In silico toxicity evaluation of dioxins using structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR)

Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more...

Full description

Saved in:
Bibliographic Details
Published inArchives of toxicology Vol. 93; no. 11; pp. 3207 - 3218
Main Authors Yang, Hong, Du, Zhe, Lv, Wen-Juan, Zhang, Xiao-Yun, Zhai, Hong-Lin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0340-5761
1432-0738
1432-0738
DOI10.1007/s00204-019-02580-w

Cover

Abstract Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC 50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC 50 values and 162 compounds without pEC 50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC 50 value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC 50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC 50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.
AbstractList Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.
Prediction of pEC values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC values and 162 compounds without pEC values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.
Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC 50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC 50 values and 162 compounds without pEC 50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure–activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC 50 value of the compound. Moreover, two-dimensional quantitative structure–activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC 50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl–Cl], and Neoplastic-80. In addition, the pEC 50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.
Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in human body and evaluating their environmental behaviors and risks. To reveal the factors that influence the toxicity of dioxins, provide more accurate mathematical models for predicting the pEC50 values of dioxins, and supplement the toxicity database of persistent organic pollutants, qualitative structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) were used in this study. The research objects in this study were 60 organic compounds with pEC50 values and 162 compounds without pEC50 values, which included polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxins (PCDDs), and polybrominated dibenzo-p-dioxins (PBDDs). The qualitative structure-activity relationship (SAR) was performed first and concluded that halogen substitutions at any of the 2, 3, 7, and 8 sites increased the pEC50 value of the compound. Moreover, two-dimensional quantitative structure-activity relationship (2D-QSAR) models were established by employing multiple linear regression (MLR) method and artificial neural network (ANN) algorithm to investigate the factors affecting the pEC50 values of dioxins molecules. MLR was used to establish the well-understood linear model and ANN was used to establish a more accurate non-linear model. Both models have good fitting, robustness, and predictive ability. Importantly, the ability of dioxins binding to AhR is mainly determined by molecular descriptors including E1m, SM09_AEA (dm), RDF065u, F05 [Cl-Cl], and Neoplastic-80. In addition, the pEC50 values of the 162 dioxins without toxicity data were predicted by MLR and ANN models, respectively.
Author Lv, Wen-Juan
Du, Zhe
Yang, Hong
Zhang, Xiao-Yun
Zhai, Hong-Lin
Author_xml – sequence: 1
  givenname: Hong
  surname: Yang
  fullname: Yang, Hong
  organization: Department of Chemistry, Lanzhou University
– sequence: 2
  givenname: Zhe
  surname: Du
  fullname: Du, Zhe
  organization: Department of Chemistry, Lanzhou University
– sequence: 3
  givenname: Wen-Juan
  surname: Lv
  fullname: Lv, Wen-Juan
  organization: Department of Chemistry, Lanzhou University
– sequence: 4
  givenname: Xiao-Yun
  surname: Zhang
  fullname: Zhang, Xiao-Yun
  email: xyzhang@lzu.edu.cn
  organization: Department of Chemistry, Lanzhou University
– sequence: 5
  givenname: Hong-Lin
  surname: Zhai
  fullname: Zhai, Hong-Lin
  organization: Department of Chemistry, Lanzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31552475$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtuFDEURS2UiHQCG2CALDEJA8Pzr1w1jBI-kSJF_MYlt8sVHFXbHX-6yYw9sAR2xkpwdweQMogYWbLPubbfPUR7PniL0DMKryiAep0AGAgCtCPAZAtk_QjNqOCMgOLtHpoBF0CkaugBOkzpGoCytuOP0QGnUjKh5Az9PPc4ucmZgHP45ozLt9iu9FR0dsHjMOLB1X2fcEnOX-GUYzG5RPvr-w9tsltthGinLZ6-uiU-_nTy8SXWfsB5HcjgFtaneqYnfFO0zy5XdGX_J4idkQ-bsCdof9RTsk_v1iP05e2bz6fvycXlu_PTkwtiuJKZ0KalprN2DhpsxwdpoZNUqpZq2uqx5TDXjRKgtRmkGjkIOVeMDSMMnFWHH6HjXe4yhptiU-4XLhk7TdrbUFLPWKcoa0TTVfTFPfQ6lFg_uaUaoUAqUannd1SZL-zQL6Nb6Hjb_xl_BdgOMDGkFO34F6HQbzrudx33teN-23G_rlJ7TzLboQafo3bTwyrfqane469s_PfsB6zf1vbAJA
CitedBy_id crossref_primary_10_1007_s00204_020_02768_5
crossref_primary_10_1016_j_jenvman_2023_118898
crossref_primary_10_1021_acs_est_0c06778
crossref_primary_10_3390_molecules26061734
crossref_primary_10_3390_molecules27134077
crossref_primary_10_1007_s00204_021_03056_6
crossref_primary_10_1016_j_ecoenv_2020_110817
crossref_primary_10_1016_j_chemosphere_2020_129343
crossref_primary_10_1016_j_jhazmat_2024_136295
crossref_primary_10_3390_molecules25061317
crossref_primary_10_3390_ijerph20010701
crossref_primary_10_1007_s00706_024_03256_7
crossref_primary_10_3390_ijms21010019
crossref_primary_10_1016_j_etap_2022_103893
crossref_primary_10_1016_j_scitotenv_2021_151018
crossref_primary_10_1016_j_scitotenv_2024_173416
crossref_primary_10_3390_ijms21062114
Cites_doi 10.1093/toxsci/kfl055
10.1021/ci00046a002
10.1002/qsar.200610151
10.1016/j.chemosphere.2018.10.004
10.1021/ci950275b
10.1002/qsar.19970160203
10.1002/minf.201000061
10.1016/s0924-2031(99)00014-4
10.1002/jcc.23231
10.1016/S0160-4120(03)00106-5
10.1007/s11356-009-0162-0
10.1177/026119290503300508
10.1016/j.jhazmat.2014.10.011
10.1016/j.ecoenv.2015.02.027
10.1016/j.jhazmat.2018.05.014
10.1016/j.scitotenv.2018.09.247
10.1016/j.chemosphere.2012.05.081
10.1016/j.chemolab.2015.04.013
10.1289/ehp.1103535
10.1080/08927022.2010.503326
10.1016/j.chemolab.2016.01.008
10.1021/ci9600115
10.1007/BFb0111212
10.4209/aaqr.2009.09.0059
10.1002/cem.1180080405
10.1002/etc.3761
10.1016/j.aca.2018.05.015
10.1016/j.envpol.2010.04.011
10.1021/acsomega.8b01647
10.1021/jm4004285
10.1021/ac00087a012
10.1016/j.envint.2018.05.020
10.1002/qsar.200390007
10.1897/01-627
10.3724/sp.j.1096.2011.01297
10.1016/j.chroma.2016.04.037
10.1021/ci000026+
10.1016/j.chemosphere.2011.02.069
10.1016/j.scitotenv.2017.11.344
10.1080/10408398.2012.710279
10.1016/j.chemosphere.2017.01.067
10.1016/j.cej.2011.08.073
10.1016/j.chemosphere.2019.04.204
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Archives of Toxicology is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Archives of Toxicology is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7T2
7TK
7U7
7X7
7XB
88E
88I
8AO
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
M0S
M1P
M2O
M2P
MBDVC
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
DOI 10.1007/s00204-019-02580-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database (via ProQuest SciTech Premium Collection)
Research Library (Corporate)
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1432-0738
EndPage 3218
ExternalDocumentID 31552475
10_1007_s00204_019_02580_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21705064; 21275067
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 21705064
– fundername: National Natural Science Foundation of China
  grantid: 21275067
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.HR
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
4P2
53G
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATCPS
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M2O
M2P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSU
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z82
Z83
Z85
Z86
Z87
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
ZGI
ZMTXR
ZOVNA
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7T2
7TK
7U7
7XB
8FK
C1K
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c375t-1681c9eeb0a0e93d5e09515781a18af830ba6740aacd57f3045b722df0d320a03
IEDL.DBID BENPR
ISSN 0340-5761
1432-0738
IngestDate Mon Sep 08 04:10:41 EDT 2025
Tue Oct 07 05:59:06 EDT 2025
Wed Feb 19 02:30:40 EST 2025
Wed Oct 01 05:02:21 EDT 2025
Thu Apr 24 22:58:50 EDT 2025
Fri Feb 21 02:37:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Dioxins
SAR
Heuristics
POPs
2D-QSAR
pEC
pEC50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-1681c9eeb0a0e93d5e09515781a18af830ba6740aacd57f3045b722df0d320a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31552475
PQID 2296470574
PQPubID 60277
PageCount 12
ParticipantIDs proquest_miscellaneous_2297126469
proquest_journals_2296470574
pubmed_primary_31552475
crossref_primary_10_1007_s00204_019_02580_w
crossref_citationtrail_10_1007_s00204_019_02580_w
springer_journals_10_1007_s00204_019_02580_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Archives of toxicology
PublicationTitleAbbrev Arch Toxicol
PublicationTitleAlternate Arch Toxicol
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Estrada, Gutman (CR12) 1996; 36
Mitra, Saha, Roy (CR26) 2010; 36
Roy, Ambure, Kar (CR33) 2018; 3
Wang, Lu, He, Wang (CR41) 2014; 35
Carhart, Smith, Venkataraghavan (CR5) 1985; 25
Tropsha, Gramatica, Gombar (CR38) 2003; 22
Zhao, Zheng, Jiang (CR45) 2011; 119
Dietz, Desforges, Gustavson, Riget, Born, Letcher, Sonne (CR10) 2018; 118
Balaban, Motoc, Bonchev, Mekenyan (CR2) 1983; 114
Alibakshi (CR1) 2018; 1026
Bruzzone, Chiappe, Focardi, Pretti, Renzi (CR4) 2011; 175
Ding (CR11) 2018; 355
Todeschini, Gramatica (CR35) 1997; 16
Li (CR20) 2016; 1448
Gramatica (CR16) 2007; 26
Sheridan, Miller, Underwood, Kearsley (CR34) 1996; 36
Roy, Kar, Ambure (CR31) 2015; 145
Mansouri, Consonni, Durjava, Kolar, Oberg, Todeschini (CR25) 2012; 89
Peric, Sierra, Marti, Cruanas, Garau (CR29) 2015; 115
Li, Liu, Tang, Lei, Wu, Gao, Su (CR21) 2019; 215
Chi, Hsu, Lin, Kao, Lee (CR9) 2011; 83
Palmer, Pou, Gonzalez-Sabate, Diaz-Ferrero (CR28) 2018; 622
Birnbaum, Staskal, Diliberto (CR3) 2003; 29
Walker, Jaworska, Comber, Schultz, Dearden (CR40) 2003; 22
Todeschini, Lasagni (CR36) 1994; 8
Cheung, McKinney (CR8) 1989; 2
Ma, Chen, Xu, Hayat, He, Xu (CR23) 2010; 158
Wu, Zhang, Dong, Zheng (CR43) 2011; 39
Ma, Lv, Deng, Zhang, Zhai, Lv (CR24) 2015; 283
Tropsha (CR37) 2010; 29
Hemmer, Steinhauer, Gasteiger (CR17) 1999; 19
Lin, Shih, Su, Shih, Lin, Wang, Chang-Chien (CR22) 2010; 10
Cherkasov (CR7) 2014; 57
Wessel, Jurs (CR42) 1994; 66
Chen, Tsai, Wang, Shih, Lee (CR6) 2010; 17
Fernandez-Gonzalez, Yebra-Pimentel, Martinez-Carballo, Simal-Gandara (CR13) 2015; 55
Roy, Chakraborty, Mitra, Ojha, Kar, Das (CR30) 2013; 34
Xu, Stevenson (CR44) 2000; 40
Jaworska, Nikolova-Jeliazkova, Aldenberg (CR18) 2005; 33
Van den Berg (CR39) 2006; 93
Khan (CR19) 2019; 229
Fu, Wang, Wang, Bennett, Li, Zhao, Hu (CR14) 2019; 651
Roy, Das, Ambure, Aher (CR32) 2016; 152
Gooch, Sizochenko, Rasulev, Gorb, Leszczynski (CR15) 2017; 36
Nolte, Peijnenburg, Hendriks, van de Meent (CR27) 2017; 179
I Mitra (2580_CR26) 2010; 36
J Jaworska (2580_CR18) 2005; 33
K Roy (2580_CR33) 2018; 3
EN Cheung (2580_CR8) 1989; 2
R Todeschini (2580_CR35) 1997; 16
B Peric (2580_CR29) 2015; 115
YC Chen (2580_CR6) 2010; 17
F Li (2580_CR20) 2016; 1448
LF Lin (2580_CR22) 2010; 10
B Zhao (2580_CR45) 2011; 119
HL Fu (2580_CR14) 2019; 651
R Fernandez-Gonzalez (2580_CR13) 2015; 55
RE Carhart (2580_CR5) 1985; 25
A Tropsha (2580_CR38) 2003; 22
AT Balaban (2580_CR2) 1983; 114
E Estrada (2580_CR12) 1996; 36
K Roy (2580_CR32) 2016; 152
R Dietz (2580_CR10) 2018; 118
JF Ding (2580_CR11) 2018; 355
K Roy (2580_CR30) 2013; 34
K Mansouri (2580_CR25) 2012; 89
K Roy (2580_CR31) 2015; 145
MD Wessel (2580_CR42) 1994; 66
R Todeschini (2580_CR36) 1994; 8
P Gramatica (2580_CR16) 2007; 26
A Gooch (2580_CR15) 2017; 36
D Palmer (2580_CR28) 2018; 622
HF Li (2580_CR21) 2019; 215
L Wang (2580_CR41) 2014; 35
JD Walker (2580_CR40) 2003; 22
A Cherkasov (2580_CR7) 2014; 57
MC Hemmer (2580_CR17) 1999; 19
SY Ma (2580_CR24) 2015; 283
S Bruzzone (2580_CR4) 2011; 175
M Van den Berg (2580_CR39) 2006; 93
K Khan (2580_CR19) 2019; 229
A Tropsha (2580_CR37) 2010; 29
LS Birnbaum (2580_CR3) 2003; 29
B Ma (2580_CR23) 2010; 158
RP Sheridan (2580_CR34) 1996; 36
TM Nolte (2580_CR27) 2017; 179
A Alibakshi (2580_CR1) 2018; 1026
JJ Wu (2580_CR43) 2011; 39
KH Chi (2580_CR9) 2011; 83
J Xu (2580_CR44) 2000; 40
References_xml – volume: 93
  start-page: 223
  year: 2006
  end-page: 241
  ident: CR39
  article-title: The 2005 world health organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfl055
– volume: 35
  start-page: 4009
  year: 2014
  end-page: 4014
  ident: CR41
  article-title: Construction of index system for early warning of persistent organic pollutants (POPs) pollution incidents in China
  publication-title: Huanjing Kexue
– volume: 25
  start-page: 64
  year: 1985
  end-page: 73
  ident: CR5
  article-title: Atom pairs as molecular-features in structure activity studies—definition and applications
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00046a002
– volume: 26
  start-page: 694
  year: 2007
  end-page: 701
  ident: CR16
  article-title: Principles of QSAR models validation: internal and external
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200610151
– volume: 215
  start-page: 92
  year: 2019
  end-page: 100
  ident: CR21
  article-title: Emissions of 2,3,7,8-substituted and non-2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans from secondary aluminum smelters
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.004
– volume: 36
  start-page: 128
  year: 1996
  end-page: 136
  ident: CR34
  article-title: Chemical similarity using geometric atom pair descriptors
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci950275b
– volume: 16
  start-page: 113
  year: 1997
  end-page: 119
  ident: CR35
  article-title: 3D-modelling and prediction by WHIM descriptors 5. Theory development and chemical meaning of WHIM descriptors
  publication-title: Quant Struct-Act Relat
  doi: 10.1002/qsar.19970160203
– volume: 29
  start-page: 476
  year: 2010
  end-page: 488
  ident: CR37
  article-title: Best practices for QSAR model development, validation, and exploitation
  publication-title: Mol Inf
  doi: 10.1002/minf.201000061
– volume: 19
  start-page: 151
  year: 1999
  end-page: 164
  ident: CR17
  article-title: Deriving the 3D structure of organic molecules from their infrared spectra
  publication-title: Vib Spectrosc
  doi: 10.1016/s0924-2031(99)00014-4
– volume: 34
  start-page: 1071
  year: 2013
  end-page: 1082
  ident: CR30
  article-title: Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23231
– volume: 29
  start-page: 855
  year: 2003
  end-page: 860
  ident: CR3
  article-title: Health effects of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs)
  publication-title: Environ Int
  doi: 10.1016/S0160-4120(03)00106-5
– volume: 17
  start-page: 759
  year: 2010
  end-page: 769
  ident: CR6
  article-title: An integrated approach for identification of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) pollutant sources based on human blood contents
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-009-0162-0
– volume: 33
  start-page: 445
  year: 2005
  end-page: 459
  ident: CR18
  article-title: QSAR applicability domain estimation by projection of the training set in descriptor space: a review
  publication-title: ATLA-Altern Lab Anim
  doi: 10.1177/026119290503300508
– volume: 283
  start-page: 591
  year: 2015
  end-page: 598
  ident: CR24
  article-title: Predicting the ecotoxicity of ionic liquids towards using genetic function approximation and least squares support vector machine
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2014.10.011
– volume: 115
  start-page: 257
  year: 2015
  end-page: 262
  ident: CR29
  article-title: Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2015.02.027
– volume: 355
  start-page: 74
  year: 2018
  end-page: 81
  ident: CR11
  article-title: Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV-vis irradiation: efficacy, kinetics and mechanism
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.05.014
– volume: 651
  start-page: 1038
  year: 2019
  end-page: 1046
  ident: CR14
  article-title: Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.247
– volume: 89
  start-page: 433
  year: 2012
  end-page: 444
  ident: CR25
  article-title: Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.05.081
– volume: 145
  start-page: 22
  year: 2015
  end-page: 29
  ident: CR31
  article-title: On a simple approach for determining applicability domain of QSAR models
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.04.013
– volume: 119
  start-page: 112
  year: 2011
  end-page: 113
  ident: CR45
  article-title: Dioxin emissions and human exposure in China: a brief history of policy and research
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1103535
– volume: 36
  start-page: 1067
  year: 2010
  end-page: 1079
  ident: CR26
  article-title: Exploring quantitative structure-activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants
  publication-title: Mol Simul
  doi: 10.1080/08927022.2010.503326
– volume: 152
  start-page: 18
  year: 2016
  end-page: 33
  ident: CR32
  article-title: Be aware of error measures. Further studies on validation of predictive QSAR models
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2016.01.008
– volume: 36
  start-page: 850
  year: 1996
  end-page: 853
  ident: CR12
  article-title: A topological index based on distances of edges of molecular graphs
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci9600115
– volume: 114
  start-page: 21
  year: 1983
  end-page: 55
  ident: CR2
  article-title: Topological indexes for structure-activity correlations
  publication-title: Top Curr Chem
  doi: 10.1007/BFb0111212
– volume: 10
  start-page: 231
  year: 2010
  end-page: 244
  ident: CR22
  article-title: Dry and wet deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the drinking water treatment plant
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2009.09.0059
– volume: 8
  start-page: 263
  year: 1994
  end-page: 272
  ident: CR36
  article-title: New molecular descriptors for 2D and 3D structures—theory
  publication-title: J Chemom
  doi: 10.1002/cem.1180080405
– volume: 36
  start-page: 2227
  year: 2017
  end-page: 2233
  ident: CR15
  article-title: In vivo toxicity of nitroaromatics: a comprehensive quantitative structure-activity relationship study
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.3761
– volume: 1026
  start-page: 69
  year: 2018
  end-page: 76
  ident: CR1
  article-title: Strategies to develop robust neural network models: prediction of flash point as a case study
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.05.015
– volume: 158
  start-page: 2773
  year: 2010
  end-page: 2777
  ident: CR23
  article-title: Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.04.011
– volume: 3
  start-page: 11392
  year: 2018
  end-page: 11406
  ident: CR33
  article-title: How precise are our quantitative structure-activity relationship derived predictions for new query chemicals?
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01647
– volume: 57
  start-page: 4977
  year: 2014
  end-page: 5010
  ident: CR7
  article-title: QSAR modeling: where have you been? Where are you going to?
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– volume: 66
  start-page: 2480
  year: 1994
  end-page: 2487
  ident: CR42
  article-title: Prediction of reduced ion mobility constants from structural information using multiple linear-regression analysis and computational neural networks
  publication-title: Anal Chem
  doi: 10.1021/ac00087a012
– volume: 118
  start-page: 169
  year: 2018
  end-page: 178
  ident: CR10
  article-title: Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in east greenland polar bears ( ) during 1983–2013
  publication-title: Environ Int
  doi: 10.1016/j.envint.2018.05.020
– volume: 22
  start-page: 69
  year: 2003
  end-page: 77
  ident: CR38
  article-title: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200390007
– volume: 22
  start-page: 1653
  year: 2003
  end-page: 1665
  ident: CR40
  article-title: Guidelines for developing and using quantitative structure-activity relationships
  publication-title: Environ Toxicol Chem
  doi: 10.1897/01-627
– volume: 39
  start-page: 1297
  year: 2011
  end-page: 1301
  ident: CR43
  article-title: Determination of ultratrace polychlorinated dibenzo-p-dioxins and dibenzofurans by gas chromatography-triple quadrupole mass spectrometry
  publication-title: Chin J Anal Chem
  doi: 10.3724/sp.j.1096.2011.01297
– volume: 1448
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR20
  article-title: High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2016.04.037
– volume: 40
  start-page: 1177
  year: 2000
  end-page: 1187
  ident: CR44
  article-title: Drug-like index: a new approach to measure drug-like compounds and their diversity
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci000026+
– volume: 2
  start-page: 39
  year: 1989
  end-page: 52
  ident: CR8
  article-title: Polybrominated naphthalene and diiodobenzene interactions with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver cytosol
  publication-title: Mol Toxicol
– volume: 83
  start-page: 745
  year: 2011
  end-page: 752
  ident: CR9
  article-title: Deposition fluxes of PCDD/Fs in a reservoir system in northern Taiwan
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.069
– volume: 622
  start-page: 510
  year: 2018
  end-page: 516
  ident: CR28
  article-title: Multiple linear regression based congener profile correlation to estimate the toxicity (TEQ) and dioxin concentration in atmospheric emissions
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.11.344
– volume: 55
  start-page: 1590
  year: 2015
  end-page: 1617
  ident: CR13
  article-title: A critical review about human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2012.710279
– volume: 179
  start-page: 49
  year: 2017
  end-page: 56
  ident: CR27
  article-title: Quantitative structure-activity relationships for green algae growth inhibition by polymer particles
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.067
– volume: 175
  start-page: 17
  year: 2011
  end-page: 23
  ident: CR4
  article-title: Theoretical descriptor for the correlation of aquatic toxicity of ionic liquids by quantitative structure-toxicity relationships
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.08.073
– volume: 229
  start-page: 8
  year: 2019
  end-page: 17
  ident: CR19
  article-title: QSAR modeling of and fish toxicities of biocides using 2D descriptors
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.204
– volume: 622
  start-page: 510
  year: 2018
  ident: 2580_CR28
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.11.344
– volume: 25
  start-page: 64
  year: 1985
  ident: 2580_CR5
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00046a002
– volume: 36
  start-page: 1067
  year: 2010
  ident: 2580_CR26
  publication-title: Mol Simul
  doi: 10.1080/08927022.2010.503326
– volume: 29
  start-page: 476
  year: 2010
  ident: 2580_CR37
  publication-title: Mol Inf
  doi: 10.1002/minf.201000061
– volume: 215
  start-page: 92
  year: 2019
  ident: 2580_CR21
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.004
– volume: 35
  start-page: 4009
  year: 2014
  ident: 2580_CR41
  publication-title: Huanjing Kexue
– volume: 16
  start-page: 113
  year: 1997
  ident: 2580_CR35
  publication-title: Quant Struct-Act Relat
  doi: 10.1002/qsar.19970160203
– volume: 114
  start-page: 21
  year: 1983
  ident: 2580_CR2
  publication-title: Top Curr Chem
  doi: 10.1007/BFb0111212
– volume: 158
  start-page: 2773
  year: 2010
  ident: 2580_CR23
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.04.011
– volume: 2
  start-page: 39
  year: 1989
  ident: 2580_CR8
  publication-title: Mol Toxicol
– volume: 118
  start-page: 169
  year: 2018
  ident: 2580_CR10
  publication-title: Environ Int
  doi: 10.1016/j.envint.2018.05.020
– volume: 175
  start-page: 17
  year: 2011
  ident: 2580_CR4
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.08.073
– volume: 283
  start-page: 591
  year: 2015
  ident: 2580_CR24
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2014.10.011
– volume: 119
  start-page: 112
  year: 2011
  ident: 2580_CR45
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1103535
– volume: 3
  start-page: 11392
  year: 2018
  ident: 2580_CR33
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01647
– volume: 22
  start-page: 69
  year: 2003
  ident: 2580_CR38
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200390007
– volume: 34
  start-page: 1071
  year: 2013
  ident: 2580_CR30
  publication-title: J Comput Chem
  doi: 10.1002/jcc.23231
– volume: 93
  start-page: 223
  year: 2006
  ident: 2580_CR39
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfl055
– volume: 29
  start-page: 855
  year: 2003
  ident: 2580_CR3
  publication-title: Environ Int
  doi: 10.1016/S0160-4120(03)00106-5
– volume: 89
  start-page: 433
  year: 2012
  ident: 2580_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.05.081
– volume: 55
  start-page: 1590
  year: 2015
  ident: 2580_CR13
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2012.710279
– volume: 229
  start-page: 8
  year: 2019
  ident: 2580_CR19
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.204
– volume: 8
  start-page: 263
  year: 1994
  ident: 2580_CR36
  publication-title: J Chemom
  doi: 10.1002/cem.1180080405
– volume: 40
  start-page: 1177
  year: 2000
  ident: 2580_CR44
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci000026+
– volume: 83
  start-page: 745
  year: 2011
  ident: 2580_CR9
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.069
– volume: 651
  start-page: 1038
  year: 2019
  ident: 2580_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.247
– volume: 152
  start-page: 18
  year: 2016
  ident: 2580_CR32
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2016.01.008
– volume: 66
  start-page: 2480
  year: 1994
  ident: 2580_CR42
  publication-title: Anal Chem
  doi: 10.1021/ac00087a012
– volume: 1448
  start-page: 1
  year: 2016
  ident: 2580_CR20
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2016.04.037
– volume: 36
  start-page: 2227
  year: 2017
  ident: 2580_CR15
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.3761
– volume: 33
  start-page: 445
  year: 2005
  ident: 2580_CR18
  publication-title: ATLA-Altern Lab Anim
  doi: 10.1177/026119290503300508
– volume: 17
  start-page: 759
  year: 2010
  ident: 2580_CR6
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-009-0162-0
– volume: 355
  start-page: 74
  year: 2018
  ident: 2580_CR11
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.05.014
– volume: 1026
  start-page: 69
  year: 2018
  ident: 2580_CR1
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.05.015
– volume: 179
  start-page: 49
  year: 2017
  ident: 2580_CR27
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.067
– volume: 39
  start-page: 1297
  year: 2011
  ident: 2580_CR43
  publication-title: Chin J Anal Chem
  doi: 10.3724/sp.j.1096.2011.01297
– volume: 36
  start-page: 850
  year: 1996
  ident: 2580_CR12
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci9600115
– volume: 115
  start-page: 257
  year: 2015
  ident: 2580_CR29
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2015.02.027
– volume: 57
  start-page: 4977
  year: 2014
  ident: 2580_CR7
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– volume: 19
  start-page: 151
  year: 1999
  ident: 2580_CR17
  publication-title: Vib Spectrosc
  doi: 10.1016/s0924-2031(99)00014-4
– volume: 36
  start-page: 128
  year: 1996
  ident: 2580_CR34
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci950275b
– volume: 22
  start-page: 1653
  year: 2003
  ident: 2580_CR40
  publication-title: Environ Toxicol Chem
  doi: 10.1897/01-627
– volume: 26
  start-page: 694
  year: 2007
  ident: 2580_CR16
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200610151
– volume: 10
  start-page: 231
  year: 2010
  ident: 2580_CR22
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.2009.09.0059
– volume: 145
  start-page: 22
  year: 2015
  ident: 2580_CR31
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.04.013
SSID ssj0012893
Score 2.3582332
Snippet Prediction of pEC 50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in...
Prediction of pEC values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in...
Prediction of pEC50 values of dioxins binding with the aryl hydrocarbon receptor (AhR) is of great significance for exploring how dioxins induce toxicity in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3207
SubjectTerms Algorithms
Aromatic compounds
Artificial neural networks
Binding
Biomedical and Life Sciences
Biomedicine
Dioxins
Environmental behavior
Environmental Health
Human behavior
Mathematical models
Molecular Toxicology
Neural networks
Occupational Medicine/Industrial Medicine
Organic compounds
Persistent organic pollutants
Pharmacology/Toxicology
Pollutants
Polychlorinated dibenzodioxins
Polychlorinated dibenzofurans
Predictions
Risk taking
Robustness (mathematics)
Structure-activity relationships
Toxicity
Two dimensional models
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48XgQRb-tFBB8UDbRJ23QfFw9UUPBY8K2kaaoL0qq7y_rof_An-M_8JU7SQ8QDfU2TaWEmmZlOvm8ANlUkmZaYlqB3xQQlFB41UT71VSZZwCUPfYN3Pj0Ljzr-yXVwXYHCevVt97okaU_qBuxmcZyY-rYo-unIpcNRGA8MnRdacYe1m9oBphBlU2QfvwCz9Aoq872Mz-7oS4z5pT5q3c7hNExV8SJplwqegRGdz8Jk-bONlBiiOXg9zkmviyMF6RdPXYWRNfmg8SZFRtIujuc9Yq6535CSNHbwqN-eXwywwfSPII_1tbjb7j3ZumxfbBOZp6Q_LGhqWgCU9B3kYSBzC0zDY_Ivgtg-PTfC5qFzeHC1d0Sr7gtUcRH0qRdGnmppnbjS1S2eBtpEY7jBPelFMou4m8hQ-K6UKg1EZiquiWAszdyUM1zDF2AsL3K9BES5bmoyE54l2sdjLeKZEolkHkcPGkTSAa9WQqwqanLTIeMubkiVreJiVFxsFRcPHdhp1tyXxBy_zl6tdRtXm7QXM1NyFhiw-g5sNI9xe5maicx1MbBzhIdBY9hyYLG0ieZ13NDX-SJwYLc2kg_hP3_L8v-mr8AEMwZr8Y-rMIaK1WsYCPWTdWv37_ZQAfc
  priority: 102
  providerName: Springer Nature
Title In silico toxicity evaluation of dioxins using structure–activity relationship (SAR) and two-dimensional quantitative structure–activity relationship (2D-QSAR)
URI https://link.springer.com/article/10.1007/s00204-019-02580-w
https://www.ncbi.nlm.nih.gov/pubmed/31552475
https://www.proquest.com/docview/2296470574
https://www.proquest.com/docview/2297126469
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1432-0738
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0012893
  issn: 0340-5761
  databaseCode: A8Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0738
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012893
  issn: 0340-5761
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0738
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012893
  issn: 0340-5761
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0738
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012893
  issn: 0340-5761
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ditNAFD7stjeCiP9G1zKCF4oOJjNJJr0QadfWVbHoaqFehcnMxC0sSXfbUi99Bx_BN_NJPCc_LbK4eJNAJpkMnPn5zpz5vgPw2CRaOI1uCa6u6KDEKuCE8nloci0iqWUcEt_5wyQ-mobvZtFsDyYtF4aOVbZzYjVR29LQHvkLQfFBhegifLU445Q1iqKrbQoN3aRWsC8ribF96ApSxupAdziafDzexhXQvagTJofYOvTgGxpNRaareKLoWvc54oDE55u_l6oL-PNC7LRaksbX4VqDJdmgNv4N2HPFTbhab8Sxml90C369Ldhyjk9Ktiq_zw2ibraT-GZlzuwcnxdLRkfgv7FaUHZ97n7_-EmkB8otwc7bI3Mn8wV78nlw_JTpwrLVpuSW0gPU0h7sbK2LirSGU-j_VCRe809U2W2YjkdfDo94k5mBG6miFQ_iJDB95zJf-64vbeQIqeHgD3SQ6DyRfqZjFfpaGxupnKKxmRLC5r6VAr-Rd6BTlIW7B8z4viWvReaZC3HKS2RuVKZFIHF1jRLtQdAaITWNbDllzzhNt4LLleFSNFxaGS7dePBs-82iFu249O2D1rZpM4CX6a67efBoW4xDj-IpunDlunpHBQgo474Hd-s-sf2dJGm7UEUePG87ya7yf7fl_uVteQBXBHXQigt5AB00pHuIoGiV9WBfzRRek8OgB93BeDic0P3N1_ejXjMKsHQqBn8AALgQ1g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAJIf4JFDASSCBqkdhOnD0gVLVUu_RHAlqpt-A4DqyEkm13Vws33oFH4M5D8STMOD8rVFFx6TWxHUczHn_j8TcD8MSmRjiDbgnuruigJDrihPK5sqURsTQyUcR33ttPhofq7VF8tAK_Oi4MXavsbKI31EVt6Yz8paD4oEZ0oV5PjjlVjaLoaldCo1GLHfdtgS7b9NVoC-X7VIjtNwebQ95WFeBW6njGoySN7MC5PDShG8gidoQyUHEjE6WmTGWYm0Sr0BhbxLqkSGKuhSjKsJAC-0gc9wJcVFJoMgTpZn-lBE19k-RXKvx3nUQtScdT9TwLFR33AUeUkYZ88fdGeArdnorM-g1v-xpcbZEq22hU6zqsuOoGXGmO-VjDXroJP0cVm47xSc1m9dexRUzPlgnEWV2yYozPqymjC_afWJOudn7ifn__QZQKqlzBTroLeZ_HE_bsw8b758xUBZstal5Q8YEmcQg7npvKU-LQQP_PQGKLv6PBbsHhuUjoNqxWdeXuArNhWJBPJMvcKTSoqSytzo2IJO7dcWoCiDohZLZNik61Ob5kfTpnL7gMBZd5wWWLAF70fSZNSpAzW691ss1a8zDNlsocwOP-NS5sitaYytVz30ZHCFeTQQB3Gp3oPycpcZ7ScQDrnZIsB__3XO6dPZdHcGl4sLeb7Y72d-7DZUHK6lmXa7CKQnUPEH7N8ode5xl8PO9F9gft0EB2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB5qBRFEfDdadQUFxS5NdpNs8kGkeB49q8W3wn2Lm82mPZDk2rvj9Jv_wZ_gv_Dn-Euc2bwcUix-6ddks1kys7PPZOaZAXhkEi2sRrcET1d0UGIVcEL5PDSlFpHUMg6J7_x2L97ZD1-Po_Ea_Oq4MJRW2dlEZ6iL2tA_8i1B8UGF6CLcKtu0iHeD4YvpEacOUhRp7dppNCqya78t0X2bPR8NUNaPhRi--vRyh7cdBriRKprzIE4Ck1qb-9q3qSwiS4gDlTjQQaLLRPq5jlXoa22KSJUUVcyVEEXpF1LgMxLnPQfnlZQppROqce_sodlvCv7KEL-DioOWsONoe46Rik58yhFxJD5f_n0onkC6J6K07vAbXoHLLWpl242aXYU1W12DS80vP9Ywma7Dz1HFZhO8UrN5_XViEN-zVTFxVpesmOD1asYo2f6ANaVrF8f29_cfRK-gLhbsuEvOO5xM2ZOP2x-eMl0VbL6seUGNCJoiIuxooStHj0Nj_T8TiQF_T5PdgP0zkdBNWK_qyt4GZny_IP9IlrkN0bgmsjQq1yKQeI5HifYg6ISQmbZAOvXp-JL1pZ2d4DIUXOYEly09eNY_M23Kg5w6eqOTbdaailm2UmwPHva3cZNT5EZXtl64MSpA6BqnHtxqdKJ_naQieqGKPNjslGQ1-b_Xcuf0tTyAC7i9sjejvd27cFGQrjoC5gaso0ztPURi8_y-U3kGn896j_0BSrhE5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+toxicity+evaluation+of+dioxins+using+structure%E2%80%93activity+relationship+%28SAR%29+and+two-dimensional+quantitative+structure%E2%80%93activity+relationship+%282D-QSAR%29&rft.jtitle=Archives+of+toxicology&rft.au=Yang%2C+Hong&rft.au=Du%2C+Zhe&rft.au=Wen-Juan+Lv&rft.au=Xiao-Yun%2C+Zhang&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0340-5761&rft.eissn=1432-0738&rft.volume=93&rft.issue=11&rft.spage=3207&rft.epage=3218&rft_id=info:doi/10.1007%2Fs00204-019-02580-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5761&client=summon