In silico toxicity evaluation of dioxins using structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR)
Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more...
Saved in:
| Published in | Archives of toxicology Vol. 93; no. 11; pp. 3207 - 3218 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0340-5761 1432-0738 1432-0738 |
| DOI | 10.1007/s00204-019-02580-w |
Cover
| Abstract | Prediction of pEC
50
values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC
50
values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC
50
values and 162 compounds without pEC
50
values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC
50
value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC
50
values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC
50
values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively. |
|---|---|
| AbstractList | Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively. Prediction of pEC values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC values and 162 compounds without pEC values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively. Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC 50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC 50 values and 162 compounds without pEC 50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC 50 value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC 50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC 50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively. Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively. |
| Author | Lv, Wen-Juan Du, Zhe Yang, Hong Zhang, Xiao-Yun Zhai, Hong-Lin |
| Author_xml | – sequence: 1 givenname: Hong surname: Yang fullname: Yang, Hong organization: Department of Chemistry, Lanzhou University – sequence: 2 givenname: Zhe surname: Du fullname: Du, Zhe organization: Department of Chemistry, Lanzhou University – sequence: 3 givenname: Wen-Juan surname: Lv fullname: Lv, Wen-Juan organization: Department of Chemistry, Lanzhou University – sequence: 4 givenname: Xiao-Yun surname: Zhang fullname: Zhang, Xiao-Yun email: xyzhang@lzu.edu.cn organization: Department of Chemistry, Lanzhou University – sequence: 5 givenname: Hong-Lin surname: Zhai fullname: Zhai, Hong-Lin organization: Department of Chemistry, Lanzhou University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31552475$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtuFDEURS2UiHQCG2CALDEJA8Pzr1w1jBI-kSJF_MYlt8sVHFXbHX-6yYw9sAR2xkpwdweQMogYWbLPubbfPUR7PniL0DMKryiAep0AGAgCtCPAZAtk_QjNqOCMgOLtHpoBF0CkaugBOkzpGoCytuOP0QGnUjKh5Az9PPc4ucmZgHP45ozLt9iu9FR0dsHjMOLB1X2fcEnOX-GUYzG5RPvr-w9tsltthGinLZ6-uiU-_nTy8SXWfsB5HcjgFtaneqYnfFO0zy5XdGX_J4idkQ-bsCdof9RTsk_v1iP05e2bz6fvycXlu_PTkwtiuJKZ0KalprN2DhpsxwdpoZNUqpZq2uqx5TDXjRKgtRmkGjkIOVeMDSMMnFWHH6HjXe4yhptiU-4XLhk7TdrbUFLPWKcoa0TTVfTFPfQ6lFg_uaUaoUAqUannd1SZL-zQL6Nb6Hjb_xl_BdgOMDGkFO34F6HQbzrudx33teN-23G_rlJ7TzLboQafo3bTwyrfqane469s_PfsB6zf1vbAJA |
| CitedBy_id | crossref_primary_10_1007_s00204_020_02768_5 crossref_primary_10_1016_j_jenvman_2023_118898 crossref_primary_10_1021_acs_est_0c06778 crossref_primary_10_3390_molecules26061734 crossref_primary_10_3390_molecules27134077 crossref_primary_10_1007_s00204_021_03056_6 crossref_primary_10_1016_j_ecoenv_2020_110817 crossref_primary_10_1016_j_chemosphere_2020_129343 crossref_primary_10_1016_j_jhazmat_2024_136295 crossref_primary_10_3390_molecules25061317 crossref_primary_10_3390_ijerph20010701 crossref_primary_10_1007_s00706_024_03256_7 crossref_primary_10_3390_ijms21010019 crossref_primary_10_1016_j_etap_2022_103893 crossref_primary_10_1016_j_scitotenv_2021_151018 crossref_primary_10_1016_j_scitotenv_2024_173416 crossref_primary_10_3390_ijms21062114 |
| Cites_doi | 10.1093/toxsci/kfl055 10.1021/ci00046a002 10.1002/qsar.200610151 10.1016/j.chemosphere.2018.10.004 10.1021/ci950275b 10.1002/qsar.19970160203 10.1002/minf.201000061 10.1016/s0924-2031(99)00014-4 10.1002/jcc.23231 10.1016/S0160-4120(03)00106-5 10.1007/s11356-009-0162-0 10.1177/026119290503300508 10.1016/j.jhazmat.2014.10.011 10.1016/j.ecoenv.2015.02.027 10.1016/j.jhazmat.2018.05.014 10.1016/j.scitotenv.2018.09.247 10.1016/j.chemosphere.2012.05.081 10.1016/j.chemolab.2015.04.013 10.1289/ehp.1103535 10.1080/08927022.2010.503326 10.1016/j.chemolab.2016.01.008 10.1021/ci9600115 10.1007/BFb0111212 10.4209/aaqr.2009.09.0059 10.1002/cem.1180080405 10.1002/etc.3761 10.1016/j.aca.2018.05.015 10.1016/j.envpol.2010.04.011 10.1021/acsomega.8b01647 10.1021/jm4004285 10.1021/ac00087a012 10.1016/j.envint.2018.05.020 10.1002/qsar.200390007 10.1897/01-627 10.3724/sp.j.1096.2011.01297 10.1016/j.chroma.2016.04.037 10.1021/ci000026+ 10.1016/j.chemosphere.2011.02.069 10.1016/j.scitotenv.2017.11.344 10.1080/10408398.2012.710279 10.1016/j.chemosphere.2017.01.067 10.1016/j.cej.2011.08.073 10.1016/j.chemosphere.2019.04.204 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Archives of Toxicology is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Archives of Toxicology is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION NPM 3V. 7T2 7TK 7U7 7X7 7XB 88E 88I 8AO 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. M0S M1P M2O M2P MBDVC PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PYCSY Q9U 7X8 |
| DOI | 10.1007/s00204-019-02580-w |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Science Database (via ProQuest SciTech Premium Collection) Research Library (Corporate) Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection ProQuest Research Library Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Science Journals (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1432-0738 |
| EndPage | 3218 |
| ExternalDocumentID | 31552475 10_1007_s00204_019_02580_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21705064; 21275067 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 21705064 – fundername: National Natural Science Foundation of China grantid: 21275067 |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .55 .86 .GJ .HR .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATCPS AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M2O M2P M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSU RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z5O Z7U Z7V Z7W Z7Y Z7Z Z82 Z83 Z85 Z86 Z87 Z8O Z8P Z8Q Z8S Z8T Z8V Z8W Z8Z Z91 ZGI ZMTXR ZOVNA ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PJZUB PPXIY PUEGO NPM 7T2 7TK 7U7 7XB 8FK C1K K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 |
| ID | FETCH-LOGICAL-c375t-1681c9eeb0a0e93d5e09515781a18af830ba6740aacd57f3045b722df0d320a03 |
| IEDL.DBID | BENPR |
| ISSN | 0340-5761 1432-0738 |
| IngestDate | Mon Sep 08 04:10:41 EDT 2025 Tue Oct 07 05:59:06 EDT 2025 Wed Feb 19 02:30:40 EST 2025 Wed Oct 01 05:02:21 EDT 2025 Thu Apr 24 22:58:50 EDT 2025 Fri Feb 21 02:37:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Dioxins SAR Heuristics POPs 2D-QSAR pEC pEC50 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-1681c9eeb0a0e93d5e09515781a18af830ba6740aacd57f3045b722df0d320a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31552475 |
| PQID | 2296470574 |
| PQPubID | 60277 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2297126469 proquest_journals_2296470574 pubmed_primary_31552475 crossref_primary_10_1007_s00204_019_02580_w crossref_citationtrail_10_1007_s00204_019_02580_w springer_journals_10_1007_s00204_019_02580_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191100 2019-11-00 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | Archives of toxicology |
| PublicationTitleAbbrev | Arch Toxicol |
| PublicationTitleAlternate | Arch Toxicol |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Estrada, Gutman (CR12) 1996; 36 Mitra, Saha, Roy (CR26) 2010; 36 Roy, Ambure, Kar (CR33) 2018; 3 Wang, Lu, He, Wang (CR41) 2014; 35 Carhart, Smith, Venkataraghavan (CR5) 1985; 25 Tropsha, Gramatica, Gombar (CR38) 2003; 22 Zhao, Zheng, Jiang (CR45) 2011; 119 Dietz, Desforges, Gustavson, Riget, Born, Letcher, Sonne (CR10) 2018; 118 Balaban, Motoc, Bonchev, Mekenyan (CR2) 1983; 114 Alibakshi (CR1) 2018; 1026 Bruzzone, Chiappe, Focardi, Pretti, Renzi (CR4) 2011; 175 Ding (CR11) 2018; 355 Todeschini, Gramatica (CR35) 1997; 16 Li (CR20) 2016; 1448 Gramatica (CR16) 2007; 26 Sheridan, Miller, Underwood, Kearsley (CR34) 1996; 36 Roy, Kar, Ambure (CR31) 2015; 145 Mansouri, Consonni, Durjava, Kolar, Oberg, Todeschini (CR25) 2012; 89 Peric, Sierra, Marti, Cruanas, Garau (CR29) 2015; 115 Li, Liu, Tang, Lei, Wu, Gao, Su (CR21) 2019; 215 Chi, Hsu, Lin, Kao, Lee (CR9) 2011; 83 Palmer, Pou, Gonzalez-Sabate, Diaz-Ferrero (CR28) 2018; 622 Birnbaum, Staskal, Diliberto (CR3) 2003; 29 Walker, Jaworska, Comber, Schultz, Dearden (CR40) 2003; 22 Todeschini, Lasagni (CR36) 1994; 8 Cheung, McKinney (CR8) 1989; 2 Ma, Chen, Xu, Hayat, He, Xu (CR23) 2010; 158 Wu, Zhang, Dong, Zheng (CR43) 2011; 39 Ma, Lv, Deng, Zhang, Zhai, Lv (CR24) 2015; 283 Tropsha (CR37) 2010; 29 Hemmer, Steinhauer, Gasteiger (CR17) 1999; 19 Lin, Shih, Su, Shih, Lin, Wang, Chang-Chien (CR22) 2010; 10 Cherkasov (CR7) 2014; 57 Wessel, Jurs (CR42) 1994; 66 Chen, Tsai, Wang, Shih, Lee (CR6) 2010; 17 Fernandez-Gonzalez, Yebra-Pimentel, Martinez-Carballo, Simal-Gandara (CR13) 2015; 55 Roy, Chakraborty, Mitra, Ojha, Kar, Das (CR30) 2013; 34 Xu, Stevenson (CR44) 2000; 40 Jaworska, Nikolova-Jeliazkova, Aldenberg (CR18) 2005; 33 Van den Berg (CR39) 2006; 93 Khan (CR19) 2019; 229 Fu, Wang, Wang, Bennett, Li, Zhao, Hu (CR14) 2019; 651 Roy, Das, Ambure, Aher (CR32) 2016; 152 Gooch, Sizochenko, Rasulev, Gorb, Leszczynski (CR15) 2017; 36 Nolte, Peijnenburg, Hendriks, van de Meent (CR27) 2017; 179 I Mitra (2580_CR26) 2010; 36 J Jaworska (2580_CR18) 2005; 33 K Roy (2580_CR33) 2018; 3 EN Cheung (2580_CR8) 1989; 2 R Todeschini (2580_CR35) 1997; 16 B Peric (2580_CR29) 2015; 115 YC Chen (2580_CR6) 2010; 17 F Li (2580_CR20) 2016; 1448 LF Lin (2580_CR22) 2010; 10 B Zhao (2580_CR45) 2011; 119 HL Fu (2580_CR14) 2019; 651 R Fernandez-Gonzalez (2580_CR13) 2015; 55 RE Carhart (2580_CR5) 1985; 25 A Tropsha (2580_CR38) 2003; 22 AT Balaban (2580_CR2) 1983; 114 E Estrada (2580_CR12) 1996; 36 K Roy (2580_CR32) 2016; 152 R Dietz (2580_CR10) 2018; 118 JF Ding (2580_CR11) 2018; 355 K Roy (2580_CR30) 2013; 34 K Mansouri (2580_CR25) 2012; 89 K Roy (2580_CR31) 2015; 145 MD Wessel (2580_CR42) 1994; 66 R Todeschini (2580_CR36) 1994; 8 P Gramatica (2580_CR16) 2007; 26 A Gooch (2580_CR15) 2017; 36 D Palmer (2580_CR28) 2018; 622 HF Li (2580_CR21) 2019; 215 L Wang (2580_CR41) 2014; 35 JD Walker (2580_CR40) 2003; 22 A Cherkasov (2580_CR7) 2014; 57 MC Hemmer (2580_CR17) 1999; 19 SY Ma (2580_CR24) 2015; 283 S Bruzzone (2580_CR4) 2011; 175 M Van den Berg (2580_CR39) 2006; 93 K Khan (2580_CR19) 2019; 229 A Tropsha (2580_CR37) 2010; 29 LS Birnbaum (2580_CR3) 2003; 29 B Ma (2580_CR23) 2010; 158 RP Sheridan (2580_CR34) 1996; 36 TM Nolte (2580_CR27) 2017; 179 A Alibakshi (2580_CR1) 2018; 1026 JJ Wu (2580_CR43) 2011; 39 KH Chi (2580_CR9) 2011; 83 J Xu (2580_CR44) 2000; 40 |
| References_xml | – volume: 93 start-page: 223 year: 2006 end-page: 241 ident: CR39 article-title: The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl055 – volume: 35 start-page: 4009 year: 2014 end-page: 4014 ident: CR41 article-title: Construction of index system for early warning of persistent organic pollutants (POPs) pollution incidents in China publication-title: Huanjing Kexue – volume: 25 start-page: 64 year: 1985 end-page: 73 ident: CR5 article-title: Atom pairs as molecular-features in structure activity studies—definition and applications publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00046a002 – volume: 26 start-page: 694 year: 2007 end-page: 701 ident: CR16 article-title: Principles of QSAR models validation: internal and external publication-title: QSAR Comb Sci doi: 10.1002/qsar.200610151 – volume: 215 start-page: 92 year: 2019 end-page: 100 ident: CR21 article-title: Emissions of 2,3,7,8-substituted and non-2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans from secondary aluminum smelters publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.004 – volume: 36 start-page: 128 year: 1996 end-page: 136 ident: CR34 article-title: Chemical similarity using geometric atom pair descriptors publication-title: J Chem Inf Comput Sci doi: 10.1021/ci950275b – volume: 16 start-page: 113 year: 1997 end-page: 119 ident: CR35 article-title: 3D-modelling and prediction by WHIM descriptors 5. Theory development and chemical meaning of WHIM descriptors publication-title: Quant Struct-Act Relat doi: 10.1002/qsar.19970160203 – volume: 29 start-page: 476 year: 2010 end-page: 488 ident: CR37 article-title: Best practices for QSAR model development, validation, and exploitation publication-title: Mol Inf doi: 10.1002/minf.201000061 – volume: 19 start-page: 151 year: 1999 end-page: 164 ident: CR17 article-title: Deriving the 3D structure of organic molecules from their infrared spectra publication-title: Vib Spectrosc doi: 10.1016/s0924-2031(99)00014-4 – volume: 34 start-page: 1071 year: 2013 end-page: 1082 ident: CR30 article-title: Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data publication-title: J Comput Chem doi: 10.1002/jcc.23231 – volume: 29 start-page: 855 year: 2003 end-page: 860 ident: CR3 article-title: Health effects of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) publication-title: Environ Int doi: 10.1016/S0160-4120(03)00106-5 – volume: 17 start-page: 759 year: 2010 end-page: 769 ident: CR6 article-title: An integrated approach for identification of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) pollutant sources based on human blood contents publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-009-0162-0 – volume: 33 start-page: 445 year: 2005 end-page: 459 ident: CR18 article-title: QSAR applicability domain estimation by projection of the training set in descriptor space: a review publication-title: ATLA-Altern Lab Anim doi: 10.1177/026119290503300508 – volume: 283 start-page: 591 year: 2015 end-page: 598 ident: CR24 article-title: Predicting the ecotoxicity of ionic liquids towards using genetic function approximation and least squares support vector machine publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.10.011 – volume: 115 start-page: 257 year: 2015 end-page: 262 ident: CR29 article-title: Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2015.02.027 – volume: 355 start-page: 74 year: 2018 end-page: 81 ident: CR11 article-title: Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV-vis irradiation: efficacy, kinetics and mechanism publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.05.014 – volume: 651 start-page: 1038 year: 2019 end-page: 1046 ident: CR14 article-title: Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.247 – volume: 89 start-page: 433 year: 2012 end-page: 444 ident: CR25 article-title: Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.081 – volume: 145 start-page: 22 year: 2015 end-page: 29 ident: CR31 article-title: On a simple approach for determining applicability domain of QSAR models publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.04.013 – volume: 119 start-page: 112 year: 2011 end-page: 113 ident: CR45 article-title: Dioxin emissions and human exposure in China: a brief history of policy and research publication-title: Environ Health Perspect doi: 10.1289/ehp.1103535 – volume: 36 start-page: 1067 year: 2010 end-page: 1079 ident: CR26 article-title: Exploring quantitative structure-activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants publication-title: Mol Simul doi: 10.1080/08927022.2010.503326 – volume: 152 start-page: 18 year: 2016 end-page: 33 ident: CR32 article-title: Be aware of error measures. Further studies on validation of predictive QSAR models publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2016.01.008 – volume: 36 start-page: 850 year: 1996 end-page: 853 ident: CR12 article-title: A topological index based on distances of edges of molecular graphs publication-title: J Chem Inf Comput Sci doi: 10.1021/ci9600115 – volume: 114 start-page: 21 year: 1983 end-page: 55 ident: CR2 article-title: Topological indexes for structure-activity correlations publication-title: Top Curr Chem doi: 10.1007/BFb0111212 – volume: 10 start-page: 231 year: 2010 end-page: 244 ident: CR22 article-title: Dry and wet deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the drinking water treatment plant publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2009.09.0059 – volume: 8 start-page: 263 year: 1994 end-page: 272 ident: CR36 article-title: New molecular descriptors for 2D and 3D structures—theory publication-title: J Chemom doi: 10.1002/cem.1180080405 – volume: 36 start-page: 2227 year: 2017 end-page: 2233 ident: CR15 article-title: In vivo toxicity of nitroaromatics: a comprehensive quantitative structure-activity relationship study publication-title: Environ Toxicol Chem doi: 10.1002/etc.3761 – volume: 1026 start-page: 69 year: 2018 end-page: 76 ident: CR1 article-title: Strategies to develop robust neural network models: prediction of flash point as a case study publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.05.015 – volume: 158 start-page: 2773 year: 2010 end-page: 2777 ident: CR23 article-title: Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.04.011 – volume: 3 start-page: 11392 year: 2018 end-page: 11406 ident: CR33 article-title: How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? publication-title: ACS Omega doi: 10.1021/acsomega.8b01647 – volume: 57 start-page: 4977 year: 2014 end-page: 5010 ident: CR7 article-title: QSAR modeling: where have you been? Where are you going to? publication-title: J Med Chem doi: 10.1021/jm4004285 – volume: 66 start-page: 2480 year: 1994 end-page: 2487 ident: CR42 article-title: Prediction of reduced ion mobility constants from structural information using multiple linear-regression analysis and computational neural networks publication-title: Anal Chem doi: 10.1021/ac00087a012 – volume: 118 start-page: 169 year: 2018 end-page: 178 ident: CR10 article-title: Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in east greenland polar bears ( ) during 1983–2013 publication-title: Environ Int doi: 10.1016/j.envint.2018.05.020 – volume: 22 start-page: 69 year: 2003 end-page: 77 ident: CR38 article-title: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models publication-title: QSAR Comb Sci doi: 10.1002/qsar.200390007 – volume: 22 start-page: 1653 year: 2003 end-page: 1665 ident: CR40 article-title: Guidelines for developing and using quantitative structure-activity relationships publication-title: Environ Toxicol Chem doi: 10.1897/01-627 – volume: 39 start-page: 1297 year: 2011 end-page: 1301 ident: CR43 article-title: Determination of ultratrace polychlorinated dibenzo-p-dioxins and dibenzofurans by gas chromatography-triple quadrupole mass spectrometry publication-title: Chin J Anal Chem doi: 10.3724/sp.j.1096.2011.01297 – volume: 1448 start-page: 1 year: 2016 end-page: 8 ident: CR20 article-title: High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples publication-title: J Chromatogr A doi: 10.1016/j.chroma.2016.04.037 – volume: 40 start-page: 1177 year: 2000 end-page: 1187 ident: CR44 article-title: Drug-like index: a new approach to measure drug-like compounds and their diversity publication-title: J Chem Inf Comput Sci doi: 10.1021/ci000026+ – volume: 2 start-page: 39 year: 1989 end-page: 52 ident: CR8 article-title: Polybrominated naphthalene and diiodobenzene interactions with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver cytosol publication-title: Mol Toxicol – volume: 83 start-page: 745 year: 2011 end-page: 752 ident: CR9 article-title: Deposition fluxes of PCDD/Fs in a reservoir system in northern Taiwan publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.069 – volume: 622 start-page: 510 year: 2018 end-page: 516 ident: CR28 article-title: Multiple linear regression based congener profile correlation to estimate the toxicity (TEQ) and dioxin concentration in atmospheric emissions publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.344 – volume: 55 start-page: 1590 year: 2015 end-page: 1617 ident: CR13 article-title: A critical review about human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2012.710279 – volume: 179 start-page: 49 year: 2017 end-page: 56 ident: CR27 article-title: Quantitative structure-activity relationships for green algae growth inhibition by polymer particles publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.067 – volume: 175 start-page: 17 year: 2011 end-page: 23 ident: CR4 article-title: Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure-toxicity relationships publication-title: Chem Eng J doi: 10.1016/j.cej.2011.08.073 – volume: 229 start-page: 8 year: 2019 end-page: 17 ident: CR19 article-title: QSAR modeling of and fish toxicities of biocides using 2D descriptors publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.204 – volume: 622 start-page: 510 year: 2018 ident: 2580_CR28 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.344 – volume: 25 start-page: 64 year: 1985 ident: 2580_CR5 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00046a002 – volume: 36 start-page: 1067 year: 2010 ident: 2580_CR26 publication-title: Mol Simul doi: 10.1080/08927022.2010.503326 – volume: 29 start-page: 476 year: 2010 ident: 2580_CR37 publication-title: Mol Inf doi: 10.1002/minf.201000061 – volume: 215 start-page: 92 year: 2019 ident: 2580_CR21 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.004 – volume: 35 start-page: 4009 year: 2014 ident: 2580_CR41 publication-title: Huanjing Kexue – volume: 16 start-page: 113 year: 1997 ident: 2580_CR35 publication-title: Quant Struct-Act Relat doi: 10.1002/qsar.19970160203 – volume: 114 start-page: 21 year: 1983 ident: 2580_CR2 publication-title: Top Curr Chem doi: 10.1007/BFb0111212 – volume: 158 start-page: 2773 year: 2010 ident: 2580_CR23 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.04.011 – volume: 2 start-page: 39 year: 1989 ident: 2580_CR8 publication-title: Mol Toxicol – volume: 118 start-page: 169 year: 2018 ident: 2580_CR10 publication-title: Environ Int doi: 10.1016/j.envint.2018.05.020 – volume: 175 start-page: 17 year: 2011 ident: 2580_CR4 publication-title: Chem Eng J doi: 10.1016/j.cej.2011.08.073 – volume: 283 start-page: 591 year: 2015 ident: 2580_CR24 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.10.011 – volume: 119 start-page: 112 year: 2011 ident: 2580_CR45 publication-title: Environ Health Perspect doi: 10.1289/ehp.1103535 – volume: 3 start-page: 11392 year: 2018 ident: 2580_CR33 publication-title: ACS Omega doi: 10.1021/acsomega.8b01647 – volume: 22 start-page: 69 year: 2003 ident: 2580_CR38 publication-title: QSAR Comb Sci doi: 10.1002/qsar.200390007 – volume: 34 start-page: 1071 year: 2013 ident: 2580_CR30 publication-title: J Comput Chem doi: 10.1002/jcc.23231 – volume: 93 start-page: 223 year: 2006 ident: 2580_CR39 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl055 – volume: 29 start-page: 855 year: 2003 ident: 2580_CR3 publication-title: Environ Int doi: 10.1016/S0160-4120(03)00106-5 – volume: 89 start-page: 433 year: 2012 ident: 2580_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.081 – volume: 55 start-page: 1590 year: 2015 ident: 2580_CR13 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2012.710279 – volume: 229 start-page: 8 year: 2019 ident: 2580_CR19 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.204 – volume: 8 start-page: 263 year: 1994 ident: 2580_CR36 publication-title: J Chemom doi: 10.1002/cem.1180080405 – volume: 40 start-page: 1177 year: 2000 ident: 2580_CR44 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci000026+ – volume: 83 start-page: 745 year: 2011 ident: 2580_CR9 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.069 – volume: 651 start-page: 1038 year: 2019 ident: 2580_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.247 – volume: 152 start-page: 18 year: 2016 ident: 2580_CR32 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2016.01.008 – volume: 66 start-page: 2480 year: 1994 ident: 2580_CR42 publication-title: Anal Chem doi: 10.1021/ac00087a012 – volume: 1448 start-page: 1 year: 2016 ident: 2580_CR20 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2016.04.037 – volume: 36 start-page: 2227 year: 2017 ident: 2580_CR15 publication-title: Environ Toxicol Chem doi: 10.1002/etc.3761 – volume: 33 start-page: 445 year: 2005 ident: 2580_CR18 publication-title: ATLA-Altern Lab Anim doi: 10.1177/026119290503300508 – volume: 17 start-page: 759 year: 2010 ident: 2580_CR6 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-009-0162-0 – volume: 355 start-page: 74 year: 2018 ident: 2580_CR11 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.05.014 – volume: 1026 start-page: 69 year: 2018 ident: 2580_CR1 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.05.015 – volume: 179 start-page: 49 year: 2017 ident: 2580_CR27 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.067 – volume: 39 start-page: 1297 year: 2011 ident: 2580_CR43 publication-title: Chin J Anal Chem doi: 10.3724/sp.j.1096.2011.01297 – volume: 36 start-page: 850 year: 1996 ident: 2580_CR12 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci9600115 – volume: 115 start-page: 257 year: 2015 ident: 2580_CR29 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2015.02.027 – volume: 57 start-page: 4977 year: 2014 ident: 2580_CR7 publication-title: J Med Chem doi: 10.1021/jm4004285 – volume: 19 start-page: 151 year: 1999 ident: 2580_CR17 publication-title: Vib Spectrosc doi: 10.1016/s0924-2031(99)00014-4 – volume: 36 start-page: 128 year: 1996 ident: 2580_CR34 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci950275b – volume: 22 start-page: 1653 year: 2003 ident: 2580_CR40 publication-title: Environ Toxicol Chem doi: 10.1897/01-627 – volume: 26 start-page: 694 year: 2007 ident: 2580_CR16 publication-title: QSAR Comb Sci doi: 10.1002/qsar.200610151 – volume: 10 start-page: 231 year: 2010 ident: 2580_CR22 publication-title: Aerosol Air Qual Res doi: 10.4209/aaqr.2009.09.0059 – volume: 145 start-page: 22 year: 2015 ident: 2580_CR31 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.04.013 |
| SSID | ssj0012893 |
| Score | 2.3582332 |
| Snippet | Prediction of pEC
50
values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in... Prediction of pEC values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in... Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3207 |
| SubjectTerms | Algorithms Aromatic compounds Artificial neural networks Binding Biomedical and Life Sciences Biomedicine Dioxins Environmental behavior Environmental Health Human behavior Mathematical models Molecular Toxicology Neural networks Occupational Medicine/Industrial Medicine Organic compounds Persistent organic pollutants Pharmacology/Toxicology Pollutants Polychlorinated dibenzodioxins Polychlorinated dibenzofurans Predictions Risk taking Robustness (mathematics) Structure-activity relationships Toxicity Two dimensional models |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48XgQRb-tFBB8UDbRJ23QfFw9UUPBY8K2kaaoL0qq7y_rof_An-M_8JU7SQ8QDfU2TaWEmmZlOvm8ANlUkmZaYlqB3xQQlFB41UT71VSZZwCUPfYN3Pj0Ljzr-yXVwXYHCevVt97okaU_qBuxmcZyY-rYo-unIpcNRGA8MnRdacYe1m9oBphBlU2QfvwCz9Aoq872Mz-7oS4z5pT5q3c7hNExV8SJplwqegRGdz8Jk-bONlBiiOXg9zkmviyMF6RdPXYWRNfmg8SZFRtIujuc9Yq6535CSNHbwqN-eXwywwfSPII_1tbjb7j3ZumxfbBOZp6Q_LGhqWgCU9B3kYSBzC0zDY_Ivgtg-PTfC5qFzeHC1d0Sr7gtUcRH0qRdGnmppnbjS1S2eBtpEY7jBPelFMou4m8hQ-K6UKg1EZiquiWAszdyUM1zDF2AsL3K9BES5bmoyE54l2sdjLeKZEolkHkcPGkTSAa9WQqwqanLTIeMubkiVreJiVFxsFRcPHdhp1tyXxBy_zl6tdRtXm7QXM1NyFhiw-g5sNI9xe5maicx1MbBzhIdBY9hyYLG0ieZ13NDX-SJwYLc2kg_hP3_L8v-mr8AEMwZr8Y-rMIaK1WsYCPWTdWv37_ZQAfc priority: 102 providerName: Springer Nature |
| Title | In silico toxicity evaluation of dioxins using structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) |
| URI | https://link.springer.com/article/10.1007/s00204-019-02580-w https://www.ncbi.nlm.nih.gov/pubmed/31552475 https://www.proquest.com/docview/2296470574 https://www.proquest.com/docview/2297126469 |
| Volume | 93 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1432-0738 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0012893 issn: 0340-5761 databaseCode: A8Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0738 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012893 issn: 0340-5761 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0738 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012893 issn: 0340-5761 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0738 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012893 issn: 0340-5761 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ditNAFD7stjeCiP9G1zKCF4oOJjNJJr0QadfWVbHoaqFehcnMxC0sSXfbUi99Bx_BN_NJPCc_LbK4eJNAJpkMnPn5zpz5vgPw2CRaOI1uCa6u6KDEKuCE8nloci0iqWUcEt_5wyQ-mobvZtFsDyYtF4aOVbZzYjVR29LQHvkLQfFBhegifLU445Q1iqKrbQoN3aRWsC8ribF96ApSxupAdziafDzexhXQvagTJofYOvTgGxpNRaareKLoWvc54oDE55u_l6oL-PNC7LRaksbX4VqDJdmgNv4N2HPFTbhab8Sxml90C369Ldhyjk9Ktiq_zw2ibraT-GZlzuwcnxdLRkfgv7FaUHZ97n7_-EmkB8otwc7bI3Mn8wV78nlw_JTpwrLVpuSW0gPU0h7sbK2LirSGU-j_VCRe809U2W2YjkdfDo94k5mBG6miFQ_iJDB95zJf-64vbeQIqeHgD3SQ6DyRfqZjFfpaGxupnKKxmRLC5r6VAr-Rd6BTlIW7B8z4viWvReaZC3HKS2RuVKZFIHF1jRLtQdAaITWNbDllzzhNt4LLleFSNFxaGS7dePBs-82iFu249O2D1rZpM4CX6a67efBoW4xDj-IpunDlunpHBQgo474Hd-s-sf2dJGm7UEUePG87ya7yf7fl_uVteQBXBHXQigt5AB00pHuIoGiV9WBfzRRek8OgB93BeDic0P3N1_ejXjMKsHQqBn8AALgQ1g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAJIf4JFDASSCBqkdhOnD0gVLVUu_RHAlqpt-A4DqyEkm13Vws33oFH4M5D8STMOD8rVFFx6TWxHUczHn_j8TcD8MSmRjiDbgnuruigJDrihPK5sqURsTQyUcR33ttPhofq7VF8tAK_Oi4MXavsbKI31EVt6Yz8paD4oEZ0oV5PjjlVjaLoaldCo1GLHfdtgS7b9NVoC-X7VIjtNwebQ95WFeBW6njGoySN7MC5PDShG8gidoQyUHEjE6WmTGWYm0Sr0BhbxLqkSGKuhSjKsJAC-0gc9wJcVFJoMgTpZn-lBE19k-RXKvx3nUQtScdT9TwLFR33AUeUkYZ88fdGeArdnorM-g1v-xpcbZEq22hU6zqsuOoGXGmO-VjDXroJP0cVm47xSc1m9dexRUzPlgnEWV2yYozPqymjC_afWJOudn7ifn__QZQKqlzBTroLeZ_HE_bsw8b758xUBZstal5Q8YEmcQg7npvKU-LQQP_PQGKLv6PBbsHhuUjoNqxWdeXuArNhWJBPJMvcKTSoqSytzo2IJO7dcWoCiDohZLZNik61Ob5kfTpnL7gMBZd5wWWLAF70fSZNSpAzW691ss1a8zDNlsocwOP-NS5sitaYytVz30ZHCFeTQQB3Gp3oPycpcZ7ScQDrnZIsB__3XO6dPZdHcGl4sLeb7Y72d-7DZUHK6lmXa7CKQnUPEH7N8ode5xl8PO9F9gft0EB2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB5qBRFEfDdadQUFxS5NdpNs8kGkeB49q8W3wn2Lm82mPZDk2rvj9Jv_wZ_gv_Dn-Euc2bwcUix-6ddks1kys7PPZOaZAXhkEi2sRrcET1d0UGIVcEL5PDSlFpHUMg6J7_x2L97ZD1-Po_Ea_Oq4MJRW2dlEZ6iL2tA_8i1B8UGF6CLcKtu0iHeD4YvpEacOUhRp7dppNCqya78t0X2bPR8NUNaPhRi--vRyh7cdBriRKprzIE4Ck1qb-9q3qSwiS4gDlTjQQaLLRPq5jlXoa22KSJUUVcyVEEXpF1LgMxLnPQfnlZQppROqce_sodlvCv7KEL-DioOWsONoe46Rik58yhFxJD5f_n0onkC6J6K07vAbXoHLLWpl242aXYU1W12DS80vP9Ywma7Dz1HFZhO8UrN5_XViEN-zVTFxVpesmOD1asYo2f6ANaVrF8f29_cfRK-gLhbsuEvOO5xM2ZOP2x-eMl0VbL6seUGNCJoiIuxooStHj0Nj_T8TiQF_T5PdgP0zkdBNWK_qyt4GZny_IP9IlrkN0bgmsjQq1yKQeI5HifYg6ISQmbZAOvXp-JL1pZ2d4DIUXOYEly09eNY_M23Kg5w6eqOTbdaailm2UmwPHva3cZNT5EZXtl64MSpA6BqnHtxqdKJ_naQieqGKPNjslGQ1-b_Xcuf0tTyAC7i9sjejvd27cFGQrjoC5gaso0ztPURi8_y-U3kGn896j_0BSrhE5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+toxicity+evaluation+of+dioxins+using+structure%E2%80%93activity+relationship+%28SAR%29+and+two-dimensional+quantitative+structure%E2%80%93activity+relationship+%282D-QSAR%29&rft.jtitle=Archives+of+toxicology&rft.au=Yang%2C+Hong&rft.au=Du%2C+Zhe&rft.au=Wen-Juan+Lv&rft.au=Xiao-Yun%2C+Zhang&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0340-5761&rft.eissn=1432-0738&rft.volume=93&rft.issue=11&rft.spage=3207&rft.epage=3218&rft_id=info:doi/10.1007%2Fs00204-019-02580-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5761&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5761&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5761&client=summon |