Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT
Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesi...
Saved in:
| Published in | European radiology Vol. 33; no. 11; pp. 7507 - 7518 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1432-1084 0938-7994 1432-1084 |
| DOI | 10.1007/s00330-023-09726-6 |
Cover
| Abstract | Objectives
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.
Methods
The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.
Results
The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.
Conclusions
The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.
Clinical relevance
Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.
Key Points
•
A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol.
•
The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume. |
|---|---|
| AbstractList | ObjectivesTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.MethodsThe dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.ResultsThe algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.ConclusionsThe developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.Clinical relevanceOur novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.Key Points• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol.• The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume. To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes. The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%. The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging. Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed. • A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume. To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.OBJECTIVESTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.METHODSThe dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes.The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.RESULTSThe algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%.The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.CONCLUSIONSThe developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging.Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.CLINICAL RELEVANCEOur novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients' morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed.• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume.KEY POINTS• A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume. Objectives To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. Methods The dataset included 82 cone beam CT (CBCT) scans, 41 with histologically confirmed benign bone lesions (BL) and 41 control scans (without lesions), obtained using three CBCT devices with diverse imaging protocols. Lesions were marked in all axial slices by experienced maxillofacial radiologists. All cases were divided into sub-datasets: training (20,214 axial images), validation (4530 axial images), and testing (6795 axial images). A Mask-RCNN algorithm segmented the bone lesions in each axial slice. Analysis of sequential slices was used for improving the Mask-RCNN performance and classifying each CBCT scan as containing bone lesions or not. Finally, the algorithm generated 3D segmentations of the lesions and calculated their volumes. Results The algorithm correctly classified all CBCT cases as containing bone lesions or not, with an accuracy of 100%. The algorithm detected the bone lesion in axial images with high sensitivity (95.9%) and high precision (98.9%) with an average dice coefficient of 83.5%. Conclusions The developed algorithm detected and segmented bone lesions in CBCT scans with high accuracy and may serve as a computerized tool for detecting incidental bone lesions in CBCT imaging. Clinical relevance Our novel deep-learning algorithm detects incidental hypodense bone lesions in cone beam CT scans, using various imaging devices and protocols. This algorithm may reduce patients’ morbidity and mortality, particularly since currently, cone beam CT interpretation is not always preformed. Key Points • A deep learning algorithm was developed for automatic detection and 3D segmentation of various maxillofacial bone lesions in CBCT scans, irrespective of the CBCT device or the scanning protocol. • The developed algorithm can detect incidental jaw lesions with high accuracy, generates a 3D segmentation of the lesion, and calculates the lesion volume. |
| Author | Abu-Nasser, Amal Ladyzhensky, Shmuel Abdalla-Aslan, Ragda Sosna, Jacob Nadler, Chen Chaurasia, Akhilanand Itzhak-Pur, Avital Leichter, Isaac Boharon, Tami Alexander, Asher Cohen, Adir Yeshua, Talia |
| Author_xml | – sequence: 1 givenname: Talia surname: Yeshua fullname: Yeshua, Talia organization: Department of Applied Physics, The Jerusalem College of Technology – sequence: 2 givenname: Shmuel surname: Ladyzhensky fullname: Ladyzhensky, Shmuel organization: Department of Applied Physics, The Jerusalem College of Technology – sequence: 3 givenname: Amal surname: Abu-Nasser fullname: Abu-Nasser, Amal organization: Oral Maxillofacial Imaging, Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem – sequence: 4 givenname: Ragda surname: Abdalla-Aslan fullname: Abdalla-Aslan, Ragda organization: Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus – sequence: 5 givenname: Tami surname: Boharon fullname: Boharon, Tami organization: Department of Software Engineering, The Jerusalem College of Technology – sequence: 6 givenname: Avital surname: Itzhak-Pur fullname: Itzhak-Pur, Avital organization: Department of Software Engineering, The Jerusalem College of Technology – sequence: 7 givenname: Asher surname: Alexander fullname: Alexander, Asher organization: Department of Software Engineering, The Jerusalem College of Technology – sequence: 8 givenname: Akhilanand surname: Chaurasia fullname: Chaurasia, Akhilanand organization: Department of Oral Medicine and Radiology, King George’s Medical University – sequence: 9 givenname: Adir surname: Cohen fullname: Cohen, Adir organization: Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem – sequence: 10 givenname: Jacob surname: Sosna fullname: Sosna, Jacob organization: Department of Radiology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem – sequence: 11 givenname: Isaac surname: Leichter fullname: Leichter, Isaac organization: Department of Applied Physics, The Jerusalem College of Technology, Department of Radiology, Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem – sequence: 12 givenname: Chen orcidid: 0000-0002-2218-3966 surname: Nadler fullname: Nadler, Chen email: Nadler@hadassah.org.il organization: Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37191921$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv3CAUhVGVqnn-gSwqpG66cXoB29jLatI8pEjZTJcVYuAyYmTDFDxS--_LxBOlmkVWwOU7R0f3nJOTEAMScs3ghgHIbxlACKiAiwp6yduq_UDOWC14xaCrT_67n5LznDcA0LNafiKnQrKe9ZydkV-3iFs6oE7BhzV1MVGLE5rJx0B1sFTc0ozrEcOkX2bR0VH_8cMQnTZeD3RVQhWDXD4z9YGa_XuFeqSL5SX56PSQ8epwXpCfdz-Wi4fq6fn-cfH9qTJCNlPFJBippZPatlK7Rhhteux5YzvHuAVE23TOINTOMrSar1qQtQXDe2ywAXFBvs6-2xR_7zBPavTZ4DDogHGXFe9Y3XDZ8bqgX47QTdylUNIVqmPQCMH2hp8P1G41olXb5Eed_qrXxRWgmwGTYs4JnTJ-3tCUtB8UA7XvSM0dqdKReulItUXKj6Sv7u-KxCzKBQ5rTG-x31H9A1ltop0 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3317512 crossref_primary_10_1038_s41598_023_48320_0 crossref_primary_10_1016_j_jdent_2024_105130 crossref_primary_10_1007_s10006_025_01334_6 crossref_primary_10_1093_dmfr_twae028 crossref_primary_10_1177_00220345241282256 crossref_primary_10_1093_dmfr_twae022 crossref_primary_10_3389_frai_2023_1291136 |
| Cites_doi | 10.1259/dmfr.20190107 10.1111/jerd.12844 10.1016/j.ejrad.2009.03.042 10.1016/j.joen.2022.07.013 10.1016/j.adaj.2018.09.003 10.1109/CVPR.2015.7298965 10.1038/s41598-021-94093-9 10.1155/2014/762969 10.5624/isd.2019.49.1.1 10.1259/dmfr.20160215 10.1016/j.carj.2019.06.002 10.1016/j.joen.2020.03.025 10.3390/app10113833 10.7860/JCDR/2015/11705.5555 10.1016/j.cmpb.2017.05.012 10.1259/dmfr.20130291 10.1109/ICCV.2017.322 10.1145/3343031.3350535 10.1186/s12903-018-0523-5 10.1259/dmfr.20200375 10.1109/TPAMI.2016.2577031 10.5334/jbr-btr.662 10.1007/978-3-319-24574-4_28 10.1016/j.rcl.2017.08.004 10.1111/iej.13265 10.1007/978-3-319-10602-1_48 10.1101/306977 10.1038/sj.bdj.2009.560 10.3390/jcm9061839 10.1259/dmfr.20200145 10.1016/j.ejmp.2021.07.007 10.1118/1.4914418 10.1016/j.jcms.2010.02.011 10.1155/2012/871532 10.1179/1465313312Y.0000000027 10.1016/j.compbiomed.2016.03.014 10.1007/978-1-4842-2766-4_8 10.1111/odi.13223 10.1016/j.oooo.2019.05.014 10.1016/j.cmpb.2016.10.024 10.1016/j.acra.2018.02.018 10.1109/ACCESS.2019.2914873 10.1259/dmfr.20140224 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to European Society of Radiology. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to European Society of Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to European Society of Radiology. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1007/s00330-023-09726-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 7518 |
| ExternalDocumentID | 37191921 10_1007_s00330_023_09726_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Jerusalem College of Technology - Lev Academic Center grantid: Internal Grant funderid: http://dx.doi.org/10.13039/501100009083 – fundername: Jerusalem College of Technology - Lev Academic Center grantid: Internal Grant |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADHKG AGQPQ CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-170c7a7f7ad67af53cac9e925d8f12d0eed58fce04fd1eda2b6074d0c29e5e503 |
| IEDL.DBID | BENPR |
| ISSN | 1432-1084 0938-7994 |
| IngestDate | Fri Sep 05 11:45:17 EDT 2025 Tue Oct 07 05:55:51 EDT 2025 Mon Jul 21 05:38:23 EDT 2025 Wed Oct 01 01:17:13 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Fri Feb 21 02:42:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep learning Pathology Cone beam computed tomography Oral Incidental findings |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to European Society of Radiology. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-170c7a7f7ad67af53cac9e925d8f12d0eed58fce04fd1eda2b6074d0c29e5e503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2218-3966 |
| PMID | 37191921 |
| PQID | 2881053310 |
| PQPubID | 54162 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2814527824 proquest_journals_2881053310 pubmed_primary_37191921 crossref_citationtrail_10_1007_s00330_023_09726_6 crossref_primary_10_1007_s00330_023_09726_6 springer_journals_10_1007_s00330_023_09726_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Dutta A, Zisserman A (2019) The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM international conference on multimedia https://doi.org/10.1145/3343031.3350535 Kirnbauer B, Hadzic A, Jakse N, Bischof H, Stern D (2022) Automatic detection of periapical osteolytic lesions on cone-beam computed tomography using deep convolutional neuronal networks. J Endod https://doi.org/10.1016/j.joen.2022.07.013 Setzer FC, Shi KJ, Zhang Z, et al (2020) Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod https://doi.org/10.1016/j.joen.2020.03.025 Almubarak H, Bazi Y, Alajlan N (2020) Two-stage mask-RCNN approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Appl Sci https://doi.org/10.3390/app10113833 Lee JH, Kim DH, Jeong SN (2020) Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis https://doi.org/10.1111/odi.13223 Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS (2015) Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20140224 Warhekar S, Nagarajappa S, Dasar PL, et al (2015) Incidental findings on cone beam computed tomography and reasons for referral by dental practitioners in Indore city (M.P). J Clin Diagn Res https://doi.org/10.7860/JCDR/2015/11705.5555 Shamir RR, Duchin Y, Kim J, Sapiro G, Harel N (2019) Continuous dice coefficient: a method for evaluating probabilistic segmentations. BioRxivhttps://doi.org/10.1101/306977 Gaêta-Araujo H, Alzoubi T, de Faria Vasconcelos K, et al (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200145 Ezhov M, Gusarev M, Golitsyna M, et al (2021) Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep https://doi.org/10.1038/s41598-021-94093-9 Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 Heo MS, Kim JE, Hwang JJ, et al (2021) Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200375 Ketkar N (2017) Stochastic gradient descent. In: Deep learning with Python. Apress, Berkeley, CA https://doi.org/10.1007/978-1-4842-2766-4_8 Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T (2020) Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J https://doi.org/10.1111/iej.13265 JacobsRDental cone beam CT and its justified use in oral health careJBR-BTR201110.5334/jbr-btr.66222191290 Dawood A, Patel S, Brown J (2009) Cone beam CT in dental practice. Br Dent J https://doi.org/10.1038/sj.bdj.2009.560 Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA (2016) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20160215 Okada K, Rysavy S, Flores A, Linguraru MG (2015) Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys https://doi.org/10.1118/1.4914418 Pohlenz P, Gröbe A, Petersik A, et al (2010) Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. https://doi.org/10.1016/j.jcms.2010.02.011 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015 https://doi.org/10.1007/978-3-319-24574-4_28 Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Trans Pattern Anal Mach Intell https://doi.org/10.1109/TPAMI.2016.2577031 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/CVPR.2015.7298965 Li S, Dong M, Du G, Mu X (2019) Attention Dense-U-Net for automatic breast mass segmentation in digital mammogram. IEEE Access https://doi.org/10.1109/ACCESS.2019.2914873 Hwang JJ, Jung YH, Cho BH, Heo MS (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dent https://doi.org/10.5624/isd.2019.49.1.1 Ariji Y, Yanashita Y, Kutsuna S, et al (2019) Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol https://doi.org/10.1016/j.oooo.2019.05.014 Araújo JP, Kowalski LP, Rodrigues ML, de Almeida OP, Lopes Pinto CA, Alves FA (2014) Malignant transformation of an odontogenic cyst in a period of 10 years. Case Rep Dent https://doi.org/10.1155/2014/762969 Abdalla-Aslan R, Friedlander-Barenboim S, Aframian DJ, Maly A, Nadler C (2018) Ameloblastoma incidentally detected in cone-beam computed tomography sialography: a case report and review of the literature. J Am Dent Assoc https://doi.org/10.1016/j.adaj.2018.09.003 AllareddyVVincentSDHellsteinJWQianFSmokerWRRuprechtAIncidental findings on cone beam computed tomography imagesInt J Dent201210.1155/2012/871532233041483523569 FlaitzCMHicksJDelayed tooth eruption associated with an ameloblastic fibro-odontomaPediatr Dent2001232532541:STN:280:DC%2BD3Mzps1yjsQ%3D%3D11447959 Liang X, Jacobs R, Hassan B, et al (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) part I. On subjective image quality. Eur J Radiol https://doi.org/10.1016/j.ejrad.2009.03.042 Yang H, Jo E, Kim HJ, et al (2020) Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med https://doi.org/10.3390/jcm9061839 McBee MP, Awan OA, Colucci AT, et al (2018) Deep learning in radiology. Acad Radiol https://doi.org/10.1016/j.acra.2018.02.018 Carrillo-Perez F, Pecho OE, Morales JC, et al (2022) Applications of artificial intelligence in dentistry: a comprehensive review. J EsthetRestor Dent https://doi.org/10.1111/jerd.12844 Yilmaz E, Kayikcioglu T, Kayipmaz S (2017) Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2017.05.012 Abdolali F, Zoroofi RA, Otake Y, Sato Y (2017) Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.10.024 Fiaschetti V, Fanucci E, Rascioni M, Ottria L, Barlattani A, Simonetti G (2010) Jaw expansive lesions: population incidence and CT dentalscan role. Oral Implantol (Rome) 3:2-10 Scarfe WC, Toghyani S, Azevedo B (2018) Imaging of benign odontogenic lesions. Radiol Clin North Am https://doi.org/10.1016/j.rcl.2017.08.004 Balki I, Amirabadi A, Levman J, et al (2019) Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J https://doi.org/10.1016/j.carj.2019.06.002 Lin TY, Maire M, Belongie S, et al (2014) In: Computer vision – ECCV 2014. Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-319-10602-1_48 Abdolali F, Zoroofi RA, Otake Y, Sato Y (2016) Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2016.03.014 He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision https://doi.org/10.1109/ICCV.2017.322 Drage N, Rogers S, Greenall C, Playle R (2013) Incidental findings on cone beam computed tomography in orthodontic patients. J Orthod https://doi.org/10.1179/1465313312Y.0000000027 Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM (2019) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20190107 Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Healthhttps://doi.org/10.1186/s12903-018-0523-5 Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M (2021) Dental cone beam CT: an updated review. Phys Med. https://doi.org/10.1016/j.ejmp.2021.07.007 Brown J, Jacobs R, LevringJäghagen E, et al (2014) Basic training requirements for the use of dental CBCT by dentists: a position paper prepared by the European Academy of Dento Maxillo Facial Radiology. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20130291 9726_CR19 9726_CR38 9726_CR15 9726_CR37 9726_CR18 9726_CR17 9726_CR39 R Jacobs (9726_CR16) 2011 V Allareddy (9726_CR8) 2012 9726_CR1 CM Flaitz (9726_CR12) 2001; 23 9726_CR3 9726_CR2 9726_CR5 9726_CR34 9726_CR4 9726_CR11 9726_CR33 9726_CR7 9726_CR14 9726_CR36 9726_CR6 9726_CR13 9726_CR35 9726_CR9 9726_CR30 9726_CR10 9726_CR32 9726_CR31 9726_CR27 9726_CR26 9726_CR29 9726_CR28 9726_CR23 9726_CR45 9726_CR22 9726_CR44 9726_CR25 9726_CR24 9726_CR46 9726_CR41 9726_CR40 9726_CR21 9726_CR43 9726_CR20 9726_CR42 |
| References_xml | – reference: Abdalla-Aslan R, Friedlander-Barenboim S, Aframian DJ, Maly A, Nadler C (2018) Ameloblastoma incidentally detected in cone-beam computed tomography sialography: a case report and review of the literature. J Am Dent Assoc https://doi.org/10.1016/j.adaj.2018.09.003 – reference: Abdolali F, Zoroofi RA, Otake Y, Sato Y (2016) Automatic segmentation of maxillofacial cysts in cone beam CT images. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2016.03.014 – reference: Dawood A, Patel S, Brown J (2009) Cone beam CT in dental practice. Br Dent J https://doi.org/10.1038/sj.bdj.2009.560 – reference: Lee JH, Kim DH, Jeong SN (2020) Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis https://doi.org/10.1111/odi.13223 – reference: FlaitzCMHicksJDelayed tooth eruption associated with an ameloblastic fibro-odontomaPediatr Dent2001232532541:STN:280:DC%2BD3Mzps1yjsQ%3D%3D11447959 – reference: Ariji Y, Yanashita Y, Kutsuna S, et al (2019) Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol https://doi.org/10.1016/j.oooo.2019.05.014 – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015 https://doi.org/10.1007/978-3-319-24574-4_28 – reference: Lin TY, Maire M, Belongie S, et al (2014) In: Computer vision – ECCV 2014. Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-319-10602-1_48 – reference: Li S, Dong M, Du G, Mu X (2019) Attention Dense-U-Net for automatic breast mass segmentation in digital mammogram. IEEE Access https://doi.org/10.1109/ACCESS.2019.2914873 – reference: AllareddyVVincentSDHellsteinJWQianFSmokerWRRuprechtAIncidental findings on cone beam computed tomography imagesInt J Dent201210.1155/2012/871532233041483523569 – reference: Araújo JP, Kowalski LP, Rodrigues ML, de Almeida OP, Lopes Pinto CA, Alves FA (2014) Malignant transformation of an odontogenic cyst in a period of 10 years. Case Rep Dent https://doi.org/10.1155/2014/762969 – reference: Almubarak H, Bazi Y, Alajlan N (2020) Two-stage mask-RCNN approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Appl Sci https://doi.org/10.3390/app10113833 – reference: Lopes IA, Tucunduva RMA, Handem RH, Capelozza ALA (2016) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20160215 – reference: Fiaschetti V, Fanucci E, Rascioni M, Ottria L, Barlattani A, Simonetti G (2010) Jaw expansive lesions: population incidence and CT dentalscan role. Oral Implantol (Rome) 3:2-10 – reference: Kirnbauer B, Hadzic A, Jakse N, Bischof H, Stern D (2022) Automatic detection of periapical osteolytic lesions on cone-beam computed tomography using deep convolutional neuronal networks. J Endod https://doi.org/10.1016/j.joen.2022.07.013 – reference: Yang H, Jo E, Kim HJ, et al (2020) Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med https://doi.org/10.3390/jcm9061839 – reference: Drage N, Rogers S, Greenall C, Playle R (2013) Incidental findings on cone beam computed tomography in orthodontic patients. J Orthod https://doi.org/10.1179/1465313312Y.0000000027 – reference: Shamir RR, Duchin Y, Kim J, Sapiro G, Harel N (2019) Continuous dice coefficient: a method for evaluating probabilistic segmentations. BioRxivhttps://doi.org/10.1101/306977 – reference: Pohlenz P, Gröbe A, Petersik A, et al (2010) Virtual dental surgery as a new educational tool in dental school. J Craniomaxillofac Surg. https://doi.org/10.1016/j.jcms.2010.02.011 – reference: Scarfe WC, Toghyani S, Azevedo B (2018) Imaging of benign odontogenic lesions. Radiol Clin North Am https://doi.org/10.1016/j.rcl.2017.08.004 – reference: Ketkar N (2017) Stochastic gradient descent. In: Deep learning with Python. Apress, Berkeley, CA https://doi.org/10.1007/978-1-4842-2766-4_8 – reference: Gaêta-Araujo H, Alzoubi T, de Faria Vasconcelos K, et al (2020) Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200145 – reference: Yilmaz E, Kayikcioglu T, Kayipmaz S (2017) Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed https://doi.org/10.1016/j.cmpb.2017.05.012 – reference: Kaasalainen T, Ekholm M, Siiskonen T, Kortesniemi M (2021) Dental cone beam CT: an updated review. Phys Med. https://doi.org/10.1016/j.ejmp.2021.07.007 – reference: JacobsRDental cone beam CT and its justified use in oral health careJBR-BTR201110.5334/jbr-btr.66222191290 – reference: Balki I, Amirabadi A, Levman J, et al (2019) Sample-size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J https://doi.org/10.1016/j.carj.2019.06.002 – reference: Setzer FC, Shi KJ, Zhang Z, et al (2020) Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod https://doi.org/10.1016/j.joen.2020.03.025 – reference: Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM (2018) Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Healthhttps://doi.org/10.1186/s12903-018-0523-5 – reference: McBee MP, Awan OA, Colucci AT, et al (2018) Deep learning in radiology. Acad Radiol https://doi.org/10.1016/j.acra.2018.02.018 – reference: Carrillo-Perez F, Pecho OE, Morales JC, et al (2022) Applications of artificial intelligence in dentistry: a comprehensive review. J EsthetRestor Dent https://doi.org/10.1111/jerd.12844 – reference: Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 – reference: Heo MS, Kim JE, Hwang JJ, et al (2021) Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20200375 – reference: He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision https://doi.org/10.1109/ICCV.2017.322 – reference: Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Trans Pattern Anal Mach Intell https://doi.org/10.1109/TPAMI.2016.2577031 – reference: Abdolali F, Zoroofi RA, Otake Y, Sato Y (2017) Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2016.10.024 – reference: Liang X, Jacobs R, Hassan B, et al (2010) A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) part I. On subjective image quality. Eur J Radiol https://doi.org/10.1016/j.ejrad.2009.03.042 – reference: Ezhov M, Gusarev M, Golitsyna M, et al (2021) Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep https://doi.org/10.1038/s41598-021-94093-9 – reference: Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T (2020) Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J https://doi.org/10.1111/iej.13265 – reference: Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS (2015) Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20140224 – reference: Hwang JJ, Jung YH, Cho BH, Heo MS (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dent https://doi.org/10.5624/isd.2019.49.1.1 – reference: Dutta A, Zisserman A (2019) The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM international conference on multimedia https://doi.org/10.1145/3343031.3350535 – reference: Warhekar S, Nagarajappa S, Dasar PL, et al (2015) Incidental findings on cone beam computed tomography and reasons for referral by dental practitioners in Indore city (M.P). J Clin Diagn Res https://doi.org/10.7860/JCDR/2015/11705.5555 – reference: Okada K, Rysavy S, Flores A, Linguraru MG (2015) Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys https://doi.org/10.1118/1.4914418 – reference: Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM (2019) The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20190107 – reference: Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) https://doi.org/10.1109/CVPR.2015.7298965 – reference: Brown J, Jacobs R, LevringJäghagen E, et al (2014) Basic training requirements for the use of dental CBCT by dentists: a position paper prepared by the European Academy of Dento Maxillo Facial Radiology. Dentomaxillofac Radiol https://doi.org/10.1259/dmfr.20130291 – ident: 9726_CR19 doi: 10.1259/dmfr.20190107 – ident: 9726_CR22 doi: 10.1111/jerd.12844 – ident: 9726_CR4 doi: 10.1016/j.ejrad.2009.03.042 – ident: 9726_CR42 doi: 10.1016/j.joen.2022.07.013 – ident: 9726_CR17 doi: 10.1016/j.adaj.2018.09.003 – ident: 9726_CR23 doi: 10.1109/CVPR.2015.7298965 – ident: 9726_CR41 doi: 10.1038/s41598-021-94093-9 – ident: 9726_CR13 doi: 10.1155/2014/762969 – ident: 9726_CR21 doi: 10.5624/isd.2019.49.1.1 – ident: 9726_CR10 doi: 10.1259/dmfr.20160215 – ident: 9726_CR28 doi: 10.1016/j.carj.2019.06.002 – ident: 9726_CR39 doi: 10.1016/j.joen.2020.03.025 – ident: 9726_CR31 doi: 10.3390/app10113833 – ident: 9726_CR7 doi: 10.7860/JCDR/2015/11705.5555 – ident: 9726_CR36 doi: 10.1016/j.cmpb.2017.05.012 – ident: 9726_CR45 doi: 10.1259/dmfr.20130291 – ident: 9726_CR26 doi: 10.1109/ICCV.2017.322 – ident: 9726_CR29 doi: 10.1145/3343031.3350535 – ident: 9726_CR5 doi: 10.1186/s12903-018-0523-5 – ident: 9726_CR18 doi: 10.1259/dmfr.20200375 – ident: 9726_CR30 doi: 10.1109/TPAMI.2016.2577031 – year: 2011 ident: 9726_CR16 publication-title: JBR-BTR doi: 10.5334/jbr-btr.662 – ident: 9726_CR24 doi: 10.1007/978-3-319-24574-4_28 – ident: 9726_CR14 doi: 10.1016/j.rcl.2017.08.004 – ident: 9726_CR40 doi: 10.1111/iej.13265 – ident: 9726_CR32 doi: 10.1007/978-3-319-10602-1_48 – ident: 9726_CR34 doi: 10.1101/306977 – ident: 9726_CR11 – ident: 9726_CR6 doi: 10.1038/sj.bdj.2009.560 – ident: 9726_CR15 doi: 10.3390/jcm9061839 – ident: 9726_CR1 doi: 10.1259/dmfr.20200145 – ident: 9726_CR2 doi: 10.1016/j.ejmp.2021.07.007 – ident: 9726_CR37 doi: 10.1118/1.4914418 – ident: 9726_CR46 doi: 10.1016/j.jcms.2010.02.011 – year: 2012 ident: 9726_CR8 publication-title: Int J Dent doi: 10.1155/2012/871532 – ident: 9726_CR9 doi: 10.1179/1465313312Y.0000000027 – ident: 9726_CR27 – ident: 9726_CR44 doi: 10.1016/j.compbiomed.2016.03.014 – volume: 23 start-page: 253 year: 2001 ident: 9726_CR12 publication-title: Pediatr Dent – ident: 9726_CR33 doi: 10.1007/978-1-4842-2766-4_8 – ident: 9726_CR38 doi: 10.1111/odi.13223 – ident: 9726_CR35 doi: 10.1016/j.oooo.2019.05.014 – ident: 9726_CR43 doi: 10.1016/j.cmpb.2016.10.024 – ident: 9726_CR20 doi: 10.1016/j.acra.2018.02.018 – ident: 9726_CR25 doi: 10.1109/ACCESS.2019.2914873 – ident: 9726_CR3 doi: 10.1259/dmfr.20140224 |
| SSID | ssj0009147 |
| Score | 2.4711256 |
| Snippet | Objectives
To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.
Methods... To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans. The dataset included... ObjectivesTo develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.MethodsThe... To develop an automated deep-learning algorithm for detection and 3D segmentation of incidental bone lesions in maxillofacial CBCT scans.OBJECTIVESTo develop... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7507 |
| SubjectTerms | Accuracy Algorithms Axial skeleton Bone imaging Bone lesions Computed tomography Cone-Beam Computed Tomography - methods Datasets Deep Learning Diagnostic Radiology Humans Image Processing, Computer-Assisted Image segmentation Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Jaw Lesions Machine learning Mathematical analysis Maxillofacial Medical imaging Medicine Medicine & Public Health Morbidity Neuroradiology Radiology Segmentation Ultrasound |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i4R6aek7La1ciVsxshPHTo6IR1EremIlOKDIsccIdTeL2KyE-utrJ05QgVbiGMWveGzPlxnPNwBbGKIpucpokXFBhUe4VHugQaWHzpgyndrOlH38Ux5NxffT_DQGhS2H2-6DS7I7qcdgt5B2jFGvY2ignJFUPoW1jm9rAmu7385-HNyS7XKhYoDMwzX_VkL3kOU9r2inbA5fwHQYZn_H5NfOqq13zO87DI6P_Y4NeB7RJ9ntl8tLeILNK1g_jv7113C-j3hFYiaJC-IBLbHYdre1GqIbS7J9ssSLeQxYasjCkbm-uZzNFk4H4zupFw36BoINbkkuG2LCc416TvZO3sD08OBk74jGBAzUZCpvKVfMKK2c0lYq7fLMaFNimea2cNxL0evXvHAGmXCWo9VpLT0iscykJeaYs-wtTBrfzXsg2jFpMUNb1kI4Zku0UljhD5RCSiFtAnyQSGUiO3lIkjGrRl7lbt4qP29VN2-VTODrWOeq5-b4b-nNQdBV3KfLKi0KHqKROUvgy_ja77DgNtENLlahDBd56pGUSOBdv0DG7jLl_3fLlCewPQj7tvF_j-XD44p_hGchy30fArkJk_Z6hZ88Fmrrz3Hp_wEzCP0- priority: 102 providerName: Springer Nature |
| Title | Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT |
| URI | https://link.springer.com/article/10.1007/s00330-023-09726-6 https://www.ncbi.nlm.nih.gov/pubmed/37191921 https://www.proquest.com/docview/2881053310 https://www.proquest.com/docview/2814527824 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_aBMZexr7rrgsa7G0Ts2RZsh_GSNqkZaNhjAayh2FkSS6FxM6aFPbn7-TICaOsLzZGsiTuJN1PH3c_gPfOe1MyldAsYYIKRLhUI9CgEqGz47Hmtt3KvpzKi5n4Ok_nBzDtfGH8tcpuTmwnatsYv0f-iWcZ836jLP6y-k09a5Q_Xe0oNHSgVrCf2xBjh9DnPjJWD_qj8fT7j30YXtZSjuEyPqMqz0Vwo2md6TytWUzRhlEf0kZS-a-puoc_752dtiZp8hSeBCxJhlvlP4MDVz-HR5fhtPwF_DpzbkUCL8Q1QXhKrNu0d69qomtLkjOydtfL4H5Uk6YiS_3nZrFoKu230knZ1A4L8Dtqa3JTE-O_S6eX5PTqJcwm46vTCxroFKhJVLqhTMVGaVUpbaXSVZoYbXKX89RmFUOdoLVMs8q4WFSWOat5KRFf2Njw3KUujZNX0KuxmiMguoqldYmzeSlEFdvcWSmswOkhk1JIGwHrJFeYEGvcU14sil2U5FbaBUq7aKVdyAg-7P5ZbSNtPJj7pFNIEUbdutj3kQje7ZJxvPhDEF275s7nYSLliItEBK-3itxVlyhcveacRfCx0-y-8P-35fjhtryBx56jfuvAeAK9ze2de4tIZlMO4FDNFT6zyfkA-sPJaDT17_Of38aD0HUxdcaHfwHUh_GB |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTQJeEP8pDDASPIGF7ThO_DAhWDd1bK0Q6qS9oMyJnWlSmxTaCfhyfDbOrtMKTextj1ES27o7353v_LsDeO08mpJnCc0TLqlED5cadDSoQtfZCWaEDaHs4UgNjuXnk_RkA_50WBh_rbLTiUFR27byMfL3Is-5x41y9mH2nfquUT672rXQMLG1gt0JJcYisOPQ_f6JR7j5zkEf-f1GiP298e6Axi4DtEqydEF5xqrMZHVmrMpMnSaVqbTTIrV5zXGpaETSvK4ck7XlzhpRKjS7llVCu9SlLMFxb8CWTKTGw9_Wp73Rl6_rsr88tDhjGtVKprWMsJ0A3vNt1BhFm0l9CR1F1b-m8ZK_eylXG0zg_l24E31X8nEpbPdgwzX34eYwZucfwLe-czMS-1CcEXSHiXWLcNerIaaxJOmTuTubRrhTQ9qaTM2v88mkrY0P3ZOybRwO4CN4c3LekMo_l85Mye74IRxfC2EfwWaD0zwBYmqmrEuc1aWUNbPaWSWtRHWUKyWV7QHvKFdUsba5b7ExKVZVmQO1C6R2EahdqB68Xf0zW1b2uPLr7Y4hRdzl82Itkz14tXqN-9MnXUzj2gv_DZepQD9M9uDxkpGr6ZIMT8ta8B686zi7Hvz_a3l69Vpewq3BeHhUHB2MDp_BbeElLIAnt2Fz8ePCPUcvalG-iKJK4PS6d8df3f4qyg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2BpDmrgg3oQNMBKcwJpfseMDQmil2hibOGxSLyg48ZdpUpuWtRPw1_h1fHaTVmhitx2jJLb1vf09CXkNsZpSWMUKJTTTaOEyj4YGM2g6g-RehuTKPjo2-6f68ygfbZA_fS1MTKvsZWIS1GFaRx_5riwKEetGBd9turSIr4Phh9kPFidIxUhrP05jSSKH8PsnXt_m7w8GiOs3Ug4_nezts27CAKuVzRdMWF5bbxvrg7G-yVXtawdO5qFoBB4TFUheNDVw3QQBwcvKoMoNvJYOcsi5wnVvkdtWKRfTCe3Irhv-ijTcjDsUKNY53RXspLK9OECNM9SWLDbPMcz8qxSvWLpXorRJ-Q3vkbud1Uo_LsnsPtmA9gHZOuri8g_JtwHAjHYTKM4oGsI0wCJlebXUt4GqAZ3D2aQrdGrptKET_-t8PJ42PjrtaTVtAReIvrs5PW9pHZ8r8BO6d_KInN4IWB-TzRa3eUqob7gJoCC4SuuGBwfB6KBREBXGaBMyInrIlXXX1TwO1xiXq37MCdolQrtM0C5NRt6u_pkte3pc-_VOj5Cy4-95uabGjLxavUbOjOEW38L0Mn4jdC7RAtMZebJE5Go7ZfGe7KTIyLses-vF_3-WZ9ef5SXZQp4ovxwcH26TOzISWKqa3CGbi4tLeI7m06J6keiUku83zRh_AaeoKGQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+detection+and+3D+segmentation+of+maxillofacial+bone+lesions+in+cone+beam+CT&rft.jtitle=European+radiology&rft.au=Yeshua%2C+Talia&rft.au=Ladyzhensky%2C+Shmuel&rft.au=Abu-Nasser%2C+Amal&rft.au=Abdalla-Aslan%2C+Ragda&rft.date=2023-11-01&rft.issn=1432-1084&rft.eissn=1432-1084&rft.volume=33&rft.issue=11&rft.spage=7507&rft.epage=7518&rft_id=info:doi/10.1007%2Fs00330-023-09726-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_023_09726_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |