A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding
The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is ba...
Saved in:
Published in | IET signal processing Vol. 17; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9675 1751-9683 1751-9683 |
DOI | 10.1049/sil2.12222 |
Cover
Abstract | The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods.
The goal of this paper is to provide a framework based on information theory and hybrid deep learning model to respond to most challenges of a BCI system with a Motor Imagery paradigm. |
---|---|
AbstractList | The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods.
The goal of this paper is to provide a framework based on information theory and hybrid deep learning model to respond to most challenges of a BCI system with a Motor Imagery paradigm. The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods. Abstract The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods. |
Author | Sarbishaei, Ghazaleh Parchami, Jaber |
Author_xml | – sequence: 1 givenname: Jaber orcidid: 0000-0002-9325-8988 surname: Parchami fullname: Parchami, Jaber organization: Sadjad University of Technology – sequence: 2 givenname: Ghazaleh orcidid: 0000-0002-7590-2928 surname: Sarbishaei fullname: Sarbishaei, Ghazaleh email: gh_sarbisheie@sadjad.ac.ir organization: Sadjad University of Technology |
BookMark | eNp9kE1PAyEURYmpiZ8bfwFrzVSYGZiZpWn8aNLEhbomFB4tDQMGRk3_vbRjujBGNpCXc-8j5wxNfPCA0BUlU0rq7jZZV05pmc8ROqUNo0XH22pyeDfsBJ2ltCGEcUbLU2TvsA-f4HBSa-gBL2UCjYPH1psQeznY_B7WEOIWS6_xEKVPBiJ2IKO3foUzhvsPN1isnEwJEu7DkGe2lyvIKQ0q6AxeoGMjXYLLn_scvT3cv86eisXz43x2tyhU1bCyWC7bmim9ZMZUleQtgY5TrThpa6VbaurakAZUQzvVMU1oYypOOmo6RjvTgq7O0Xzs1UFuxHvM_4hbEaQV-0GIKyHjYJUDwQgvW024kkbXeb2krebZF5RVRfO63HUzdn34d7n9ks4dCikRO-NiZ1zsjWf6eqRVDClFMP_D5Bes7LDXnRVb93eEjpEv62D7T7l4mS_KMfMNCGakUQ |
CitedBy_id | crossref_primary_10_1109_TCE_2023_3330423 |
Cites_doi | 10.1109/tnnls.2018.2789927 10.3389/fnins.2012.00055 10.1186/s12859-017-1964-6 10.3233/bme-171680 10.1002/ima.20283 10.1515/itit-2016-0023 10.1109/tifs.2016.2577551 10.3389/fnins.2012.00039 10.1109/tbme.2008.921154 10.1109/tbme.2014.2312397 10.1109/tnsre.2016.2601240 10.1109/tbme.2010.2082539 10.1109/tnsre.2016.2597854 10.1109/tnnls.2019.2946869 10.1109/tnsre.2017.2736600 10.1109/tbme.2010.2093133 10.1109/tpami.2015.2437384 10.1088/1741-2552/aab2f2 10.3390/app112110294 10.1016/j.neucom.2015.02.005 10.3389/fnins.2012.00151 10.1088/1741-2552/ab0328 10.1109/tpami.2005.159 10.1016/j.bspc.2013.07.004 10.3390/computers8020042 10.1109/tnnls.2016.2582924 10.1109/IEMBS.2010.5626537 10.1016/j.bspc.2020.102144 10.1088/1741-2552/aaf3f6 10.1016/s1388-2457(98)00038-8 10.1109/rbme.2013.2290621 10.1109/tnsre.2018.2839116 10.1109/tbme.2011.2131142 10.1088/1741-2560/12/4/046027 10.3390/e20010007 10.1088/1741-2560/10/4/046014 10.1038/nature14539 10.1002/hbm.23730 10.1088/1741-2552/ac1ed0 10.1109/tnsre.2003.814799 10.1088/1741-2552/ab3471 10.1103/physrevlett.103.214101 10.1109/tnsre.2015.2398573 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.1049/sil2.12222 |
DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-9683 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_50628d06cafd4c37a18d6683e23314cd 10.1049/sil2.12222 10_1049_sil2_12222 SIL212222 |
Genre | article |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFKRA AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC J9A JAVBF K6V K7- L6V LAI LXU M43 M7S MCNEO NADUK NXXTH O9- OCL OK1 P2P P62 PTHSS RIE RNS RUI S0W UNMZH ~ZZ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB PUEGO WIN ADTOC UNPAY |
ID | FETCH-LOGICAL-c3752-bb845cdb5ff33a680e961dc6084cd81f44f07ec719c95d017f36091f9519f8ed3 |
IEDL.DBID | 24P |
ISSN | 1751-9675 1751-9683 |
IngestDate | Wed Aug 27 00:54:39 EDT 2025 Mon Sep 15 08:19:23 EDT 2025 Wed Oct 01 02:14:24 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Jan 22 16:23:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3752-bb845cdb5ff33a680e961dc6084cd81f44f07ec719c95d017f36091f9519f8ed3 |
ORCID | 0000-0002-7590-2928 0000-0002-9325-8988 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12222 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50628d06cafd4c37a18d6683e23314cd unpaywall_primary_10_1049_sil2_12222 crossref_primary_10_1049_sil2_12222 crossref_citationtrail_10_1049_sil2_12222 wiley_primary_10_1049_sil2_12222_SIL212222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | IET signal processing |
PublicationYear | 2023 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2019; 8 2015; 12 2018; 29 2015; 38 2010; 58 2017; 26 2019; 31 2010 2015; 521 2017; 28 2019; 16 2008; 55 2011; 58 2013; 7 2005; 27 2013; 8 2014; 61 2018; 20 2016; 58 2018; 26 2003; 11 2016; 11 2015; 23 2021; 11 2015; 159 2013; 10 2017; 38 2021; 18 1999; 110 2019 2011; 21 2016 2017; 18 2015 2012; 6 2016; 28 2021; 63 2016; 26 2016; 25 2009; 103 2018; 15 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 Horev I. (e_1_2_8_25_1) 2016 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 Shin H.C. (e_1_2_8_40_1) 2015 e_1_2_8_44_1 Zhang X. (e_1_2_8_27_1) 2019 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 20 issue: 1 year: 2018 article-title: Information theoretic approaches for motor‐imagery BCI systems: review and experimental comparison publication-title: Entropy – volume: 26 start-page: 654 issue: 3 year: 2016 end-page: 65 article-title: Commanding a brain‐controlled wheelchair using steady‐state somatosensory evoked potentials publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 430 year: 2016 end-page: 444 – start-page: 1090 year: 2015 end-page: 1099 – volume: 55 start-page: 1991 issue: 8 year: 2008 end-page: 2000 article-title: Multiclass common spatial patterns and information theoretic feature extraction publication-title: IEEE Trans. Biomed. Eng. – volume: 31 start-page: 3839 issue: 10 year: 2019 end-page: 52 article-title: Subject‐independent brain–computer interfaces based on deep convolutional neural networks publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 6 year: 2012 article-title: Multi‐class motor imagery EEG decoding for brain‐computer interfaces publication-title: Front. Neurosci. – volume: 6 year: 2012 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. – volume: 63 year: 2021 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomed. Signal Process Control – volume: 26 start-page: 334 issue: 2 year: 2017 end-page: 43 article-title: Motion‐based rapid serial visual presentation for gaze‐independent brain‐computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 28 start-page: 325 issue: 4 year: 2017 end-page: 38 article-title: EEG adaptive noise cancellation using information theoretic approach publication-title: Bio Med. Mater. Eng. – volume: 103 issue: 21 year: 2009 article-title: Finding stationary subspaces in multivariate time series publication-title: Phys. Rev. Lett. – volume: 58 start-page: 355 issue: 2 year: 2010 end-page: 62 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 566 issue: 6 year: 2016 end-page: 76 article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 16 issue: 2 year: 2019 article-title: Feature extraction of four‐class motor imagery EEG signals based on functional brain network publication-title: J. Neural. Eng. – volume: 6 year: 2012 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – volume: 11 start-page: 2635 issue: 12 year: 2016 end-page: 47 article-title: A high‐security EEG‐based login system with RSVP stimuli and dry electrodes publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 66 year: 2019 article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers publication-title: arXiv preprint arXiv:1905 – volume: 110 start-page: 787 issue: 5 year: 1999 end-page: 98 article-title: Designing optimal spatial filters for single‐trial EEG classification in a movement task publication-title: Clin. Neurophysiol. – volume: 7 start-page: 50 year: 2013 end-page: 72 article-title: Divergence‐based framework for common spatial patterns algorithms publication-title: IEEE Reviews in Biomedical Engineering – volume: 16 issue: 6 year: 2019 article-title: A novel hybrid deep learning scheme for four‐class motor imagery classification publication-title: J. Neural. Eng. – volume: 58 start-page: 1865 issue: 6 year: 2011 end-page: 73 article-title: Optimizing the channel selection and classification accuracy in EEG‐based BCI publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 15 issue: 3 year: 2018 article-title: A review of classification algorithms for EEG‐based brain–computer interfaces: a 10 year update publication-title: J. Neural. Eng. – volume: 10 issue: 4 year: 2013 article-title: Multiresolution analysis over simple graphs for brain computer interfaces publication-title: J. Neural. Eng. – volume: 23 start-page: 702 issue: 4 year: 2015 end-page: 12 article-title: Adaptive stacked generalization for multiclass motor imagery‐based brain computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 44 article-title: Deep learning publication-title: Nature – volume: 16 issue: 2 year: 2019 article-title: Inter‐subject transfer learning with an end‐to‐end deep convolutional neural network for EEG‐based BCI publication-title: J. Neural. Eng. – volume: 27 start-page: 1226 issue: 8 year: 2005 end-page: 38 article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 123 issue: 2 year: 2011 end-page: 30 article-title: Subject and class specific frequency bands selection for multiclass motor imagery classification publication-title: Int. J. Imag. Syst. Technol. – volume: 11 issue: 21 year: 2021 article-title: Multi‐time and multi‐band CSP motor imagery EEG feature classification algorithm publication-title: Appl. Sci. – volume: 12 issue: 4 year: 2015 article-title: Leveraging anatomical information to improve transfer learning in brain–computer interfaces publication-title: J. Neural. Eng. – volume: 28 start-page: 2222 issue: 10 year: 2016 end-page: 32 article-title: LSTM: a search space odyssey publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 38 start-page: 5391 issue: 11 year: 2017 end-page: 420 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 58 start-page: 150 issue: 3 year: 2016 end-page: 4 article-title: On robust spatial filtering of EEG in nonstationary environments publication-title: Inf. Technol. – volume: 18 issue: 4 year: 2021 article-title: Multi‐class motor imagery EEG classification method with high accuracy and low individual differences based on hybrid neural network publication-title: J. Neural. Eng. – volume: 8 start-page: 772 issue: 6 year: 2013 end-page: 8 article-title: Extracting optimal tempo‐spatial features using local discriminant bases and common spatial patterns for brain computer interfacing publication-title: Biomed. Signal Process Control – volume: 29 start-page: 5619 issue: 11 year: 2018 end-page: 29 article-title: Learning temporal information for brain‐computer interface using convolutional neural networks publication-title: IEEE Transact. Neural Networks Learn. Syst. – volume: 61 start-page: 1425 issue: 5 year: 2014 end-page: 35 article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 2810 year: 2010 end-page: 2813 – volume: 26 start-page: 1443 issue: 7 year: 2018 end-page: 59 article-title: A high performance spelling system based on EEG‐EOG signals with visual feedback publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 18 start-page: 125 issue: S16 year: 2017 end-page: 37 article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information publication-title: BMC Bioinf. – volume: 8 issue: 2 year: 2019 article-title: Improved measures of redundancy and relevance for mRMR feature selection publication-title: Computers – volume: 11 start-page: 94 issue: 2 year: 2003 end-page: 109 article-title: Brain‐computer interface technology: a review of the second international meeting publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: a publication of the IEEE Engineering in Medicine and Biology Society – volume: 58 start-page: 587 issue: 3 year: 2010 end-page: 97 article-title: Toward unsupervised adaptation of LDA for brain–computer interfaces publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 159 start-page: 186 year: 2015 end-page: 96 article-title: Adaptive semi‐supervised classification to reduce intersession non‐stationarity in multiclass motor imagery‐based brain–computer interfaces publication-title: Neurocomputing – volume: 38 start-page: 142 issue: 1 year: 2015 end-page: 58 article-title: Region‐based convolutional networks for accurate object detection and segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_8_17_1 doi: 10.1109/tnnls.2018.2789927 – start-page: 66 year: 2019 ident: e_1_2_8_27_1 article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers publication-title: arXiv preprint arXiv:1905 – ident: e_1_2_8_41_1 doi: 10.3389/fnins.2012.00055 – ident: e_1_2_8_12_1 doi: 10.1186/s12859-017-1964-6 – ident: e_1_2_8_32_1 doi: 10.3233/bme-171680 – ident: e_1_2_8_7_1 doi: 10.1002/ima.20283 – ident: e_1_2_8_23_1 doi: 10.1515/itit-2016-0023 – ident: e_1_2_8_3_1 doi: 10.1109/tifs.2016.2577551 – ident: e_1_2_8_14_1 doi: 10.3389/fnins.2012.00039 – ident: e_1_2_8_20_1 doi: 10.1109/tbme.2008.921154 – ident: e_1_2_8_6_1 doi: 10.1109/tbme.2014.2312397 – ident: e_1_2_8_16_1 doi: 10.1109/tnsre.2016.2601240 – ident: e_1_2_8_33_1 doi: 10.1109/tbme.2010.2082539 – ident: e_1_2_8_2_1 doi: 10.1109/tnsre.2016.2597854 – ident: e_1_2_8_30_1 doi: 10.1109/tnnls.2019.2946869 – ident: e_1_2_8_4_1 doi: 10.1109/tnsre.2017.2736600 – ident: e_1_2_8_13_1 doi: 10.1109/tbme.2010.2093133 – ident: e_1_2_8_39_1 doi: 10.1109/tpami.2015.2437384 – start-page: 1090 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: e_1_2_8_40_1 – ident: e_1_2_8_10_1 doi: 10.1088/1741-2552/aab2f2 – ident: e_1_2_8_11_1 doi: 10.3390/app112110294 – ident: e_1_2_8_44_1 doi: 10.1016/j.neucom.2015.02.005 – ident: e_1_2_8_8_1 doi: 10.3389/fnins.2012.00151 – ident: e_1_2_8_46_1 doi: 10.1088/1741-2552/ab0328 – ident: e_1_2_8_36_1 doi: 10.1109/tpami.2005.159 – ident: e_1_2_8_43_1 doi: 10.1016/j.bspc.2013.07.004 – ident: e_1_2_8_37_1 doi: 10.3390/computers8020042 – ident: e_1_2_8_38_1 doi: 10.1109/tnnls.2016.2582924 – ident: e_1_2_8_22_1 doi: 10.1109/IEMBS.2010.5626537 – ident: e_1_2_8_47_1 doi: 10.1016/j.bspc.2020.102144 – ident: e_1_2_8_29_1 doi: 10.1088/1741-2552/aaf3f6 – ident: e_1_2_8_19_1 doi: 10.1016/s1388-2457(98)00038-8 – ident: e_1_2_8_24_1 doi: 10.1109/rbme.2013.2290621 – ident: e_1_2_8_5_1 doi: 10.1109/tnsre.2018.2839116 – ident: e_1_2_8_34_1 doi: 10.1109/tbme.2011.2131142 – start-page: 430 volume-title: Asian conference on machine learning year: 2016 ident: e_1_2_8_25_1 – ident: e_1_2_8_28_1 doi: 10.1088/1741-2560/12/4/046027 – ident: e_1_2_8_35_1 doi: 10.3390/e20010007 – ident: e_1_2_8_42_1 doi: 10.1088/1741-2560/10/4/046014 – ident: e_1_2_8_26_1 doi: 10.1038/nature14539 – ident: e_1_2_8_18_1 doi: 10.1002/hbm.23730 – ident: e_1_2_8_31_1 doi: 10.1088/1741-2552/ac1ed0 – ident: e_1_2_8_9_1 doi: 10.1109/tnsre.2003.814799 – ident: e_1_2_8_15_1 doi: 10.1088/1741-2552/ab3471 – ident: e_1_2_8_21_1 doi: 10.1103/physrevlett.103.214101 – ident: e_1_2_8_45_1 doi: 10.1109/tnsre.2015.2398573 |
SSID | ssj0056512 |
Score | 2.2931845 |
Snippet | The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject... Abstract The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high... |
SourceID | doaj unpaywall crossref wiley |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | deep learning information theory motor imagery transfer learning |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yF92D-InrFwG9KNRt0zRNjiqKinpRwVtJk4ks1K7oquy_d5J2lxVEL95KOtDyZpJ5Q5I3hOzHyjkOzEWKAURcMxspnZmo1NIkCucTt35H9-ZWXDzwq8fscabVlz8T1sgDN8D1M3_Jz8bCaGe5SXOdSCuETIGlacKN9asvprFJMdWswchSmn3O3DeRR048ESblqv82qNhRgmmRfUtFQbG_S-bf6xc9_tRV9Z2thnRzvkQWW55Ij5v_WyZzUK-Q7ox64CoZHNN6-AEVxQIVnoH6hGTpsKatGKqHnIaLimOqa0tHgaPCK207RTxRNKPhRCE1nkTDG0XH4djg2StbjKnF2tTntjXycH52f3oRtZ0TIkQoY1FZSp4ZW2bOpakWMgYlEmtELBExmTjOXZyDyRNlVGZxUrpUIHFwSLeUk2DTddKphzVsEIrvRI68BVhpeChoQWMZIhXEDAxjPXIwAbEwray4725RFWF7m6vCA14EwHtkb2r70ohp_Gh14n0xtfAC2GEAw6Jow6L4Kyx6ZH_qyV-_dRic_ItJcXd5zcLT5n_82BZZ8B3rmzOT26Qzen2HHeQ1o3I3hPAX1uXzhA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELem8jDxwNgA0YlNlsbLkFISx3HtxzINwbQhJKgET5Fjn1FFmlalBZW_fmcnrShCCIk3y7l82Hfnu4t9vyNkP1bOcWAuUgwg4prZSOnMRIWWJlGoT9z6Hd1_Z-Kkz_9cZVdPsvhrfIjlDzevGWG99go-tq5e5-uok6vDu0HJOgmaOFyE14TfYmqRtf7Zee865EH6CvIiYO02bZkuEEpXbl6xSQG6f518nFVjPX_QZbnqtga7c_yJ6MUX18dNbjuzadExj8_AHN8zpE2y0TiltFdL0WfyAaovZP0JVOEWGfRoNbqHkmI0DEOg3vpZOqpog7zq-UtDVuSc6srSaXCIYUKbshQ3FMloOL5IjffY4Y6ilGDfYOhhNObUYiDsDek26R__vvx1EjVlGiKTdjMWFYXkmbFF5lyaaiFjUCKxRsSSGysTx7mLu2C6iTIqs7gCuFSgl-LQt1NOgk13SKsaVbBLKF4TXXSSgBWGh-gZNMY8UkHMwDDWJj8XjMpNg2HuS2mUedhL5yr305eH6WuTH0vacY3c8SLVkef3ksKjbYeO0eQmb5Q3z3yiqY2F0c5yHLROpBUoTMDSNMFBtsn-UlpefddB4P4rJPnF6V8WWl_f9sw90ppOZvANPaNp8b0R_v8eCQ6d priority: 102 providerName: Unpaywall |
Title | A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12222 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/sil2.12222 https://doaj.org/article/50628d06cafd4c37a18d6683e23314cd |
UnpaywallVersion | publishedVersion |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9683 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056512 issn: 1751-9683 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9K-6B9kPqFp_ZYsC8K0WSz2WShL1exVNFS0IP6FDa7s-UgzZXz2nL_vTOb3GlBCr6FzYRkZzI7v9mP3wAcpCYEhTIkRiImykqfGFu4pLGVywz5k_K8ovvtVJ9M1Zfz4nwLDtdnYXp-iM2EG3tGHK_ZwW3TVyEhUMuHXmetfJ9ReKMBeCfjsM-8zupsPQ4TUunXOksuJE-4eE1OqsyHP8_eCUeRtX8XHlx3V3Z1a9v2LmKNIed4Dx4NWFFMeuM-hi3snsDuXwyCT2E2Ed38BltBSSpeouCg5MW8EwMhKqtdxMOKK2E7L5YRp-JCDNUiLgSJibirUDgG0vhLkPGobXbJ7BYr4Sk_5fj2DKbHn358PEmG6gmJy8tCJk1TqcL5pgghz62uUjQ6806nlXK-yoJSIS3RlZlxpvDkmCHXBB4CQS4TKvT5c9ju5h2-AEH3dEnYBWXjVExq0VIqUhlMJTopR_B2rcTaDdTiXOGireMStzI1K7yOCh_Bm43sVU-o8U-pI7bFRoJJsGPDfHFRDz5VF3z-06fa2eAVddpmldeaPk7meUadHMHBxpL3vutdNPI9IvX3z19lvHr5P8Kv4CFXp-_3R76G7eXiGvcJwyybcfxVx3EGYAw709Ozyc_f0ZfutA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA-iD54Ph3p33J5fgfPFg961aZo2jyrKqqscnIJvJU0mslC7sq7K_vfOpN09BRF8K-2UNjOZzG_y8RvGdmPtvQThIy0AImmEi7TJbFSZwiYa_Uk6WtE9v1D9K3l6nV13e3PoLEzLDzGfcCPPCOM1OThNSLcJpySSzPthLX4nGN9wBF6SSsTUqYX8OxuIEaq0i505VZJHYDxjJ5X6z_93X8WjQNu_wpYfmjszfTJ1_RqyhphzvMo-d2CR77fWXWML0KyzlRcUgl_YcJ83o0eoOWapcAucopLjo4Z3jKikdx5OK065aRyfBKAKY96Vi7jhKMbDtkJuCUnDPUfr4b3hLdFbTLnDBJUC3Fd2dXx0ediPuvIJkU3zTERVVcjMuirzPk2NKmLQKnFWxYW0rki8lD7OweaJtjpz6Jk-VYgePGIu7Qtw6Te22Iwa-M44PlM5ghcQlZUhqwWDuUihIRZgheixvZkSS9txi1OJi7oMa9xSl6TwMii8x37OZe9aRo03pQ7IFnMJYsEON0bjm7JzqjKjA6AuVtZ4J7HRJimcUvhzIk0TbGSP7c4t-e63fgUjvyNS_jsZiHD14yPCO2y5f3k-KAcnF2cb7BOVqm83S26yxcn4AbYQ0Eyq7dBtnwGkWu9- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KBbUP4iee9WPBvihEk81mkwVf2urRai0FLfQtbHZny0GaO67Xyv33zmxypwUp-BY2E5Kdyez8Zj9-A7CTmhAUypAYiZgoK31ibOGSxlYuM-RPyvOK7vdjfXCqvp4VZxvwaXUWpueHWE-4sWfE8ZodfOZDn28q5si8nLTyQ0bhjQbgO4o5W5jXWZ2sxmFCKv1aZ8mF5AkXr8hJlfn459kb4Siy9m_BvatuZpe_bNveRKwx5IwfwoMBK4rd3riPYAO7x7D1F4PgE5jsim56ja2gJBUvUHBQ8mLaiYEQldUu4mHFpbCdF4uIU3EuhmoR54LERNxVKBwDabwUZDxqm1wwu8VSeMpPOb49hdPxl5_7B8lQPSFxeVnIpGkqVTjfFCHkudVVikZn3um0Us5XWVAqpCW6MjPOFJ4cM-SawEMgyGVChT5_BpvdtMPnIOieLgm7oGycikktWkpFKoOpRCflCN6tlFi7gVqcK1y0dVziVqZmhddR4SN4u5ad9YQa_5TaY1usJZgEOzZM5-f14FN1wec_faqdDV5Rp21Wea3p42SeZ9TJEeysLXnru95HI98iUv84PJLx6sX_CL-Buyefx_XR4fG3bbjPher7rZIvYXMxv8JXBGcWzev41_4GTG3usA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELem8jDxwNgA0YlNlsbLkFISx3HtxzINwbQhJKgET5Fjn1FFmlalBZW_fmcnrShCCIk3y7l82Hfnu4t9vyNkP1bOcWAuUgwg4prZSOnMRIWWJlGoT9z6Hd1_Z-Kkz_9cZVdPsvhrfIjlDzevGWG99go-tq5e5-uok6vDu0HJOgmaOFyE14TfYmqRtf7Zee865EH6CvIiYO02bZkuEEpXbl6xSQG6f518nFVjPX_QZbnqtga7c_yJ6MUX18dNbjuzadExj8_AHN8zpE2y0TiltFdL0WfyAaovZP0JVOEWGfRoNbqHkmI0DEOg3vpZOqpog7zq-UtDVuSc6srSaXCIYUKbshQ3FMloOL5IjffY4Y6ilGDfYOhhNObUYiDsDek26R__vvx1EjVlGiKTdjMWFYXkmbFF5lyaaiFjUCKxRsSSGysTx7mLu2C6iTIqs7gCuFSgl-LQt1NOgk13SKsaVbBLKF4TXXSSgBWGh-gZNMY8UkHMwDDWJj8XjMpNg2HuS2mUedhL5yr305eH6WuTH0vacY3c8SLVkef3ksKjbYeO0eQmb5Q3z3yiqY2F0c5yHLROpBUoTMDSNMFBtsn-UlpefddB4P4rJPnF6V8WWl_f9sw90ppOZvANPaNp8b0R_v8eCQ6d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+scheme+based+on+information+theory+and+transfer+learning+for+multi+classes+motor+imagery+decoding&rft.jtitle=IET+signal+processing&rft.au=Parchami%2C+Jaber&rft.au=Sarbishaei%2C+Ghazaleh&rft.date=2023-05-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=17&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fsil2.12222&rft.externalDBID=10.1049%252Fsil2.12222&rft.externalDocID=SIL212222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon |