Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT

Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesi...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 33; no. 11; pp. 7507 - 7518
Main Authors Yeshua, Talia, Ladyzhensky, Shmuel, Abu-Nasser, Amal, Abdalla-Aslan, Ragda, Boharon, Tami, Itzhak-Pur, Avital, Alexander, Asher, Chaurasia, Akhilanand, Cohen, Adir, Sosna, Jacob, Leichter, Isaac, Nadler, Chen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-023-09726-6

Cover

Abstract Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes. Results The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%. Conclusions The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging. Clinical relevance Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed. Key Points • A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.
AbstractList ObjectivesTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.MethodsThe dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.ResultsThe algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.ConclusionsThe developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.Clinical relevanceOur novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.Key Points• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol.• The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes. The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%. The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging. Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed. • A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.OBJECTIVESTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.METHODSThe dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.RESULTSThe algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.CONCLUSIONSThe developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.CLINICAL RELEVANCEOur novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.KEY POINTS• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.
Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes. Results The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%. Conclusions The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging. Clinical relevance Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed. Key Points • A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.
Author Abu-Nasser, Amal
Ladyzhensky, Shmuel
Abdalla-Aslan, Ragda
Sosna, Jacob
Nadler, Chen
Chaurasia, Akhilanand
Itzhak-Pur, Avital
Leichter, Isaac
Boharon, Tami
Alexander, Asher
Cohen, Adir
Yeshua, Talia
Author_xml – sequence: 1
  givenname: Talia
  surname: Yeshua
  fullname: Yeshua, Talia
  organization: Department of Applied Physics, The Jerusalem College of Technology
– sequence: 2
  givenname: Shmuel
  surname: Ladyzhensky
  fullname: Ladyzhensky, Shmuel
  organization: Department of Applied Physics, The Jerusalem College of Technology
– sequence: 3
  givenname: Amal
  surname: Abu-Nasser
  fullname: Abu-Nasser, Amal
  organization: Oral Maxillofacial Imaging, Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem
– sequence: 4
  givenname: Ragda
  surname: Abdalla-Aslan
  fullname: Abdalla-Aslan, Ragda
  organization: Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus
– sequence: 5
  givenname: Tami
  surname: Boharon
  fullname: Boharon, Tami
  organization: Department of Software Engineering, The Jerusalem College of Technology
– sequence: 6
  givenname: Avital
  surname: Itzhak-Pur
  fullname: Itzhak-Pur, Avital
  organization: Department of Software Engineering, The Jerusalem College of Technology
– sequence: 7
  givenname: Asher
  surname: Alexander
  fullname: Alexander, Asher
  organization: Department of Software Engineering, The Jerusalem College of Technology
– sequence: 8
  givenname: Akhilanand
  surname: Chaurasia
  fullname: Chaurasia, Akhilanand
  organization: Department of Oral Medicine and Radiology, King George’s Medical University
– sequence: 9
  givenname: Adir
  surname: Cohen
  fullname: Cohen, Adir
  organization: Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem
– sequence: 10
  givenname: Jacob
  surname: Sosna
  fullname: Sosna, Jacob
  organization: Department of Radiology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem
– sequence: 11
  givenname: Isaac
  surname: Leichter
  fullname: Leichter, Isaac
  organization: Department of Applied Physics, The Jerusalem College of Technology, Department of Radiology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem
– sequence: 12
  givenname: Chen
  orcidid: 0000-0002-2218-3966
  surname: Nadler
  fullname: Nadler, Chen
  email: Nadler@hadassah.org.il
  organization: Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37191921$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv3CAUhVGVqnn-gSwqpG66cXoB29jLatI8pEjZTJcVYuAyYmTDFDxS--_LxBOlmkVWwOU7R0f3nJOTEAMScs3ghgHIbxlACKiAiwp6yduq_UDOWC14xaCrT_67n5LznDcA0LNafiKnQrKe9ZydkV-3iFs6oE7BhzV1MVGLE5rJx0B1sFTc0ozrEcOkX2bR0VH_8cMQnTZeD3RVQhWDXD4z9YGa_XuFeqSL5SX56PSQ8epwXpCfdz-Wi4fq6fn-cfH9qTJCNlPFJBippZPatlK7Rhhteux5YzvHuAVE23TOINTOMrSar1qQtQXDe2ywAXFBvs6-2xR_7zBPavTZ4DDogHGXFe9Y3XDZ8bqgX47QTdylUNIVqmPQCMH2hp8P1G41olXb5Eed_qrXxRWgmwGTYs4JnTJ-3tCUtB8UA7XvSM0dqdKReulItUXKj6Sv7u-KxCzKBQ5rTG-x31H9A1ltop0
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3317512
crossref_primary_10_1038_s41598_023_48320_0
crossref_primary_10_1016_j_jdent_2024_105130
crossref_primary_10_1007_s10006_025_01334_6
crossref_primary_10_1093_dmfr_twae028
crossref_primary_10_1177_00220345241282256
crossref_primary_10_1093_dmfr_twae022
crossref_primary_10_3389_frai_2023_1291136
Cites_doi 10.1259/dmfr.20190107
10.1111/jerd.12844
10.1016/j.ejrad.2009.03.042
10.1016/j.joen.2022.07.013
10.1016/j.adaj.2018.09.003
10.1109/CVPR.2015.7298965
10.1038/s41598-021-94093-9
10.1155/2014/762969
10.5624/isd.2019.49.1.1
10.1259/dmfr.20160215
10.1016/j.carj.2019.06.002
10.1016/j.joen.2020.03.025
10.3390/app10113833
10.7860/JCDR/2015/11705.5555
10.1016/j.cmpb.2017.05.012
10.1259/dmfr.20130291
10.1109/ICCV.2017.322
10.1145/3343031.3350535
10.1186/s12903-018-0523-5
10.1259/dmfr.20200375
10.1109/TPAMI.2016.2577031
10.5334/jbr-btr.662
10.1007/978-3-319-24574-4_28
10.1016/j.rcl.2017.08.004
10.1111/iej.13265
10.1007/978-3-319-10602-1_48
10.1101/306977
10.1038/sj.bdj.2009.560
10.3390/jcm9061839
10.1259/dmfr.20200145
10.1016/j.ejmp.2021.07.007
10.1118/1.4914418
10.1016/j.jcms.2010.02.011
10.1155/2012/871532
10.1179/1465313312Y.0000000027
10.1016/j.compbiomed.2016.03.014
10.1007/978-1-4842-2766-4_8
10.1111/odi.13223
10.1016/j.oooo.2019.05.014
10.1016/j.cmpb.2016.10.024
10.1016/j.acra.2018.02.018
10.1109/ACCESS.2019.2914873
10.1259/dmfr.20140224
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to European Society of Radiology.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to European Society of Radiology.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-023-09726-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 7518
ExternalDocumentID 37191921
10_1007_s00330_023_09726_6
Genre Journal Article
GrantInformation_xml – fundername: Jerusalem College of Technology - Lev Academic Center
  grantid: Internal Grant
  funderid: http://dx.doi.org/10.13039/501100009083
– fundername: Jerusalem College of Technology - Lev Academic Center
  grantid: Internal Grant
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADHKG
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-170c7a7f7ad67af53cac9e925d8f12d0eed58fce04fd1eda2b6074d0c29e5e503
IEDL.DBID BENPR
ISSN 1432-1084
0938-7994
IngestDate Fri Sep 05 11:45:17 EDT 2025
Tue Oct 07 05:55:51 EDT 2025
Mon Jul 21 05:38:23 EDT 2025
Wed Oct 01 01:17:13 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Fri Feb 21 02:42:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Pathology
Cone beam computed tomography
Oral
Incidental findings
Language English
License 2023. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-170c7a7f7ad67af53cac9e925d8f12d0eed58fce04fd1eda2b6074d0c29e5e503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2218-3966
PMID 37191921
PQID 2881053310
PQPubID 54162
PageCount 12
ParticipantIDs proquest_miscellaneous_2814527824
proquest_journals_2881053310
pubmed_primary_37191921
crossref_citationtrail_10_1007_s00330_023_09726_6
crossref_primary_10_1007_s00330_023_09726_6
springer_journals_10_1007_s00330_023_09726_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dutta A, Zisserman A (2019) The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM international conference on multimedia https://doi.org/10.1145/3343031.3350535
Kirnbauer B, Hadzic A, Jakse N, Bischof H, Stern D (2022) Automatic detection of periapical osteolytic lesions on cone-beam computed tomography using deep convolutional neuronal networks. J Endod https://doi.org/10.1016/j.joen.2022.07.013
Setzer FC, Shi KJ, Zhang Z, et al (2020) Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod https://doi.org/10.1016/j.joen.2020.03.025
Almubarak H, Bazi Y, Alajlan N (2020) Two-stage mask-RCNN approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Appl Sci https://doi.org/10.3390/app10113833
Lee JH, Kim DH, Jeong SN (2020) Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis https://doi.org/10.1111/odi.13223
Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS (2015) Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20140224
Warhekar S, Nagarajappa S, Dasar PL, et al (2015) Incidental findings on cone beam computed tomography and reasons for referral by dental practitioners in Indore city (M.P). J Clin Diagn Res https://doi.org/10.7860/JCDR/2015/11705.5555
Shamir RR, Duchin Y, Kim J, Sapiro G, Harel N (2019) Continuous dice coefficient: a method for evaluating probabilistic segmentations. BioRxivhttps://doi.org/10.1101/306977
Gaêta-Araujo H, Alzoubi T, de Faria Vasconcelos K, et al (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200145
Ezhov M, Gusarev M, Golitsyna M, et al (2021) Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep https://doi.org/10.1038/s41598-021-94093-9
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
Heo MS, Kim JE, Hwang JJ, et al (2021) Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200375
Ketkar N (2017) Stochastic gradient descent. In: Deep learning with Python. Apress, Berkeley, CA https://doi.org/10.1007/978-1-4842-2766-4_8
Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T (2020) Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J https://doi.org/10.1111/iej.13265
JacobsRDental cone beam CT and its justified use in oral health careJBR-BTR201110.5334/jbr-btr.66222191290
Dawood A, Patel S, Brown J (2009) Cone beam CT in dental practice. Br Dent J https://doi.org/10.1038/sj.bdj.2009.560
Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA (2016) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20160215
Okada K, Rysavy S, Flores A, Linguraru MG (2015) Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys https://doi.org/10.1118/1.4914418
Pohlenz P, Gröbe A, Petersik A, et al (2010) Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. https://doi.org/10.1016/j.jcms.2010.02.011
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015 https://doi.org/10.1007/978-3-319-24574-4_28
Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Trans Pattern Anal Mach Intell https://doi.org/10.1109/TPAMI.2016.2577031
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/CVPR.2015.7298965
Li S, Dong M, Du G, Mu X (2019) Attention Dense-U-Net for automatic breast mass segmentation in digital mammogram. IEEE Access https://doi.org/10.1109/ACCESS.2019.2914873
Hwang JJ, Jung YH, Cho BH, Heo MS (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dent https://doi.org/10.5624/isd.2019.49.1.1
Ariji Y, Yanashita Y, Kutsuna S, et al (2019) Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol https://doi.org/10.1016/j.oooo.2019.05.014
Araújo JP, Kowalski LP, Rodrigues ML, de Almeida OP, Lopes Pinto CA, Alves FA (2014) Malignant transformation of an odontogenic cyst in a period of 10 years. Case Rep Dent https://doi.org/10.1155/2014/762969
Abdalla-Aslan R, Friedlander-Barenboim S, Aframian DJ, Maly A, Nadler C (2018) Ameloblastoma incidentally detected in cone-beam computed tomography sialography: a case report and review of the literature. J Am Dent Assoc https://doi.org/10.1016/j.adaj.2018.09.003
AllareddyVVincentSDHellsteinJWQianFSmokerWRRuprechtAIncidental findings on cone beam computed tomography imagesInt J Dent201210.1155/2012/871532233041483523569
FlaitzCMHicksJDelayed tooth eruption associated with an ameloblastic fibro-odontomaPediatr Dent2001232532541:STN:280:DC%2BD3Mzps1yjsQ%3D%3D11447959
Liang X, Jacobs R, Hassan B, et al (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) part I. On subjective image quality. Eur J Radiol https://doi.org/10.1016/j.ejrad.2009.03.042
Yang H, Jo E, Kim HJ, et al (2020) Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med https://doi.org/10.3390/jcm9061839
McBee MP, Awan OA, Colucci AT, et al (2018) Deep learning in radiology. Acad Radiol https://doi.org/10.1016/j.acra.2018.02.018
Carrillo-Perez F, Pecho OE, Morales JC, et al (2022) Applications of artificial intelligence in dentistry: a comprehensive review. J EsthetRestor Dent https://doi.org/10.1111/jerd.12844
Yilmaz E, Kayikcioglu T, Kayipmaz S (2017) Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2017.05.012
Abdolali F, Zoroofi RA, Otake Y, Sato Y (2017) Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.10.024
Fiaschetti V, Fanucci E, Rascioni M, Ottria L, Barlattani A, Simonetti G (2010) Jaw expansive lesions: population incidence and CT dentalscan role. Oral Implantol (Rome) 3:2-10
Scarfe WC, Toghyani S, Azevedo B (2018) Imaging of benign odontogenic lesions. Radiol Clin North Am https://doi.org/10.1016/j.rcl.2017.08.004
Balki I, Amirabadi A, Levman J, et al (2019) Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J https://doi.org/10.1016/j.carj.2019.06.002
Lin TY, Maire M, Belongie S, et al (2014) In: Computer vision – ECCV 2014. Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-319-10602-1_48
Abdolali F, Zoroofi RA, Otake Y, Sato Y (2016) Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2016.03.014
He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision https://doi.org/10.1109/ICCV.2017.322
Drage N, Rogers S, Greenall C, Playle R (2013) Incidental findings on cone beam computed tomography in orthodontic patients. J Orthod https://doi.org/10.1179/1465313312Y.0000000027
Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM (2019) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20190107
Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Healthhttps://doi.org/10.1186/s12903-018-0523-5
Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M (2021) Dental cone beam CT: an updated review. Phys Med. https://doi.org/10.1016/j.ejmp.2021.07.007
Brown J, Jacobs R, LevringJäghagen E, et al (2014) Basic training requirements for the use of dental CBCT by dentists: a position paper prepared by the European Academy of Dento Maxillo Facial Radiology. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20130291
9726_CR19
9726_CR38
9726_CR15
9726_CR37
9726_CR18
9726_CR17
9726_CR39
R Jacobs (9726_CR16) 2011
V Allareddy (9726_CR8) 2012
9726_CR1
CM Flaitz (9726_CR12) 2001; 23
9726_CR3
9726_CR2
9726_CR5
9726_CR34
9726_CR4
9726_CR11
9726_CR33
9726_CR7
9726_CR14
9726_CR36
9726_CR6
9726_CR13
9726_CR35
9726_CR9
9726_CR30
9726_CR10
9726_CR32
9726_CR31
9726_CR27
9726_CR26
9726_CR29
9726_CR28
9726_CR23
9726_CR45
9726_CR22
9726_CR44
9726_CR25
9726_CR24
9726_CR46
9726_CR41
9726_CR40
9726_CR21
9726_CR43
9726_CR20
9726_CR42
References_xml – reference: Abdalla-Aslan R, Friedlander-Barenboim S, Aframian DJ, Maly A, Nadler C (2018) Ameloblastoma incidentally detected in cone-beam computed tomography sialography: a case report and review of the literature. J Am Dent Assoc https://doi.org/10.1016/j.adaj.2018.09.003
– reference: Abdolali F, Zoroofi RA, Otake Y, Sato Y (2016) Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2016.03.014
– reference: Dawood A, Patel S, Brown J (2009) Cone beam CT in dental practice. Br Dent J https://doi.org/10.1038/sj.bdj.2009.560
– reference: Lee JH, Kim DH, Jeong SN (2020) Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis https://doi.org/10.1111/odi.13223
– reference: FlaitzCMHicksJDelayed tooth eruption associated with an ameloblastic fibro-odontomaPediatr Dent2001232532541:STN:280:DC%2BD3Mzps1yjsQ%3D%3D11447959
– reference: Ariji Y, Yanashita Y, Kutsuna S, et al (2019) Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol https://doi.org/10.1016/j.oooo.2019.05.014
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015 https://doi.org/10.1007/978-3-319-24574-4_28
– reference: Lin TY, Maire M, Belongie S, et al (2014) In: Computer vision – ECCV 2014. Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-319-10602-1_48
– reference: Li S, Dong M, Du G, Mu X (2019) Attention Dense-U-Net for automatic breast mass segmentation in digital mammogram. IEEE Access https://doi.org/10.1109/ACCESS.2019.2914873
– reference: AllareddyVVincentSDHellsteinJWQianFSmokerWRRuprechtAIncidental findings on cone beam computed tomography imagesInt J Dent201210.1155/2012/871532233041483523569
– reference: Araújo JP, Kowalski LP, Rodrigues ML, de Almeida OP, Lopes Pinto CA, Alves FA (2014) Malignant transformation of an odontogenic cyst in a period of 10 years. Case Rep Dent https://doi.org/10.1155/2014/762969
– reference: Almubarak H, Bazi Y, Alajlan N (2020) Two-stage mask-RCNN approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Appl Sci https://doi.org/10.3390/app10113833
– reference: Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA (2016) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20160215
– reference: Fiaschetti V, Fanucci E, Rascioni M, Ottria L, Barlattani A, Simonetti G (2010) Jaw expansive lesions: population incidence and CT dentalscan role. Oral Implantol (Rome) 3:2-10
– reference: Kirnbauer B, Hadzic A, Jakse N, Bischof H, Stern D (2022) Automatic detection of periapical osteolytic lesions on cone-beam computed tomography using deep convolutional neuronal networks. J Endod https://doi.org/10.1016/j.joen.2022.07.013
– reference: Yang H, Jo E, Kim HJ, et al (2020) Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med https://doi.org/10.3390/jcm9061839
– reference: Drage N, Rogers S, Greenall C, Playle R (2013) Incidental findings on cone beam computed tomography in orthodontic patients. J Orthod https://doi.org/10.1179/1465313312Y.0000000027
– reference: Shamir RR, Duchin Y, Kim J, Sapiro G, Harel N (2019) Continuous dice coefficient: a method for evaluating probabilistic segmentations. BioRxivhttps://doi.org/10.1101/306977
– reference: Pohlenz P, Gröbe A, Petersik A, et al (2010) Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. https://doi.org/10.1016/j.jcms.2010.02.011
– reference: Scarfe WC, Toghyani S, Azevedo B (2018) Imaging of benign odontogenic lesions. Radiol Clin North Am https://doi.org/10.1016/j.rcl.2017.08.004
– reference: Ketkar N (2017) Stochastic gradient descent. In: Deep learning with Python. Apress, Berkeley, CA https://doi.org/10.1007/978-1-4842-2766-4_8
– reference: Gaêta-Araujo H, Alzoubi T, de Faria Vasconcelos K, et al (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200145
– reference: Yilmaz E, Kayikcioglu T, Kayipmaz S (2017) Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2017.05.012
– reference: Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M (2021) Dental cone beam CT: an updated review. Phys Med. https://doi.org/10.1016/j.ejmp.2021.07.007
– reference: JacobsRDental cone beam CT and its justified use in oral health careJBR-BTR201110.5334/jbr-btr.66222191290
– reference: Balki I, Amirabadi A, Levman J, et al (2019) Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J https://doi.org/10.1016/j.carj.2019.06.002
– reference: Setzer FC, Shi KJ, Zhang Z, et al (2020) Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod https://doi.org/10.1016/j.joen.2020.03.025
– reference: Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Healthhttps://doi.org/10.1186/s12903-018-0523-5
– reference: McBee MP, Awan OA, Colucci AT, et al (2018) Deep learning in radiology. Acad Radiol https://doi.org/10.1016/j.acra.2018.02.018
– reference: Carrillo-Perez F, Pecho OE, Morales JC, et al (2022) Applications of artificial intelligence in dentistry: a comprehensive review. J EsthetRestor Dent https://doi.org/10.1111/jerd.12844
– reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
– reference: Heo MS, Kim JE, Hwang JJ, et al (2021) Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200375
– reference: He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision https://doi.org/10.1109/ICCV.2017.322
– reference: Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Trans Pattern Anal Mach Intell https://doi.org/10.1109/TPAMI.2016.2577031
– reference: Abdolali F, Zoroofi RA, Otake Y, Sato Y (2017) Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.10.024
– reference: Liang X, Jacobs R, Hassan B, et al (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) part I. On subjective image quality. Eur J Radiol https://doi.org/10.1016/j.ejrad.2009.03.042
– reference: Ezhov M, Gusarev M, Golitsyna M, et al (2021) Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep https://doi.org/10.1038/s41598-021-94093-9
– reference: Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T (2020) Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J https://doi.org/10.1111/iej.13265
– reference: Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS (2015) Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20140224
– reference: Hwang JJ, Jung YH, Cho BH, Heo MS (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dent https://doi.org/10.5624/isd.2019.49.1.1
– reference: Dutta A, Zisserman A (2019) The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM international conference on multimedia https://doi.org/10.1145/3343031.3350535
– reference: Warhekar S, Nagarajappa S, Dasar PL, et al (2015) Incidental findings on cone beam computed tomography and reasons for referral by dental practitioners in Indore city (M.P). J Clin Diagn Res https://doi.org/10.7860/JCDR/2015/11705.5555
– reference: Okada K, Rysavy S, Flores A, Linguraru MG (2015) Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys https://doi.org/10.1118/1.4914418
– reference: Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM (2019) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20190107
– reference: Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/CVPR.2015.7298965
– reference: Brown J, Jacobs R, LevringJäghagen E, et al (2014) Basic training requirements for the use of dental CBCT by dentists: a position paper prepared by the European Academy of Dento Maxillo Facial Radiology. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20130291
– ident: 9726_CR19
  doi: 10.1259/dmfr.20190107
– ident: 9726_CR22
  doi: 10.1111/jerd.12844
– ident: 9726_CR4
  doi: 10.1016/j.ejrad.2009.03.042
– ident: 9726_CR42
  doi: 10.1016/j.joen.2022.07.013
– ident: 9726_CR17
  doi: 10.1016/j.adaj.2018.09.003
– ident: 9726_CR23
  doi: 10.1109/CVPR.2015.7298965
– ident: 9726_CR41
  doi: 10.1038/s41598-021-94093-9
– ident: 9726_CR13
  doi: 10.1155/2014/762969
– ident: 9726_CR21
  doi: 10.5624/isd.2019.49.1.1
– ident: 9726_CR10
  doi: 10.1259/dmfr.20160215
– ident: 9726_CR28
  doi: 10.1016/j.carj.2019.06.002
– ident: 9726_CR39
  doi: 10.1016/j.joen.2020.03.025
– ident: 9726_CR31
  doi: 10.3390/app10113833
– ident: 9726_CR7
  doi: 10.7860/JCDR/2015/11705.5555
– ident: 9726_CR36
  doi: 10.1016/j.cmpb.2017.05.012
– ident: 9726_CR45
  doi: 10.1259/dmfr.20130291
– ident: 9726_CR26
  doi: 10.1109/ICCV.2017.322
– ident: 9726_CR29
  doi: 10.1145/3343031.3350535
– ident: 9726_CR5
  doi: 10.1186/s12903-018-0523-5
– ident: 9726_CR18
  doi: 10.1259/dmfr.20200375
– ident: 9726_CR30
  doi: 10.1109/TPAMI.2016.2577031
– year: 2011
  ident: 9726_CR16
  publication-title: JBR-BTR
  doi: 10.5334/jbr-btr.662
– ident: 9726_CR24
  doi: 10.1007/978-3-319-24574-4_28
– ident: 9726_CR14
  doi: 10.1016/j.rcl.2017.08.004
– ident: 9726_CR40
  doi: 10.1111/iej.13265
– ident: 9726_CR32
  doi: 10.1007/978-3-319-10602-1_48
– ident: 9726_CR34
  doi: 10.1101/306977
– ident: 9726_CR11
– ident: 9726_CR6
  doi: 10.1038/sj.bdj.2009.560
– ident: 9726_CR15
  doi: 10.3390/jcm9061839
– ident: 9726_CR1
  doi: 10.1259/dmfr.20200145
– ident: 9726_CR2
  doi: 10.1016/j.ejmp.2021.07.007
– ident: 9726_CR37
  doi: 10.1118/1.4914418
– ident: 9726_CR46
  doi: 10.1016/j.jcms.2010.02.011
– year: 2012
  ident: 9726_CR8
  publication-title: Int J Dent
  doi: 10.1155/2012/871532
– ident: 9726_CR9
  doi: 10.1179/1465313312Y.0000000027
– ident: 9726_CR27
– ident: 9726_CR44
  doi: 10.1016/j.compbiomed.2016.03.014
– volume: 23
  start-page: 253
  year: 2001
  ident: 9726_CR12
  publication-title: Pediatr Dent
– ident: 9726_CR33
  doi: 10.1007/978-1-4842-2766-4_8
– ident: 9726_CR38
  doi: 10.1111/odi.13223
– ident: 9726_CR35
  doi: 10.1016/j.oooo.2019.05.014
– ident: 9726_CR43
  doi: 10.1016/j.cmpb.2016.10.024
– ident: 9726_CR20
  doi: 10.1016/j.acra.2018.02.018
– ident: 9726_CR25
  doi: 10.1109/ACCESS.2019.2914873
– ident: 9726_CR3
  doi: 10.1259/dmfr.20140224
SSID ssj0009147
Score 2.4711256
Snippet Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods...
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. The dataset included...
ObjectivesTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.MethodsThe...
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.OBJECTIVESTo develop...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7507
SubjectTerms Accuracy
Algorithms
Axial skeleton
Bone imaging
Bone lesions
Computed tomography
Cone-Beam Computed Tomography - methods
Datasets
Deep Learning
Diagnostic Radiology
Humans
Image Processing, Computer-Assisted
Image segmentation
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Jaw
Lesions
Machine learning
Mathematical analysis
Maxillofacial
Medical imaging
Medicine
Medicine & Public Health
Morbidity
Neuroradiology
Radiology
Segmentation
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i4R6aek7La1ciVsxshPHTo6IR1EremIlOKDIsccIdTeL2KyE-utrJ05QgVbiGMWveGzPlxnPNwBbGKIpucpokXFBhUe4VHugQaWHzpgyndrOlH38Ux5NxffT_DQGhS2H2-6DS7I7qcdgt5B2jFGvY2ignJFUPoW1jm9rAmu7385-HNyS7XKhYoDMwzX_VkL3kOU9r2inbA5fwHQYZn_H5NfOqq13zO87DI6P_Y4NeB7RJ9ntl8tLeILNK1g_jv7113C-j3hFYiaJC-IBLbHYdre1GqIbS7J9ssSLeQxYasjCkbm-uZzNFk4H4zupFw36BoINbkkuG2LCc416TvZO3sD08OBk74jGBAzUZCpvKVfMKK2c0lYq7fLMaFNimea2cNxL0evXvHAGmXCWo9VpLT0iscykJeaYs-wtTBrfzXsg2jFpMUNb1kI4Zku0UljhD5RCSiFtAnyQSGUiO3lIkjGrRl7lbt4qP29VN2-VTODrWOeq5-b4b-nNQdBV3KfLKi0KHqKROUvgy_ja77DgNtENLlahDBd56pGUSOBdv0DG7jLl_3fLlCewPQj7tvF_j-XD44p_hGchy30fArkJk_Z6hZ88Fmrrz3Hp_wEzCP0-
  priority: 102
  providerName: Springer Nature
Title Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT
URI https://link.springer.com/article/10.1007/s00330-023-09726-6
https://www.ncbi.nlm.nih.gov/pubmed/37191921
https://www.proquest.com/docview/2881053310
https://www.proquest.com/docview/2814527824
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_aBMZexr7rrgsa7G0Ts2RZsh_GSNqkZaNhjAayh2FkSS6FxM6aFPbn7-TICaOsLzZGsiTuJN1PH3c_gPfOe1MyldAsYYIKRLhUI9CgEqGz47Hmtt3KvpzKi5n4Ok_nBzDtfGH8tcpuTmwnatsYv0f-iWcZ836jLP6y-k09a5Q_Xe0oNHSgVrCf2xBjh9DnPjJWD_qj8fT7j30YXtZSjuEyPqMqz0Vwo2md6TytWUzRhlEf0kZS-a-puoc_752dtiZp8hSeBCxJhlvlP4MDVz-HR5fhtPwF_DpzbkUCL8Q1QXhKrNu0d69qomtLkjOydtfL4H5Uk6YiS_3nZrFoKu230knZ1A4L8Dtqa3JTE-O_S6eX5PTqJcwm46vTCxroFKhJVLqhTMVGaVUpbaXSVZoYbXKX89RmFUOdoLVMs8q4WFSWOat5KRFf2Njw3KUujZNX0KuxmiMguoqldYmzeSlEFdvcWSmswOkhk1JIGwHrJFeYEGvcU14sil2U5FbaBUq7aKVdyAg-7P5ZbSNtPJj7pFNIEUbdutj3kQje7ZJxvPhDEF275s7nYSLliItEBK-3itxVlyhcveacRfCx0-y-8P-35fjhtryBx56jfuvAeAK9ze2de4tIZlMO4FDNFT6zyfkA-sPJaDT17_Of38aD0HUxdcaHfwHUh_GB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTQJeEP8pDDASPIGF7ThO_DAhWDd1bK0Q6qS9oMyJnWlSmxTaCfhyfDbOrtMKTextj1ES27o7353v_LsDeO08mpJnCc0TLqlED5cadDSoQtfZCWaEDaHs4UgNjuXnk_RkA_50WBh_rbLTiUFR27byMfL3Is-5x41y9mH2nfquUT672rXQMLG1gt0JJcYisOPQ_f6JR7j5zkEf-f1GiP298e6Axi4DtEqydEF5xqrMZHVmrMpMnSaVqbTTIrV5zXGpaETSvK4ck7XlzhpRKjS7llVCu9SlLMFxb8CWTKTGw9_Wp73Rl6_rsr88tDhjGtVKprWMsJ0A3vNt1BhFm0l9CR1F1b-m8ZK_eylXG0zg_l24E31X8nEpbPdgwzX34eYwZucfwLe-czMS-1CcEXSHiXWLcNerIaaxJOmTuTubRrhTQ9qaTM2v88mkrY0P3ZOybRwO4CN4c3LekMo_l85Mye74IRxfC2EfwWaD0zwBYmqmrEuc1aWUNbPaWSWtRHWUKyWV7QHvKFdUsba5b7ExKVZVmQO1C6R2EahdqB68Xf0zW1b2uPLr7Y4hRdzl82Itkz14tXqN-9MnXUzj2gv_DZepQD9M9uDxkpGr6ZIMT8ta8B686zi7Hvz_a3l69Vpewq3BeHhUHB2MDp_BbeElLIAnt2Fz8ePCPUcvalG-iKJK4PS6d8df3f4qyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BpDmrgg3oQNMBKcwJpfseMDQmil2hibOGxSLyg48ZdpUpuWtRPw1_h1fHaTVmhitx2jJLb1vf09CXkNsZpSWMUKJTTTaOEyj4YGM2g6g-RehuTKPjo2-6f68ygfbZA_fS1MTKvsZWIS1GFaRx_5riwKEetGBd9turSIr4Phh9kPFidIxUhrP05jSSKH8PsnXt_m7w8GiOs3Ug4_nezts27CAKuVzRdMWF5bbxvrg7G-yVXtawdO5qFoBB4TFUheNDVw3QQBwcvKoMoNvJYOcsi5wnVvkdtWKRfTCe3Irhv-ijTcjDsUKNY53RXspLK9OECNM9SWLDbPMcz8qxSvWLpXorRJ-Q3vkbud1Uo_LsnsPtmA9gHZOuri8g_JtwHAjHYTKM4oGsI0wCJlebXUt4GqAZ3D2aQrdGrptKET_-t8PJ42PjrtaTVtAReIvrs5PW9pHZ8r8BO6d_KInN4IWB-TzRa3eUqob7gJoCC4SuuGBwfB6KBREBXGaBMyInrIlXXX1TwO1xiXq37MCdolQrtM0C5NRt6u_pkte3pc-_VOj5Cy4-95uabGjLxavUbOjOEW38L0Mn4jdC7RAtMZebJE5Go7ZfGe7KTIyLses-vF_3-WZ9ef5SXZQp4ovxwcH26TOzISWKqa3CGbi4tLeI7m06J6keiUku83zRh_AaeoKGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+detection+and+3D+segmentation+of+maxillofacial+bone+lesions+in+cone+beam+CT&rft.jtitle=European+radiology&rft.au=Yeshua%2C+Talia&rft.au=Ladyzhensky%2C+Shmuel&rft.au=Abu-Nasser%2C+Amal&rft.au=Abdalla-Aslan%2C+Ragda&rft.date=2023-11-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=33&rft.issue=11&rft.spage=7507&rft.epage=7518&rft_id=info:doi/10.1007%2Fs00330-023-09726-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_023_09726_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon