJBRnpl7ZE8hnBdY8YIf3ULtTjKtGGzVDdPWyu6ozJ_7-H05uhNj3smP5mVn9og87OJFetQq-DHZifU-uT_vMuIH5OZsWX9j6F8pIj-s2erSNRiIUoSrRDTXtvz1ekyrH24zpq4OFENLh6x1dJko_P0V0i7BW758nM3o_PyEtrzSGwod0eQa-nPr2qKirMf31NFciMiwtDOux90V-M0ADVbfkZj4imbk2idkMfv09cMx60gXmBdaNWziIy9iMjLZBCOorHVwIwmnROEk11q4IAPXNvApTz4WwWuMsWTQPlXgP5-S3XpZx-eEoohMMgruYR8mtDVcuiJgkIXpTTMik37sS98hkiMxxmU5YClnfZWgrzLrq4Q274Y2qxaP45_Sh71Ky25ubkpwUlKpKUTGI_JmeAyzClMlro7LLcogfLNRSo3Is9YUhtcJ8MmG28mIjHvbuO3879_y4v_EX5IHHO001w0ekt1mvY2vIP5pqtfZ3H8BMXr6KQ
  priority: 102
  providerName: Springer Nature
Title Long-term inter-platform reproducibility, bias, and linearity of commercial PDFF MRI methods for fat quantification: a multi-center, multi-vendor phantom study
URI https://link.springer.com/article/10.1007/s00330-021-07851-8
https://www.ncbi.nlm.nih.gov/pubmed/33768291
https://www.proquest.com/docview/2574556999
https://www.proquest.com/docview/2506278555
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 0938-7994
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trYR4QXzTMSoj8UYtUseuHSSECjQbH62miUrlKXJiGyZtademD_w1_Kv4nKQVmthLpCR2bPnO53Pu_PsBvHJMxDbSMeU5UpgpZagSRUILXPulyyPpcKM4nY1O5_zLQiwOYNaehcG0ytYmBkNtlgX-I3_jVYsLMfL-zPvVNUXWKIyuthQauqFWMO8CxNghdBkiY3Wg-2EyOzvfw_AOA-WY38YrKpOEN8dowmE6pDWLKKYsRMhYT9W_S9UN__NG7DQsSel9uNf4kmRcC_8BHNjyIdyZNtHyR_Dn27L8SdH2EkSFWNPVpa7QSSUIZYlIr3Vq7O8ByS_0ZkB0aQi6nRoZ7cjSET80V0jJ5Fs5-5SmZHr-mdSc0xviP0Scrsj1VtcJR0HGb4kmIUmRYtqnXQ-aO29Tja-w-oWkxVckoNo-hnk6-f7xlDaEDLSIpajosLAssk5xlzg_giJJtH_gYi3iSHMmZawNN0wmho2YK2xkCon-FzeycLm3rU-gUy5L-wwIFuGO25gVfo8Wy0QxriODDhiGPlUPhu3YZ0WDVo6kGZfZDmc5yCvz8sqCvDJf5_WuzqrG6ri19HEr0qyZt5tsr2U9eLl77WcchlF0aZdbLIPQzkoI0YOntSrsmou9vVYsGfZg0OrG_uP_78vR7X15DncZ6mXIITyGTrXe2hfeF6ryPhzKhfRXlZ70oTs--fF10m-U3j-ds_Ff9cIIUg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTQJeEONvYYCR4IlaJP7T2EgTAraqZW01TZu0t-DENiBtademQvs0fBM-23yO0wpN7G2PSWzHyp3vzrnz74fQW0cFs4lmhBdAYSalIVKUipTg-zNXJJmDjeJ40huc8G-n4nQD_W3PwkBZZWsTg6E20xL-kX_wqsWF6Pl45tPsggBrFGRXWwoNHakVzG6AGIsHOw7s5W-_hVvsDve8vN9R2t8__jogkWWAlCwTNUlLSxPrJHfKKSaFUtrfcEwLlmhOs4xpww3NlKE96kqbmDKDoIKbrHRFCqwR3gVsccaV3_xtfdmfHB6tYX_TQHGW-IFJphSPx3bC4T2gUUsIlEh4Ny1SIv91jdfi3Wu52uAC-w_Q_Ri74s-Nsm2jDVs9RHfGMTv_CP0ZTasfBGw9BhSKOZmd6RqCYgzQmYAs25TiXnZx8UsvulhXBkOYq4FBD08d9qI4Bwoo_5bDvX4fj4-GuOG4XmA_EHa6xhdL3RQ4BZ36iDUORZEEykztvBuvvA03vsPsJ5Akn-OAovsYndyKaJ6gzWpa2WcIQxPuuGW09HtClilJuU4MBHyQapUdlLbfPi8jOjqQdJzlK1znIK_cyysP8sp9n_erPrMGG-TG1jutSPNoJxb5Wqs76M3qsV_hkLbRlZ0uoQ1ASUshRAc9bVRh9Trm_YOkKu2gbqsb68H_P5fnN8_lNbo7OB6P8tFwcvAC3aOgo6F-cQdt1vOlfenjsLp4FZUdo--3vb6uALbDQOo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmIU28IL4pDDASPFFriT_qGAkhxKhWtk4IMalvwYltQNqSrk2F9mv4H_w67nWSVmhib3tsaztR7sm9173H9xDyMnAlfGIFkwVKmGWZY5kqDSsx9utQJDrgRnF6PDo4kZ9marZF_vRnYZBW2fvE6KhdXeJ_5HsALanUCPKZvdDRIj7vj9_NzxkqSGGltZfTaCFy6C9-wfZt-XayD7Z-xfn449cPB6xTGGCl0Kphael54kMmgwlGZMoYC18EYZVIrORaC-uk49o4PuKh9IkrNSYU0ukyFCkqRoD7v6GFMEgn1DO9afibRnGzBJZl2hjZHdiJx_ZQQC1hSI6AAK1Slv0bFC9lupeqtDH4jW-TW13WSt-3MLtDtnx1l-xMu7r8PfL7qK6-M_TyFPtPLNj81DaYDlNsmok9ZVsS7sWQFj_tckht5SgmuBa182gdKBjhDMWf4CrwwMd0-mVCW3XrJYWFaLANPV_ZltoU0fSGWhrpkAwJpn4x7D6B93YwYf4D5ZHPaOyfe5-cXIthHpDtqq78I0JxiAzSC17CblBok3FpE4epHhZZswFJ-2efl11fdJTnOM3XHZ2jvXKwVx7tlcOc1-s587YryJWjd3uT5p2HWOYbPA_Ii_XP8G5jwcZWvl7hGGwinSmlBuRhC4X15QREhoybdECGPTY2i___Xh5ffS_PyQ4YOT-aHB8-ITc5QjQSF3fJdrNY-aeQgDXFs4h0Sr5d96v1F92IPoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+inter-platform+reproducibility%2C+bias%2C+and+linearity+of+commercial+PDFF+MRI+methods+for+fat+quantification%3A+a+multi-center%2C+multi-vendor+phantom+study&rft.jtitle=European+radiology&rft.au=Schneider%2C+Erika&rft.au=Remer%2C+Erick+M.&rft.au=Obuchowski%2C+Nancy+A.&rft.au=McKenzie%2C+Charles+A.&rft.date=2021-10-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=10&rft.spage=7566&rft.epage=7574&rft_id=info:doi/10.1007%2Fs00330-021-07851-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_021_07851_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon