Maximum current injection method for grid‐forming inverters in an islanded microgrid subject to short circuits

In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work tak...

Full description

Saved in:
Bibliographic Details
Published inIET power electronics Vol. 16; no. 6; pp. 1028 - 1042
Main Authors Miret, Jaume, Castilla, Miguel, Velasco, Manel, Guzmán, Ramón, Vicuña, Luis García
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2023
Subjects
Online AccessGet full text
ISSN1755-4535
1755-4543
DOI10.1049/pel2.12448

Cover

Abstract In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control. Ensuring that any node injects its maximum rated current during the short circuit, it emulates the most common low‐voltage ride‐through protocols for grid‐feeding sources oriented to support the grid and, in this way, the voltage unbalance is reduced. To develop the control proposal, a model of the faulted system is presented in order to evaluate the stability of the closed‐loop system. A general modelling methodology is introduced in order to derive the control for any microgrid configuration. Finally, selected experimental results are reported in order to validate the effectiveness of the proposed control. In islanded microgrids, when a short circuit or a sudden over load occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control.
AbstractList In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control. Ensuring that any node injects its maximum rated current during the short circuit, it emulates the most common low‐voltage ride‐through protocols for grid‐feeding sources oriented to support the grid and, in this way, the voltage unbalance is reduced. To develop the control proposal, a model of the faulted system is presented in order to evaluate the stability of the closed‐loop system. A general modelling methodology is introduced in order to derive the control for any microgrid configuration. Finally, selected experimental results are reported in order to validate the effectiveness of the proposed control.
Abstract In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control. Ensuring that any node injects its maximum rated current during the short circuit, it emulates the most common low‐voltage ride‐through protocols for grid‐feeding sources oriented to support the grid and, in this way, the voltage unbalance is reduced. To develop the control proposal, a model of the faulted system is presented in order to evaluate the stability of the closed‐loop system. A general modelling methodology is introduced in order to derive the control for any microgrid configuration. Finally, selected experimental results are reported in order to validate the effectiveness of the proposed control.
In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control. Ensuring that any node injects its maximum rated current during the short circuit, it emulates the most common low‐voltage ride‐through protocols for grid‐feeding sources oriented to support the grid and, in this way, the voltage unbalance is reduced. To develop the control proposal, a model of the faulted system is presented in order to evaluate the stability of the closed‐loop system. A general modelling methodology is introduced in order to derive the control for any microgrid configuration. Finally, selected experimental results are reported in order to validate the effectiveness of the proposed control. In islanded microgrids, when a short circuit or a sudden over load occurs, it provokes an abrupt increment in the currents supplied by the generation nodes, which feed the load collaboratively. This is particularly challenging for inverter‐based nodes, due to its reduced power capacity. This work takes advantage of the droop‐method basic configuration to propose an additional closed‐loop control, which ensures maximum current injection during any kind of short circuit maintaining the underlying droop control.
Author Guzmán, Ramón
Vicuña, Luis García
Miret, Jaume
Velasco, Manel
Castilla, Miguel
Author_xml – sequence: 1
  givenname: Jaume
  orcidid: 0000-0003-1175-4900
  surname: Miret
  fullname: Miret, Jaume
  email: jaume.miret@upc.edu
  organization: Technical University of Catalonia
– sequence: 2
  givenname: Miguel
  orcidid: 0000-0002-3284-860X
  surname: Castilla
  fullname: Castilla, Miguel
  organization: Technical University of Catalonia
– sequence: 3
  givenname: Manel
  surname: Velasco
  fullname: Velasco, Manel
  organization: Technical University of Catalonia
– sequence: 4
  givenname: Ramón
  surname: Guzmán
  fullname: Guzmán, Ramón
  organization: Technical University of Catalonia
– sequence: 5
  givenname: Luis García
  surname: Vicuña
  fullname: Vicuña, Luis García
  organization: Technical University of Catalonia
BookMark eNp9kM1KAzEUhYMoaKsbnyBroZr_SZdSqhYqutB1yEySNmVmUpJU7c5H8Bl9EmdacSHi6h4u53yXewbgsA2tBeAco0uM2PhqbWtyiQlj8gCc4ILzEeOMHv5oyo_BIKUVQgIzLk_A-l6_-WbTwGoTo20z9O3KVtmHFjY2L4OBLkS4iN58vn90svHtovO82JhtTJ2CuoU-1bo11sDGVzH0Zpg2Zc-BOcC0DDHDysdq43M6BUdO18mefc8heL6ZPk3uRvOH29nkej6qaMHlqMDSltwgTsoxIVRoUjrrCoIoF4wZbEtDONNIUMawoeOSCuwcEZIXJcdM0yGY7bkm6JVaR9_ouFVBe7VbhLhQOmZf1VZxYZyxlJSGSialkAYL5wTpjhUU7VgXe1b3XUrRuh8eRqrvXfW9q13vnRn9Mlc-677RHLWv_47gfeTV13b7D1w9Tudkn_kC-VWZJw
CitedBy_id crossref_primary_10_1109_TEC_2024_3419010
crossref_primary_10_1109_TIE_2023_3337500
crossref_primary_10_1080_15325008_2024_2356044
crossref_primary_10_3390_mca29060108
Cites_doi 10.1049/iet-rpg.2008.0070
10.1109/MIE.2010.938720
10.1109/TIE.2012.2194951
10.1109/TIE.2010.2066534
10.1109/TPEL.2013.2279162
10.1109/TSG.2017.2749259
10.1109/TPWRD.2018.2844082
10.1109/TPWRD.2017.2682164
10.1109/TIE.2006.881997
10.1109/ECCE.2015.7309831
10.1109/TSG.2016.2594811
10.1109/TIA.2014.2345877
10.1109/TIA.2021.3104269
10.1109/ACCESS.2018.2838563
10.1109/ISGTEUROPE.2010.5638965
10.1109/TCST.2018.2863645
10.1109/JESTPE.2019.2962245
10.1109/TEC.2015.2395718
10.1109/TEC.2015.2395717
10.1109/PEDG.2015.7223020
10.1109/TPEL.2010.2050492
10.1109/TIA.2011.2168592
10.1109/TPWRD.2012.2205713
10.1109/TSG.2016.2517201
10.1049/iet-pel.2016.0608
10.1109/TIE.2014.2347266
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/pel2.12448
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1755-4543
EndPage 1042
ExternalDocumentID oai_doaj_org_article_56dfde32bd3848868d16ff622037304a
10_1049_pel2_12448
PEL212448
Genre article
GrantInformation_xml – fundername: Ministerio de Ciencia y Tecnología
  funderid: I+D+i PID2021‐122835OB‐C21
GroupedDBID 0R~
0ZK
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
LXU
NADUK
NXXTH
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
UNMZH
~ZZ
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
MCNEO
P62
PHGZM
PHGZT
PQGLB
PTHSS
WIN
ID FETCH-LOGICAL-c3758-718eb5d052b92236a2bfef72035644d1ebd254a063441d39b361ff26857b514a3
IEDL.DBID DOA
ISSN 1755-4535
IngestDate Wed Aug 27 01:06:17 EDT 2025
Tue Aug 05 12:10:39 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Jan 22 16:22:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3758-718eb5d052b92236a2bfef72035644d1ebd254a063441d39b361ff26857b514a3
ORCID 0000-0002-3284-860X
0000-0003-1175-4900
OpenAccessLink https://doaj.org/article/56dfde32bd3848868d16ff622037304a
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_56dfde32bd3848868d16ff622037304a
crossref_primary_10_1049_pel2_12448
crossref_citationtrail_10_1049_pel2_12448
wiley_primary_10_1049_pel2_12448_PEL212448
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle IET power electronics
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2017; 8
2006; 53
2012
2011
2010
2015; 51
2019; 10
2015; 30
2019; 34
2009
1998
2016; 31
2006
1995
2005
2014; 29
2011; 58
2018; 6
2021; 57
2018; 9
2010; 25
2000
2015; 62
2017; 10
2019
2019; 27
2013; 60
2015
2012; 27
2011; 47
2013
2009; 3
2018; 33
2010; 4
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
Doyle J.C. (e_1_2_10_38_1) 2013
e_1_2_10_20_1
Fortuna L. (e_1_2_10_35_1) 2012
Chen H.‐C. (e_1_2_10_11_1) 2016; 31
Bollen M.H.J. (e_1_2_10_7_1) 2000
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
Zhou K. (e_1_2_10_37_1) 1998
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_32_1
e_1_2_10_31_1
Taul M.G. (e_1_2_10_26_1) 2019
e_1_2_10_30_1
Anderson P.M. (e_1_2_10_33_1) 1995
Skogestad S. (e_1_2_10_36_1) 2005
e_1_2_10_29_1
IEEE Application Guide for IEEE Std 1547 (e_1_2_10_3_1) 2009
e_1_2_10_27_1
e_1_2_10_25_1
Chen Z. (e_1_2_10_28_1) 2018; 33
References_xml – year: 2009
– volume: 53
  start-page: 1398
  issue: 5
  year: 2006
  end-page: 1409
  article-title: Overview of control and grid synchronization for distributed power generation systems
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2015
  end-page: 8
  article-title: Evaluation of current limiting methods for grid forming inverters in medium voltage microgrids
– year: 2005
– volume: 9
  start-page: 472
  issue: 1
  year: 2021
  end-page: 484
  article-title: Fault detection and protection strategy for islanded inverter‐based microgrids
  publication-title: IEEE J. Emerg. Sel. Topics Power Electron.
– volume: 31
  start-page: 8562
  issue: 12
  year: 2016
  end-page: 8571
  article-title: A low‐voltage ride‐through technique for grid‐connected converters with reduced power transistors stress
  publication-title: IEEE Trans. Power Electron.
– start-page: 1
  year: 2015
  end-page: 8
  article-title: Development of a short circuit strategy for medium voltage hybrid microgrids
– volume: 10
  start-page: 462
  issue: 4
  year: 2017
  end-page: 470
  article-title: Improved power decoupling control strategy based on virtual synchronous generator
  publication-title: IET Power Electron.
– volume: 25
  start-page: 2552
  issue: 10
  year: 2010
  end-page: 2563
  article-title: Variable‐frequency grid‐sequence detector based on a quasi‐ideal low‐pass filter stage and a phase‐locked loop
  publication-title: IEEE Trans. Power Electron.
– volume: 30
  start-page: 864
  issue: 3
  year: 2015
  end-page: 873
  article-title: Online reference limitation method of shunt‐connected converters to the grid to avoid exceeding voltage and current limits under unbalanced operation—Part II: Validation
  publication-title: IEEE Trans. Energy Convers.
– volume: 58
  start-page: 158
  issue: 1
  year: 2011
  end-page: 172
  article-title: Hierarchical control of droop‐controlled AC and DC microgrids ‐ A general approach towards standardization
  publication-title: IEEE Trans. Ind. Electron.
– year: 2000
– volume: 51
  start-page: 1630
  issue: 2
  year: 2015
  end-page: 1638
  article-title: Virtual impedance current limiting for inverters in microgrids with synchronous generators
  publication-title: IEEE Trans. Ind. Apl.
– volume: 57
  start-page: 6362
  issue: 6
  year: 2021
  end-page: 6374
  article-title: A new current limiting and overload protection scheme for distributed inverters in microgrids under grid faults
  publication-title: IEEE Trans. Ind. Appl.
– year: 2019
  article-title: Current limiting control with enhanced dynamics of grid‐forming converters during fault conditions
  publication-title: IEEE J. Emerg. Sel. Topics Power Electron.
– volume: 62
  start-page: 1515
  issue: 3
  year: 2015
  end-page: 1525
  article-title: Active and reactive power strategies with peak current limitation for distributed generation inverters during unbalanced grid faults
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 1
  year: 2010
  end-page: 6
  article-title: Virtual resistance principle for the overcurrent protection of PWM voltage source inverter
– volume: 27
  start-page: 2403
  issue: 6
  year: 2019
  end-page: 2416
  article-title: Approximate Kron reduction methods for electrical networks with applications to plug‐and‐play control of AC islanded microgrids
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 60
  start-page: 1271
  issue: 4
  year: 2013
  end-page: 1280
  article-title: Modeling, analysis, and design of stationary reference frame droop controlled parallel three‐phase voltage source inverters
  publication-title: IEEE Trans. Ind. Electron.
– year: 1998
– year: 2012
– volume: 4
  start-page: 23
  issue: 4
  year: 2010
  end-page: 29
  article-title: Hierarchical control of intelligent microgrids
  publication-title: IEEE Ind. Electron. Mag.
– volume: 8
  start-page: 2138
  issue: 5
  year: 2017
  end-page: 2148
  article-title: A current limiting strategy to improve fault ride‐through of inverter interfaced autonomous microgrids
  publication-title: IEEE Trans. Smart Grid
– volume: 34
  start-page: 1827
  issue: 5
  year: 2019
  end-page: 1842
  article-title: Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme
  publication-title: IEEE Trans. Power Delivery
– volume: 27
  start-page: 1737
  issue: 4
  year: 2012
  end-page: 1747
  article-title: A control strategy for enhanced operation of inverter‐based microgrids under transient disturbances and network faults
  publication-title: IEEE Trans. Power Del.
– volume: 9
  start-page: 1599
  issue: 3
  year: 2018
  end-page: 1612
  article-title: Virtual‐impedance‐based fault current limiters for inverter dominated AC microgrids
  publication-title: IEEE Trans. Smart Grid
– year: 2006
  article-title: Resolution‐P.O.12.3‐Response requirements against voltage dips in wind installations
– volume: 29
  start-page: 3786
  issue: 7
  year: 2014
  end-page: 3797
  article-title: Comparison of current‐limiting strategies during fault ride‐through of inverters to prevent latch‐up and wind‐up
  publication-title: IEEE Trans. Power Electron.
– volume: 10
  start-page: 578
  issue: 1
  year: 2019
  end-page: 591
  article-title: Transient stability analysis and control design of droop‐controlled voltage source converters considering current limitation
  publication-title: IEEE Trans. Smart Grid
– volume: 3
  start-page: 308
  issue: 3
  year: 2009
  end-page: 332
  article-title: A review of grid code technical requirements for wind farms
  publication-title: IET Renew. Power Gen.
– year: 1995
– start-page: 1
  year: 2011
  end-page: 8
  article-title: A method of voltage limiting and distortion avoidance for islanded inverter‐fed networks under fault
– volume: 33
  start-page: 7684
  issue: 9
  year: 2018
  end-page: 7697
  article-title: A novel protection scheme for inverter‐interfaced microgrid (IIM) Operated in Islanded Mode
  publication-title: IEEE Trans. Power Electron.
– volume: 33
  start-page: 649
  issue: 2
  year: 2018
  end-page: 661
  article-title: A review on grid‐connected converter control for short circuit power provision under grid unbalanced faults
  publication-title: IEEE Trans. Power Del.
– volume: 6
  start-page: 41458
  year: 2018
  end-page: 41489
  article-title: Reactive power management in renewable rich power grids: A review of grid‐codes, renewable generators, support devices, control strategies and optimization algorithms
  publication-title: IEEE Access
– volume: 30
  start-page: 852
  issue: 3
  year: 2015
  end-page: 863
  article-title: Online reference limitation method of shunt‐connected converters to the grid to avoid exceeding voltage and current limits under unbalanced operation—Part I: Theory
  publication-title: IEEE Trans. Energy Convers.
– volume: 47
  start-page: 2525
  issue: 6
  year: 2011
  end-page: 2538
  article-title: Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation
  publication-title: IEEE Trans. Ind. Appl.
– year: 2013
– volume-title: Model Order Reduction Techniques With Applications in Electrical Engineering
  year: 2012
  ident: e_1_2_10_35_1
– ident: e_1_2_10_5_1
  doi: 10.1049/iet-rpg.2008.0070
– ident: e_1_2_10_29_1
  doi: 10.1109/MIE.2010.938720
– ident: e_1_2_10_31_1
  doi: 10.1109/TIE.2012.2194951
– ident: e_1_2_10_32_1
  doi: 10.1109/TIE.2010.2066534
– volume-title: Multivariable Feedback Control: Analysis and Design
  year: 2005
  ident: e_1_2_10_36_1
– ident: e_1_2_10_15_1
  doi: 10.1109/TPEL.2013.2279162
– ident: e_1_2_10_25_1
  doi: 10.1109/TSG.2017.2749259
– ident: e_1_2_10_23_1
  doi: 10.1109/TPWRD.2018.2844082
– volume-title: Understanding Power Quality Problems: Voltage Sags and Interruptions
  year: 2000
  ident: e_1_2_10_7_1
– ident: e_1_2_10_12_1
  doi: 10.1109/TPWRD.2017.2682164
– ident: e_1_2_10_2_1
  doi: 10.1109/TIE.2006.881997
– year: 2019
  ident: e_1_2_10_26_1
  article-title: Current limiting control with enhanced dynamics of grid‐forming converters during fault conditions
  publication-title: IEEE J. Emerg. Sel. Topics Power Electron.
– ident: e_1_2_10_19_1
– ident: e_1_2_10_13_1
  doi: 10.1109/ECCE.2015.7309831
– volume-title: Feedback Control Theory
  year: 2013
  ident: e_1_2_10_38_1
– ident: e_1_2_10_24_1
  doi: 10.1109/TSG.2016.2594811
– ident: e_1_2_10_22_1
  doi: 10.1109/TIA.2014.2345877
– ident: e_1_2_10_17_1
  doi: 10.1109/TIA.2021.3104269
– ident: e_1_2_10_6_1
  doi: 10.1109/ACCESS.2018.2838563
– volume-title: Essentials of Robust Control
  year: 1998
  ident: e_1_2_10_37_1
– ident: e_1_2_10_20_1
  doi: 10.1109/ISGTEUROPE.2010.5638965
– ident: e_1_2_10_34_1
  doi: 10.1109/TCST.2018.2863645
– ident: e_1_2_10_4_1
– ident: e_1_2_10_18_1
  doi: 10.1109/JESTPE.2019.2962245
– ident: e_1_2_10_8_1
  doi: 10.1109/TEC.2015.2395718
– ident: e_1_2_10_9_1
  doi: 10.1109/TEC.2015.2395717
– ident: e_1_2_10_14_1
  doi: 10.1109/PEDG.2015.7223020
– volume-title: Analysis of Power Faulted Systems
  year: 1995
  ident: e_1_2_10_33_1
– ident: e_1_2_10_39_1
  doi: 10.1109/TPEL.2010.2050492
– volume-title: IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems
  year: 2009
  ident: e_1_2_10_3_1
– ident: e_1_2_10_21_1
  doi: 10.1109/TIA.2011.2168592
– volume: 31
  start-page: 8562
  issue: 12
  year: 2016
  ident: e_1_2_10_11_1
  article-title: A low‐voltage ride‐through technique for grid‐connected converters with reduced power transistors stress
  publication-title: IEEE Trans. Power Electron.
– ident: e_1_2_10_16_1
  doi: 10.1109/TPWRD.2012.2205713
– volume: 33
  start-page: 7684
  issue: 9
  year: 2018
  ident: e_1_2_10_28_1
  article-title: A novel protection scheme for inverter‐interfaced microgrid (IIM) Operated in Islanded Mode
  publication-title: IEEE Trans. Power Electron.
– ident: e_1_2_10_27_1
  doi: 10.1109/TSG.2016.2517201
– ident: e_1_2_10_30_1
  doi: 10.1049/iet-pel.2016.0608
– ident: e_1_2_10_10_1
  doi: 10.1109/TIE.2014.2347266
SSID ssj0061458
Score 2.3459537
Snippet In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation nodes,...
Abstract In islanded microgrids, when a short circuit or a sudden overload occurs, it provokes an abrupt increment in the currents supplied by the generation...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1028
SubjectTerms DC–AC power convertors
power control
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7retGD-MT1RUAvCtVtXm3Bi4oiouJBwVtJmkQrblf2AR79Cf5Gf4kz6e6qIIK3UCYtnSQzX5rp9xGyk2kLKCFhkZapi4T17Uhr7SPGfeZS2A_UVZVX1-r8Tlzcy_sGORz_C1PzQ0w-uOHKCPEaF7g2tQoJgFpUpnXPbB-zUzpFpgHVc5zfTNyM4zDknaDOCflRRkJyOSYnFdnBV98f6Siw9v9EqSHNnM2TuRE-pEf1gC6QhqsWyew31sAl8nKlX8vOsEOLmluJltVTKKiqaK0HTQGI0odeaT_e3hGTQi-wQeFlwHrQorqiZR9LGp2lHazIQ2PaHxq8Dx10af8RUDktyl4xLAf9ZXJ3dnp7ch6NhBOiggP-jyDfOCNtWzKTQfpXmhnvPB64SoA_NnbGwr5QAzoBMGR5ZriKvWcqlYkBAKX5CmlW3cqtEhrbpK2FSLgqpFCF0C4xKnZZkqWJtSZpkd2x__JixCqO4hbPeTjdFlmOvs6Dr1tke2L7UnNp_Gp1jMMwsUD-63Ch23vIR8spl8p66zgzlqcQglRqY-W9YvCKELKEbpG9MIh_PCe_Ob1kobX2H-N1MoOK83XN4wZpDnpDtwm4ZGC2wvT7BF-k3lg
  priority: 102
  providerName: Wiley-Blackwell
Title Maximum current injection method for grid‐forming inverters in an islanded microgrid subject to short circuits
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fpel2.12448
https://doaj.org/article/56dfde32bd3848868d16ff622037304a
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3qShfiE8fHENCNQrXNq81SZURExYWCu5I0iVZm6jAPcOkn-I1-iTfJjCiIbtyFctOUm0vPCbmcg9CeVAZYQk4SxQubMOPSRCnlEkKdtAWcB2JX5dW1OL9jF_f8_ovVl-8Ji_LAMXFHXBhnLCXa0AKKTRQmE84JQlIKxckCNUplOj1MxX8wYE5w5gRs5AnjlE-FSZk86tsuOfSoVnyDoqDY_52hBog5W0KLE26Ij-M3LaMZ26yghS-Kgauof6Ve6t64h6uoq4Tr5ik0UzU4ekFjIKH4YVCb99c3z0dhFsR402XgeTDCqsH10LczWoN7vhvPB-PhWPv34NEzHj4CI8dVPajG9Wi4hu7OOren58nENCGpKHD_BLDGam5STrQE6BeKaGedv2zlQH1MZrWBM6ECZgJEyFCpqcicI6LguQbypOg6mmueG7uBcGbyVDGWU1FxJiqmbK5FZmUui9wYnbfQ_jR_ZTVRFPfGFt0y3GwzWfpclyHXLbT7GduPOho_Rp34bfiM8NrX4QFURDmpiPKvimihg7CJv6xT3nQuSRht_seKW2jeu9DHPshtNDcajO0OcJWRbqNZwm7aoTg_AHMX5lM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4HAoHVGgrFlqwVC5USrvxK8mRVqCF7iIObIV6iezYhiA2u9qH1GN_Ar-RX9IZJ7sFCSFxi6Jxovgx3zf25BtCDjJtgSUkLNIydZGwvh1prX3EuM9cCvFAnVXZO1edvji7kldNbg7-C1PrQyw23HBlBH-NCxw3pOuAU6BI5sjdsa8IT-kyWZUApTDBV49-9X_3564YoCcU6ASIlJGQXM71SUX27X_rJ4gUhPufEtWANCdvyUZDEelRPaabZMlVW2T9kXDgOzLq6T_lYDagRS2vRMvqNuRUVbQuCU2Bi9LrcWkf_t4jLYVWYIO1l4HuwRXVFS0nmNXoLB1gUh4a08nM4HPodEgnN0DMaVGOi1k5nbwn_ZPjyx-dqKmdEBUcQoAIIMcZaduSmQwYgNLMeOfxzFUCA7KxMxZCQw0EBfiQ5ZnhKvaeqVQmBjiU5h_ISjWs3DahsU3aWoiEq0IKVQjtEqNilyVZmlhrkhY5nPdfXjTC4ljf4i4PB9wiy7Gv89DXLfJ5YTuq5TSetfqOw7CwQAnscGM4vs6bFZVLZb11nBnLU_BCKrWx8l4x-ETwWkK3yJcwiC-8J7847rJwtfMa433ypnPZ6-bd0_Ofu2QNC9DXKZAfycp0PHOfgKZMzV4zGf8BydDjlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiE4IKBUbFvAUnspUujGX0mkXmjpainbag9U6i2yY7sEdbOr_ZA48hP4jfwSZpzdLZUQEjcrGifK2J73HE_eABwUxiFLyHhiVO4T6UI3McaEhItQ-Bz3A21W5cWl7l_J82t1vQHHq39hWn2I9Qc3WhkxXtMCn7jQ7jclaWRO_C1_T-iUP4CHEicezW8uh6s4jLgTq3MiPqpEKqFW4qSyOLrrew-Oomr_fZYaYab3DJ4u-SH70A7oc9jwzQt48odq4BZMLsz3erQYsarVVmJ18y0mVDWsrQfNkIiym2ntfv34SZwUe6ENFV5GroctZhpWzyil0Ts2oow8MmazhaX7sPmYzb4iK2dVPa0W9Xz2Eq56Z19O-8mycEJSCeT_CeKNt8p1FbcFwr823AYf6MBVIf1xqbcO94UG2QmSIScKK3QaAte5yiwSKCO2YbMZN_4VsNRlXSNlJnSlpK6k8ZnVqS-yIs-cs1kHDlf-K6ulqjgVt7gt4-m2LErydRl93YH9te2k1dL4q9UJDcPagvSv44Xx9KZcLqdSaRecF9w6kWMI0rlLdQia4ytiyJKmA-_iIP7jOeXwbMBja-d_jN_Co-HHXjn4dPl5Fx5T8fk2_XEPNufThX-NFGVu38SZ-Bs5rOD5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+current+injection+method+for+grid%E2%80%90forming+inverters+in+an+islanded+microgrid+subject+to+short+circuits&rft.jtitle=IET+power+electronics&rft.au=Miret%2C+Jaume&rft.au=Castilla%2C+Miguel&rft.au=Velasco%2C+Manel&rft.au=Guzm%C3%A1n%2C+Ram%C3%B3n&rft.date=2023-05-01&rft.issn=1755-4535&rft.eissn=1755-4543&rft.volume=16&rft.issue=6&rft.spage=1028&rft.epage=1042&rft_id=info:doi/10.1049%2Fpel2.12448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_pel2_12448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4535&client=summon