A clutter suppression algorithm via subspace‐weighted mixed‐norm minimisation

Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly e...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 17; no. 5; pp. 772 - 784
Main Authors Wang, Degen, Wang, Tong, Cui, Weichen, Zhang, Xinying
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2023
Subjects
Online AccessGet full text
ISSN1751-8784
1751-8792
1751-8792
DOI10.1049/rsn2.12377

Cover

Abstract Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly estimated clutter subspace is obtained using the subspace augment (SA) approach. The weight vector is then designed using the association between the dictionary matrix and the noise subspace, allowing the algorithm to penalise sparse coefficients democratically. Finally, in order to solve the subspace‐weighted mixed‐norm minimisation problem, we derive a fast algorithm based on the alternating direction multiplier method (ADMM) framework. The proposed algorithm does not require iteratively updating the weight vector in contrast to the iterative re‐weighted l1 ${l}_{1}$ (IRL1) algorithm. The simulation results demonstrate the effectiveness of the proposed algorithm in terms of computational efficiency and clutter suppression performance. In the paper, a subspace‐weighted mixed‐norm minimisation approach is proposed, and the alternating direction multiplier method (ADMM) algorithm is utilised to solve the subspace‐weighted mixed‐norm minimisation problem.
AbstractList Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly estimated clutter subspace is obtained using the subspace augment (SA) approach. The weight vector is then designed using the association between the dictionary matrix and the noise subspace, allowing the algorithm to penalise sparse coefficients democratically. Finally, in order to solve the subspace‐weighted mixed‐norm minimisation problem, we derive a fast algorithm based on the alternating direction multiplier method (ADMM) framework. The proposed algorithm does not require iteratively updating the weight vector in contrast to the iterative re‐weighted (IRL1) algorithm. The simulation results demonstrate the effectiveness of the proposed algorithm in terms of computational efficiency and clutter suppression performance.
Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly estimated clutter subspace is obtained using the subspace augment (SA) approach. The weight vector is then designed using the association between the dictionary matrix and the noise subspace, allowing the algorithm to penalise sparse coefficients democratically. Finally, in order to solve the subspace‐weighted mixed‐norm minimisation problem, we derive a fast algorithm based on the alternating direction multiplier method (ADMM) framework. The proposed algorithm does not require iteratively updating the weight vector in contrast to the iterative re‐weighted l1 ${l}_{1}$ (IRL1) algorithm. The simulation results demonstrate the effectiveness of the proposed algorithm in terms of computational efficiency and clutter suppression performance. In the paper, a subspace‐weighted mixed‐norm minimisation approach is proposed, and the alternating direction multiplier method (ADMM) algorithm is utilised to solve the subspace‐weighted mixed‐norm minimisation problem.
Abstract Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples. In order to enhance clutter suppression performance of STAP, a subspace‐weighted mixed‐norm minimisation approach is given. First, a roughly estimated clutter subspace is obtained using the subspace augment (SA) approach. The weight vector is then designed using the association between the dictionary matrix and the noise subspace, allowing the algorithm to penalise sparse coefficients democratically. Finally, in order to solve the subspace‐weighted mixed‐norm minimisation problem, we derive a fast algorithm based on the alternating direction multiplier method (ADMM) framework. The proposed algorithm does not require iteratively updating the weight vector in contrast to the iterative re‐weighted l1 ${l}_{1}$ (IRL1) algorithm. The simulation results demonstrate the effectiveness of the proposed algorithm in terms of computational efficiency and clutter suppression performance.
Author Wang, Degen
Zhang, Xinying
Wang, Tong
Cui, Weichen
Author_xml – sequence: 1
  givenname: Degen
  orcidid: 0000-0002-2260-8370
  surname: Wang
  fullname: Wang, Degen
  organization: Xidian University
– sequence: 2
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  email: twang@mail.xidian.edu.cn
  organization: Xidian University
– sequence: 3
  givenname: Weichen
  orcidid: 0000-0003-4442-6858
  surname: Cui
  fullname: Cui, Weichen
  organization: Xidian University
– sequence: 4
  givenname: Xinying
  surname: Zhang
  fullname: Zhang, Xinying
  organization: Xidian University
BookMark eNp9kMtOwzAQRS1UJEphwxdkDWrxI4mTZVXxqFSBoOytie20rvKS7VK64xP4Rr6EtEFdINTVzNy59yzuOepVdaURuiJ4RHCY3lpX0RGhjPMT1Cc8IsOEp7R32JPwDJ07t8I4iuIw7aOXcSCLtffaBm7dNFY7Z-oqgGJRW-OXZfBuoP1krgGpvz-_Ntosll6roDQfWrVCVduyPSpTGge-zV6g0xwKpy9_5wDN7-_eJo_D2fPDdDKeDSXjER9SnEBG4wxTroAlKiKZUpHMchJzjiVppYRrzSBUJEwzHmqmIkZaETCWbICmHVXVsBKNNSXYrajBiL1Q24UA640stEhwjJVWnFNKwhAzYDzNmcxVmhKI06Rl3XSsddXAdgNFcQASLHa9il2vYt9r677u3NLWzlmdHzfjP2Zp_L4mb8EU_0dIF9mYQm-PwMXr_Il2mR_A9J3N
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_116900
crossref_primary_10_1109_TIM_2025_3544717
crossref_primary_10_1109_JSEN_2024_3489680
Cites_doi 10.1109/taes.2003.1188894
10.1049/iet-spr.2016.0183
10.1109/SSAP.1994.572543
10.1109/78.554317
10.1109/taes.1974.307893
10.1016/j.sigpro.2011.04.006
10.1109/tap.1986.1143830
10.1109/29.17564
10.1109/tassp.1986.1164815
10.1109/lgrs.2012.2236639
10.1007/s00041-008-9045-x
10.1109/tit.2012.2189196
10.1109/lgrs.2016.2519765
10.1109/msp.2006.1593337
10.1109/RADAR.2019.8835701
10.1049/iet-rsn.2018.5307
10.1007/s11432-020-3211-8
10.1049/ip-f-1.1987.0054
10.1109/msp.2006.1593336
10.1016/j.sigpro.2013.03.033
10.1109/IGARSS.2009.5417664
10.1016/j.sigpro.2016.06.023
10.1109/RADAR.2013.6586083
10.1186/1687-6180-2012-98
10.1109/7.135446
10.1561/2200000016
10.1109/taes.1973.309792
10.1109/8.910535
10.1109/7.625132
10.1109/7.489498
10.1109/ICASSP.2011.5947080
10.1049/iet-spr.2013.0069
10.1109/7.303737
10.1109/tsp.2011.2176335
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/rsn2.12377
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 784
ExternalDocumentID oai_doaj_org_article_8060ded772214403a379f3cfd991a698
10.1049/rsn2.12377
10_1049_rsn2_12377
RSN212377
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2021YFA1000400
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IMI
PHGZM
PHGZT
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3757-208ab26b027da38d51bdd5cbf16770c138d87ee3a4d149b74e3d531d87a00c3
IEDL.DBID DOA
ISSN 1751-8784
1751-8792
IngestDate Fri Oct 03 12:38:01 EDT 2025
Sun Sep 07 11:08:46 EDT 2025
Wed Oct 29 21:29:46 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Wed Jan 22 16:23:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3757-208ab26b027da38d51bdd5cbf16770c138d87ee3a4d149b74e3d531d87a00c3
ORCID 0000-0002-2260-8370
0000-0003-4442-6858
OpenAccessLink https://doaj.org/article/8060ded772214403a379f3cfd991a698
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8060ded772214403a379f3cfd991a698
unpaywall_primary_10_1049_rsn2_12377
crossref_primary_10_1049_rsn2_12377
crossref_citationtrail_10_1049_rsn2_12377
wiley_primary_10_1049_rsn2_12377_RSN212377
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2012; 60
2012; 2012
2011
2019; 13
1986; 34
1997; 45
2009
2013; 93
2003; 39
1994
2008; 5
2001; 49
2017; 130
2003
2022; 65
2012; 58
2011; 3
1996; 32
2016; 13
1997; 33
2006; 23
2013; 10
2011; 91
2017; 11
1987
1992; 28
2019
1974; AES‐10
2013
1989; 37
2014; 8
1973; AES‐9
1994; 30
Guerci J.R. (e_1_2_11_3_1) 2003
e_1_2_11_10_1
e_1_2_11_32_1
Zhang W. (e_1_2_11_23_1) 2019
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
Newman M. (e_1_2_11_36_1)
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_19_1
References_xml – volume: 37
  start-page: 720
  issue: 5
  year: 1989
  end-page: 741
  article-title: Maximum likelihood, and Cramer‐Rao bound
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 39
  start-page: 70
  issue: 1
  year: 2003
  end-page: 81
  article-title: Robust space‐time adaptive processing for airborne radar in nonhomogeneous clutter environments
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 34
  start-page: 276
  issue: 3
  year: 1986
  end-page: 280
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antenn. Propag.
– issue: 99
  year: 2019
  article-title: Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 13
  start-page: 462
  issue: 3
  year: 2016
  end-page: 466
  article-title: Subspace‐augmented clutter suppression technique for STAP radar
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– start-page: 222
  end-page: 254
  publication-title: Survey of Numerical Analysis
– year: 1987
– volume: 10
  start-page: 1214
  issue: 5
  year: 2013
  end-page: 1218
  article-title: On clutter sparsity analysis in space‐time adaptive processing airborne radar
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– volume: 11
  start-page: 544
  issue: 5
  year: 2017
  end-page: 553
  article-title: Sparsity‐based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar
  publication-title: IET Signal Process.
– year: 2003
– volume: 8
  start-page: 552
  issue: 5
  year: 2014
  end-page: 564
  article-title: Sparsity‐based space‐time adaptive processing using complex‐valued Homotopy technique for airborne radar
  publication-title: IET Signal Process.
– volume: 130
  start-page: 159
  issue: 1
  year: 2017
  end-page: 168
  article-title: Clutter suppression algorithm base on fast converging sparse Bayesian learning for airborne radar
  publication-title: Signal Process.
– start-page: 1
  year: 2013
  end-page: 4
– volume: 34
  start-page: 331
  issue: 2
  year: 1986
  end-page: 341
  article-title: The statistical performance of the MUSIC and the minimum‐norm algorithms in resolving plane waves in noise
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 65
  issue: 2
  year: 2022
  article-title: Multichannel adaptive signal detection: basic theory and literature review
  publication-title: Sci. China Inf. Sci.
– volume: 32
  start-page: 532
  issue: 2
  year: 1996
  end-page: 542
  article-title: The eigencanceler: adaptive radar by eigenanalysis methods
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 30
  start-page: 660
  issue: 3
  year: 1994
  end-page: 670
  article-title: On adaptive spatial‐temporal processing for airborne surveillance radar systems
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 23
  start-page: 51
  issue: 1
  year: 2006
  end-page: 65
  article-title: Space–time adaptive processing: a knowledge‐based perspective for airborne radar
  publication-title: IEEE Signal Process. Mag.
– start-page: 336
  year: 2009
  end-page: 339
– volume: 91
  start-page: 2222
  issue: 9
  year: 2011
  end-page: 2236
  article-title: Direct data domain STAP using sparse representation of clutter spectrum
  publication-title: Signal Process.
– volume: 49
  start-page: 91
  issue: 1
  year: 2001
  end-page: 103
  article-title: A deterministic least‐squares approach to space‐time adaptive processing (STAP)
  publication-title: IEEE Trans. Antenn. Propag.
– volume: 28
  start-page: 208
  issue: 1
  year: 1992
  end-page: 216
  article-title: A CFAR adaptive matched filter detector
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 13
  start-page: 789
  issue: 5
  year: 2019
  end-page: 794
  article-title: Space time adaptive processing based on sparse recovery and clutter reconstructing
  publication-title: IET Radar, Sonar Navig.
– volume: 5
  start-page: 877
  issue: 14
  year: 2008
  end-page: 905
  article-title: Enhancing sparsity by reweighted minimization
  publication-title: J. Fourier Anal. Appl., Dec.
– volume: AES‐9
  start-page: 237
  issue: 2
  year: 1973
  end-page: 252
  article-title: Theory of adaptive radar
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 2012
  issue: 1
  year: 2012
  article-title: Subspace weighted minimization for sparse signal recovery
  publication-title: EURASIP J. Appl. Signal Process.
– start-page: 2856
  year: 2011
  end-page: 2859
– start-page: 461
  year: 1994
  end-page: 464
– volume: 23
  start-page: 41
  issue: 1
  year: 2006
  end-page: 50
  article-title: Knowledge‐Aided adaptive radar at DARPA: an overview
  publication-title: IEEE Signal Process. Mag.
– volume: AES‐10
  start-page: 853
  issue: 6
  year: 1974
  end-page: 863
  article-title: Rapid convergence rate in adaptive arrays
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 45
  start-page: 492
  issue: 2
  year: 1997
  end-page: 496
  article-title: Reduced‐rank adaptive filtering
  publication-title: IEEE Trans. Signal Process.
– volume: 93
  start-page: 3567
  issue: 12
  year: 2013
  end-page: 3577
  article-title: Adaptive clutter suppression based on iterative adaptive approach for airborne radar
  publication-title: Signal Process.
– year: 2019
– volume: 58
  start-page: 3613
  issue: 6
  year: 2012
  end-page: 3641
  article-title: Subspace methods for joint sparse recovery
  publication-title: IEEE Trans. Inf. Theor.
– volume: 33
  start-page: 1309
  issue: 4
  year: 1997
  end-page: 1325
  article-title: Theory of partially adaptive radar
  publication-title: IEEE Trans. Aero. Electron. Syst.
– volume: 60
  start-page: 1283
  issue: 3
  year: 2012
  end-page: 1294
  article-title: A robust direct data domain approach for STAP
  publication-title: IEEE Trans. Signal Process.
– ident: e_1_2_11_7_1
  doi: 10.1109/taes.2003.1188894
– ident: e_1_2_11_26_1
  doi: 10.1049/iet-spr.2016.0183
– ident: e_1_2_11_8_1
  doi: 10.1109/SSAP.1994.572543
– ident: e_1_2_11_9_1
  doi: 10.1109/78.554317
– ident: e_1_2_11_4_1
  doi: 10.1109/taes.1974.307893
– ident: e_1_2_11_18_1
  doi: 10.1016/j.sigpro.2011.04.006
– ident: e_1_2_11_28_1
  doi: 10.1109/tap.1986.1143830
– ident: e_1_2_11_29_1
  doi: 10.1109/29.17564
– start-page: 222
  ident: e_1_2_11_36_1
  publication-title: Survey of Numerical Analysis
– ident: e_1_2_11_30_1
  doi: 10.1109/tassp.1986.1164815
– ident: e_1_2_11_16_1
  doi: 10.1109/lgrs.2012.2236639
– ident: e_1_2_11_25_1
  doi: 10.1007/s00041-008-9045-x
– ident: e_1_2_11_31_1
  doi: 10.1109/tit.2012.2189196
– ident: e_1_2_11_33_1
  doi: 10.1109/lgrs.2016.2519765
– ident: e_1_2_11_15_1
  doi: 10.1109/msp.2006.1593337
– ident: e_1_2_11_24_1
  doi: 10.1109/RADAR.2019.8835701
– ident: e_1_2_11_22_1
  doi: 10.1049/iet-rsn.2018.5307
– ident: e_1_2_11_38_1
  doi: 10.1007/s11432-020-3211-8
– ident: e_1_2_11_5_1
  doi: 10.1049/ip-f-1.1987.0054
– ident: e_1_2_11_14_1
  doi: 10.1109/msp.2006.1593336
– ident: e_1_2_11_20_1
  doi: 10.1016/j.sigpro.2013.03.033
– ident: e_1_2_11_17_1
  doi: 10.1109/IGARSS.2009.5417664
– ident: e_1_2_11_27_1
  doi: 10.1016/j.sigpro.2016.06.023
– ident: e_1_2_11_19_1
  doi: 10.1109/RADAR.2013.6586083
– ident: e_1_2_11_35_1
  doi: 10.1186/1687-6180-2012-98
– ident: e_1_2_11_37_1
  doi: 10.1109/7.135446
– ident: e_1_2_11_32_1
  doi: 10.1561/2200000016
– ident: e_1_2_11_2_1
  doi: 10.1109/taes.1973.309792
– ident: e_1_2_11_12_1
  doi: 10.1109/8.910535
– ident: e_1_2_11_10_1
  doi: 10.1109/7.625132
– ident: e_1_2_11_11_1
  doi: 10.1109/7.489498
– issue: 99
  year: 2019
  ident: e_1_2_11_23_1
  article-title: Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments
  publication-title: IEEE Trans. Aero. Electron. Syst.
– ident: e_1_2_11_34_1
  doi: 10.1109/ICASSP.2011.5947080
– volume-title: Space‐Time Adaptive Processing for Radar
  year: 2003
  ident: e_1_2_11_3_1
– ident: e_1_2_11_21_1
  doi: 10.1049/iet-spr.2013.0069
– ident: e_1_2_11_6_1
  doi: 10.1109/7.303737
– ident: e_1_2_11_13_1
  doi: 10.1109/tsp.2011.2176335
SSID ssj0055649
Score 2.3686657
Snippet Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training samples....
Abstract Space‐time adaptive processing (STAP) struggles to effectively suppress clutter in the heterogeneous clutter environment due to the lack of training...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 772
SubjectTerms adaptive signal processing
airborne radar
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED-V9gH1YWwDtE7bFEFfQEpJ4iR2HrtpU4W0CjYmlafIfy5QLc2q_lmBp30EPiOfZBc3rVaEKt6syyW2znf2z7H9O4C28gJMUPuuzkzghigjV4SZ53KFiY6DkCm_vDt82Y97N-HHQTSowZvVXZiN_fsw-TCZFkGHRlfOn0Ejjghv16Fx0__U_WpvOkY-hbNNK1yVk2DFQbrx8sasY8n5m_B8Xozlz4XM801gameWixdwtmrT8kDJbWc-Ux396y-6xu2N3oWdClg63aUn7EENi31oPqEbfAmfu47ObWJqZzofVydgC0fm3-4mw9n3kXM_lPRE0SCj8c_D74X9bYrGGQ1_oCFBQQDXKclIRtUhoFdwfXH-5aznVikVXM14xCkmhFRBTD3EjWTCRL4yJtIq82POPe2TSHBEJkNDSyfFQ2SGopSE0vM0ew314q7AA3CE4dKg4DwLSlI0P0FCbkwgpxpoUlQteLcyeKortvEy6UWe2l3vMElLI6XWSC14u9YdLzk2_ql1WvbbWqPkxbYCsnxahVkqvNgzaGjJUFLBeUwynmSM_JBgsIwT0YL2ute31vXeOsQWlfTquh_Y0uH_ffMI6rPJHI8Jw8zUSeXEj5Q578g
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD54eWh9KNVaXGslUF8UoklmkpmAL1YUEZR6A9_CXE5UyGaXdbfbvvUn-Bv7Szwzya4KIvgWTk4YOLf5ZjLzHYANHSWYo4lDU9ok5KjSUPIyCoXG3GQJZzp2d4dPTrOjK358nV7PwO7kLkzDDzHdcHOZ4eu1S3Clmy4kBGrJiYP7OtmmuivELMzHBGRcfCf816QOp2nmwS_NjzHlvOQTclKe7zx9-2I68qz9C_BhVPfV37GqqpeI1U85h5_hU4sVg73GuYswg_USLDxjEPwCZ3uBqXyv6eB-1G8PtdaBqm56tOq_7Qa_7xS90VQ3DP7_9zD2O6Fog-7dH7QkqAmzBo5fpNue61mGi8ODy_2jsO2SEBomUkFhLpVOMjK6sIpJm8ba2tToMs6EiExMIikQmeKWVkNacGSWEo-EKooM-wpzda_GFQikFcqiFKJMHM9ZnCOBMSZR0Ag0z-kObE5MVZiWQNz1sagK_yOb54Uza-HN2oEfU91-Q5vxqtZPZ_GphqO69oLe4KZoM6eQURZZtLQKcOxuEVNM5CWj0CJkq7JcdmBj6q83x9ryrnxDpTi_OE380-p7lL_BR9eDvjkFuQZzw8EIvxNSGep1H5CPTtLlQQ
  priority: 102
  providerName: Wiley-Blackwell
Title A clutter suppression algorithm via subspace‐weighted mixed‐norm minimisation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12377
https://doi.org/10.1049/rsn2.12377
https://doaj.org/article/8060ded772214403a379f3cfd991a698
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RcoA9oAKtWKCrSPQCUqgTO7Fz3FZUFRKrwrJSOUX-mbQrZbOrtkvhxiPwjDwJYye7aiVULr1Fk1Fszdiez874G4A9w1Is0CaxrVwaC9RZrETFYmmwsHkquEn83eFPo_x4Ij6eZqc3Sn35nLCWHrg13L5iOXPoCAR6ci_GNZdFxenLBGx0XoRrvkwVq81UuwZnWR6AL8XGhOa7EitiUlHsX1w26Xtar6W8FYoCY38PHi2bhf55rev6NloN4eZoC550ODEatv17Cg-weQa9G-yBz-HzMLJ1qDMdXS4XXUJrE-n6bE47_vNZ9H2q6Y2hNcPin1-_r8MpKLpoNv2BjgQN4dXIc4vMupyebRgfffh6eBx3FRJiy2UmaYgrbdKcDC6d5spliXEus6ZKcimZTUikJCLXwtFOyEiB3NGkI6FmzPId2GzmDb6ASDmpHSopq9RznCUFEhDjCiW1QDHO9OHtylSl7cjDfQ2Lugw_sUVRerOWwax9eLPWXbSUGf_UOvAWX2t4musgIOeXnfPL_zm_D3trf93Z1rvgyjtUyi_jURqeXt5Hx17BY1-Xvs2MfA2bVxdL3CX0cmUGsJGKk0EYrgN4OBmdDL_9BabM7mA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROFAOCPoQCwUilUsrpU1iJ3aOgEBLC6u2UIlb5McEkLLZ1cICvfET-I38EsZOdilShdRbNJnI0ozn5Yy_AdjSUYI5mjg0pU1CjioNJS-jUGjMTZZwpmN3d_iol3V_82-n6Wnbm-PuwjT4ENMDN2cZ3l87A3cH0k3ByR1I5uiyTr6Q4xXiFczxLM5c7ZXwHxNHnKaZz34pQMZk9JJP0El5_vXp22fxyMP2L8D8uB6qPzeqqp6nrD7m7C_BYpssBtuNdpdhBus3sPAXhOBb-LkdmMoPmw4ux8O2q7UOVHU2oLL_vB9cXyh6o8lxGHy4u7_xR6Fog_7FLVoi1JS0Bg5gpN829ryD4_29k91u2I5JCA0TqaB9LpVOMpK6sIpJm8ba2tTokiQiIhMTSQpEprilckgLjsyS5RFRRZFh72G2HtS4AoG0QlmUQpSJAzqLc6RsjEkUtAIFOt2BTxNRFaZFEHeDLKrC_8nmeeHEWnixduDjlHfY4Gb8k2vHSXzK4bCuPWEwOita0ylklEUWLZUBDt4tYoqJvGS0tyi1VVkuO7A11deLa332qnyBpfh13Ev80-r_MG_CfPfk6LA4POh9X4PXbiB90xL5AWavRmNcp7TlSm_4zfkIs13orQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKgE9VLwqUgpYoheQTNfetXd9DI-ovCKgBFW9WPsYt5UcJ0obCjd-Ar-RX8Ls2glUQpW4WeOxVprZea1nvwHYMSzFAm0S28qlsUCdxUpULJYGC5ungpvE3x1-P8r3xuLNQXbQ9eb4uzAtPsTqwM1bRvDX3sBx5qq24BQeJHN-2qTPyPFKeRXWKJAz0YO1wZfx4XjpirMsD_kvhciEzF6JJT6pKHb_fH0hIgXg_nW4vmhm-vu5ruuLSWuIOsObsNGli9Gg1e8tuILNbVj_C0TwDnwcRLYO46aj08Ws62ttIl0fTanwP55EX080vTHkOiz--vHzPByGoosmJ9_QEaGhtDXyECOTrrXnLuwPX31-sRd3gxJiy2UmaacrbdKc5C6d5spliXEus6ZKcimZTYikJCLXwlFBZKRA7sj2iKgZs3wTes20wXsQKSe1QyVllXqos6RAyse4QkkrUKgzfXiyFFVpOwxxP8qiLsO_bFGUXqxlEGsfHq94Zy1yxj-5nnuJrzg82nUgTOdHZWc8pWI5c-ioEPAAb4xrLouK0-6i5FbnherDzkpfl671NKjyEpby0_4oDU9b_8P8CK59eDks370evb0PN_xE-rYncht6Z_MFPqC85cw87Hbnb-rk6gE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED-V9gH1YWwDtE7bFEFfQEpJ4iR2HrtpU4W0CjYmlafIfy5QLc2q_lmBp30EPiOfZBc3rVaEKt6syyW2znf2z7H9O4C28gJMUPuuzkzghigjV4SZ53KFiY6DkCm_vDt82Y97N-HHQTSowZvVXZiN_fsw-TCZFkGHRlfOn0Ejjghv16Fx0__U_WpvOkY-hbNNK1yVk2DFQbrx8sasY8n5m_B8Xozlz4XM801gameWixdwtmrT8kDJbWc-Ux396y-6xu2N3oWdClg63aUn7EENi31oPqEbfAmfu47ObWJqZzofVydgC0fm3-4mw9n3kXM_lPRE0SCj8c_D74X9bYrGGQ1_oCFBQQDXKclIRtUhoFdwfXH-5aznVikVXM14xCkmhFRBTD3EjWTCRL4yJtIq82POPe2TSHBEJkNDSyfFQ2SGopSE0vM0ew314q7AA3CE4dKg4DwLSlI0P0FCbkwgpxpoUlQteLcyeKortvEy6UWe2l3vMElLI6XWSC14u9YdLzk2_ql1WvbbWqPkxbYCsnxahVkqvNgzaGjJUFLBeUwynmSM_JBgsIwT0YL2ute31vXeOsQWlfTquh_Y0uH_ffMI6rPJHI8Jw8zUSeXEj5Q578g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clutter+suppression+algorithm+via+subspace%E2%80%90weighted+mixed%E2%80%90norm+minimisation&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Degen+Wang&rft.au=Tong+Wang&rft.au=Weichen+Cui&rft.au=Xinying+Zhang&rft.date=2023-05-01&rft.pub=Wiley&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=17&rft.issue=5&rft.spage=772&rft.epage=784&rft_id=info:doi/10.1049%2Frsn2.12377&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8060ded772214403a379f3cfd991a698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon