A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding

The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is ba...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 17; no. 5
Main Authors Parchami, Jaber, Sarbishaei, Ghazaleh
Format Journal Article
LanguageEnglish
Published Wiley 01.05.2023
Subjects
Online AccessGet full text
ISSN1751-9675
1751-9683
1751-9683
DOI10.1049/sil2.12222

Cover

Abstract The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods. The goal of this paper is to provide a framework based on information theory and hybrid deep learning model to respond to most challenges of a BCI system with a Motor Imagery paradigm.
AbstractList The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods. The goal of this paper is to provide a framework based on information theory and hybrid deep learning model to respond to most challenges of a BCI system with a Motor Imagery paradigm.
The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods.
Abstract The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods.
Author Sarbishaei, Ghazaleh
Parchami, Jaber
Author_xml – sequence: 1
  givenname: Jaber
  orcidid: 0000-0002-9325-8988
  surname: Parchami
  fullname: Parchami, Jaber
  organization: Sadjad University of Technology
– sequence: 2
  givenname: Ghazaleh
  orcidid: 0000-0002-7590-2928
  surname: Sarbishaei
  fullname: Sarbishaei, Ghazaleh
  email: gh_sarbisheie@sadjad.ac.ir
  organization: Sadjad University of Technology
BookMark eNp9kE1PAyEURYmpiZ8bfwFrzVSYGZiZpWn8aNLEhbomFB4tDQMGRk3_vbRjujBGNpCXc-8j5wxNfPCA0BUlU0rq7jZZV05pmc8ROqUNo0XH22pyeDfsBJ2ltCGEcUbLU2TvsA-f4HBSa-gBL2UCjYPH1psQeznY_B7WEOIWS6_xEKVPBiJ2IKO3foUzhvsPN1isnEwJEu7DkGe2lyvIKQ0q6AxeoGMjXYLLn_scvT3cv86eisXz43x2tyhU1bCyWC7bmim9ZMZUleQtgY5TrThpa6VbaurakAZUQzvVMU1oYypOOmo6RjvTgq7O0Xzs1UFuxHvM_4hbEaQV-0GIKyHjYJUDwQgvW024kkbXeb2krebZF5RVRfO63HUzdn34d7n9ks4dCikRO-NiZ1zsjWf6eqRVDClFMP_D5Bes7LDXnRVb93eEjpEv62D7T7l4mS_KMfMNCGakUQ
CitedBy_id crossref_primary_10_1109_TCE_2023_3330423
Cites_doi 10.1109/tnnls.2018.2789927
10.3389/fnins.2012.00055
10.1186/s12859-017-1964-6
10.3233/bme-171680
10.1002/ima.20283
10.1515/itit-2016-0023
10.1109/tifs.2016.2577551
10.3389/fnins.2012.00039
10.1109/tbme.2008.921154
10.1109/tbme.2014.2312397
10.1109/tnsre.2016.2601240
10.1109/tbme.2010.2082539
10.1109/tnsre.2016.2597854
10.1109/tnnls.2019.2946869
10.1109/tnsre.2017.2736600
10.1109/tbme.2010.2093133
10.1109/tpami.2015.2437384
10.1088/1741-2552/aab2f2
10.3390/app112110294
10.1016/j.neucom.2015.02.005
10.3389/fnins.2012.00151
10.1088/1741-2552/ab0328
10.1109/tpami.2005.159
10.1016/j.bspc.2013.07.004
10.3390/computers8020042
10.1109/tnnls.2016.2582924
10.1109/IEMBS.2010.5626537
10.1016/j.bspc.2020.102144
10.1088/1741-2552/aaf3f6
10.1016/s1388-2457(98)00038-8
10.1109/rbme.2013.2290621
10.1109/tnsre.2018.2839116
10.1109/tbme.2011.2131142
10.1088/1741-2560/12/4/046027
10.3390/e20010007
10.1088/1741-2560/10/4/046014
10.1038/nature14539
10.1002/hbm.23730
10.1088/1741-2552/ac1ed0
10.1109/tnsre.2003.814799
10.1088/1741-2552/ab3471
10.1103/physrevlett.103.214101
10.1109/tnsre.2015.2398573
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/sil2.12222
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage n/a
ExternalDocumentID oai_doaj_org_article_50628d06cafd4c37a18d6683e23314cd
10.1049/sil2.12222
10_1049_sil2_12222
SIL212222
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
PUEGO
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c3752-bb845cdb5ff33a680e961dc6084cd81f44f07ec719c95d017f36091f9519f8ed3
IEDL.DBID 24P
ISSN 1751-9675
1751-9683
IngestDate Wed Aug 27 00:54:39 EDT 2025
Mon Sep 15 08:19:23 EDT 2025
Wed Oct 01 02:14:24 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Jan 22 16:23:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3752-bb845cdb5ff33a680e961dc6084cd81f44f07ec719c95d017f36091f9519f8ed3
ORCID 0000-0002-7590-2928
0000-0002-9325-8988
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12222
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_50628d06cafd4c37a18d6683e23314cd
unpaywall_primary_10_1049_sil2_12222
crossref_primary_10_1049_sil2_12222
crossref_citationtrail_10_1049_sil2_12222
wiley_primary_10_1049_sil2_12222_SIL212222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 8
2015; 12
2018; 29
2015; 38
2010; 58
2017; 26
2019; 31
2010
2015; 521
2017; 28
2019; 16
2008; 55
2011; 58
2013; 7
2005; 27
2013; 8
2014; 61
2018; 20
2016; 58
2018; 26
2003; 11
2016; 11
2015; 23
2021; 11
2015; 159
2013; 10
2017; 38
2021; 18
1999; 110
2019
2011; 21
2016
2017; 18
2015
2012; 6
2016; 28
2021; 63
2016; 26
2016; 25
2009; 103
2018; 15
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
Horev I. (e_1_2_8_25_1) 2016
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
Shin H.C. (e_1_2_8_40_1) 2015
e_1_2_8_44_1
Zhang X. (e_1_2_8_27_1) 2019
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 20
  issue: 1
  year: 2018
  article-title: Information theoretic approaches for motor‐imagery BCI systems: review and experimental comparison
  publication-title: Entropy
– volume: 26
  start-page: 654
  issue: 3
  year: 2016
  end-page: 65
  article-title: Commanding a brain‐controlled wheelchair using steady‐state somatosensory evoked potentials
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 430
  year: 2016
  end-page: 444
– start-page: 1090
  year: 2015
  end-page: 1099
– volume: 55
  start-page: 1991
  issue: 8
  year: 2008
  end-page: 2000
  article-title: Multiclass common spatial patterns and information theoretic feature extraction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 3839
  issue: 10
  year: 2019
  end-page: 52
  article-title: Subject‐independent brain–computer interfaces based on deep convolutional neural networks
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 6
  year: 2012
  article-title: Multi‐class motor imagery EEG decoding for brain‐computer interfaces
  publication-title: Front. Neurosci.
– volume: 6
  year: 2012
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 63
  year: 2021
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomed. Signal Process Control
– volume: 26
  start-page: 334
  issue: 2
  year: 2017
  end-page: 43
  article-title: Motion‐based rapid serial visual presentation for gaze‐independent brain‐computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 28
  start-page: 325
  issue: 4
  year: 2017
  end-page: 38
  article-title: EEG adaptive noise cancellation using information theoretic approach
  publication-title: Bio Med. Mater. Eng.
– volume: 103
  issue: 21
  year: 2009
  article-title: Finding stationary subspaces in multivariate time series
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 355
  issue: 2
  year: 2010
  end-page: 62
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 566
  issue: 6
  year: 2016
  end-page: 76
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 16
  issue: 2
  year: 2019
  article-title: Feature extraction of four‐class motor imagery EEG signals based on functional brain network
  publication-title: J. Neural. Eng.
– volume: 6
  year: 2012
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 2635
  issue: 12
  year: 2016
  end-page: 47
  article-title: A high‐security EEG‐based login system with RSVP stimuli and dry electrodes
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 66
  year: 2019
  article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers
  publication-title: arXiv preprint arXiv:1905
– volume: 110
  start-page: 787
  issue: 5
  year: 1999
  end-page: 98
  article-title: Designing optimal spatial filters for single‐trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol.
– volume: 7
  start-page: 50
  year: 2013
  end-page: 72
  article-title: Divergence‐based framework for common spatial patterns algorithms
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 16
  issue: 6
  year: 2019
  article-title: A novel hybrid deep learning scheme for four‐class motor imagery classification
  publication-title: J. Neural. Eng.
– volume: 58
  start-page: 1865
  issue: 6
  year: 2011
  end-page: 73
  article-title: Optimizing the channel selection and classification accuracy in EEG‐based BCI
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 15
  issue: 3
  year: 2018
  article-title: A review of classification algorithms for EEG‐based brain–computer interfaces: a 10 year update
  publication-title: J. Neural. Eng.
– volume: 10
  issue: 4
  year: 2013
  article-title: Multiresolution analysis over simple graphs for brain computer interfaces
  publication-title: J. Neural. Eng.
– volume: 23
  start-page: 702
  issue: 4
  year: 2015
  end-page: 12
  article-title: Adaptive stacked generalization for multiclass motor imagery‐based brain computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 44
  article-title: Deep learning
  publication-title: Nature
– volume: 16
  issue: 2
  year: 2019
  article-title: Inter‐subject transfer learning with an end‐to‐end deep convolutional neural network for EEG‐based BCI
  publication-title: J. Neural. Eng.
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  end-page: 38
  article-title: Feature selection based on mutual information criteria of max‐dependency, max‐relevance, and min‐redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 123
  issue: 2
  year: 2011
  end-page: 30
  article-title: Subject and class specific frequency bands selection for multiclass motor imagery classification
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 11
  issue: 21
  year: 2021
  article-title: Multi‐time and multi‐band CSP motor imagery EEG feature classification algorithm
  publication-title: Appl. Sci.
– volume: 12
  issue: 4
  year: 2015
  article-title: Leveraging anatomical information to improve transfer learning in brain–computer interfaces
  publication-title: J. Neural. Eng.
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  end-page: 32
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  end-page: 420
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 58
  start-page: 150
  issue: 3
  year: 2016
  end-page: 4
  article-title: On robust spatial filtering of EEG in nonstationary environments
  publication-title: Inf. Technol.
– volume: 18
  issue: 4
  year: 2021
  article-title: Multi‐class motor imagery EEG classification method with high accuracy and low individual differences based on hybrid neural network
  publication-title: J. Neural. Eng.
– volume: 8
  start-page: 772
  issue: 6
  year: 2013
  end-page: 8
  article-title: Extracting optimal tempo‐spatial features using local discriminant bases and common spatial patterns for brain computer interfacing
  publication-title: Biomed. Signal Process Control
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  end-page: 29
  article-title: Learning temporal information for brain‐computer interface using convolutional neural networks
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 61
  start-page: 1425
  issue: 5
  year: 2014
  end-page: 35
  article-title: Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 2810
  year: 2010
  end-page: 2813
– volume: 26
  start-page: 1443
  issue: 7
  year: 2018
  end-page: 59
  article-title: A high performance spelling system based on EEG‐EOG signals with visual feedback
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 18
  start-page: 125
  issue: S16
  year: 2017
  end-page: 37
  article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
  publication-title: BMC Bioinf.
– volume: 8
  issue: 2
  year: 2019
  article-title: Improved measures of redundancy and relevance for mRMR feature selection
  publication-title: Computers
– volume: 11
  start-page: 94
  issue: 2
  year: 2003
  end-page: 109
  article-title: Brain‐computer interface technology: a review of the second international meeting
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.: a publication of the IEEE Engineering in Medicine and Biology Society
– volume: 58
  start-page: 587
  issue: 3
  year: 2010
  end-page: 97
  article-title: Toward unsupervised adaptation of LDA for brain–computer interfaces
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 159
  start-page: 186
  year: 2015
  end-page: 96
  article-title: Adaptive semi‐supervised classification to reduce intersession non‐stationarity in multiclass motor imagery‐based brain–computer interfaces
  publication-title: Neurocomputing
– volume: 38
  start-page: 142
  issue: 1
  year: 2015
  end-page: 58
  article-title: Region‐based convolutional networks for accurate object detection and segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_8_17_1
  doi: 10.1109/tnnls.2018.2789927
– start-page: 66
  year: 2019
  ident: e_1_2_8_27_1
  article-title: A survey on deep learning based brain computer interface: recent advances and new frontiers
  publication-title: arXiv preprint arXiv:1905
– ident: e_1_2_8_41_1
  doi: 10.3389/fnins.2012.00055
– ident: e_1_2_8_12_1
  doi: 10.1186/s12859-017-1964-6
– ident: e_1_2_8_32_1
  doi: 10.3233/bme-171680
– ident: e_1_2_8_7_1
  doi: 10.1002/ima.20283
– ident: e_1_2_8_23_1
  doi: 10.1515/itit-2016-0023
– ident: e_1_2_8_3_1
  doi: 10.1109/tifs.2016.2577551
– ident: e_1_2_8_14_1
  doi: 10.3389/fnins.2012.00039
– ident: e_1_2_8_20_1
  doi: 10.1109/tbme.2008.921154
– ident: e_1_2_8_6_1
  doi: 10.1109/tbme.2014.2312397
– ident: e_1_2_8_16_1
  doi: 10.1109/tnsre.2016.2601240
– ident: e_1_2_8_33_1
  doi: 10.1109/tbme.2010.2082539
– ident: e_1_2_8_2_1
  doi: 10.1109/tnsre.2016.2597854
– ident: e_1_2_8_30_1
  doi: 10.1109/tnnls.2019.2946869
– ident: e_1_2_8_4_1
  doi: 10.1109/tnsre.2017.2736600
– ident: e_1_2_8_13_1
  doi: 10.1109/tbme.2010.2093133
– ident: e_1_2_8_39_1
  doi: 10.1109/tpami.2015.2437384
– start-page: 1090
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: e_1_2_8_40_1
– ident: e_1_2_8_10_1
  doi: 10.1088/1741-2552/aab2f2
– ident: e_1_2_8_11_1
  doi: 10.3390/app112110294
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neucom.2015.02.005
– ident: e_1_2_8_8_1
  doi: 10.3389/fnins.2012.00151
– ident: e_1_2_8_46_1
  doi: 10.1088/1741-2552/ab0328
– ident: e_1_2_8_36_1
  doi: 10.1109/tpami.2005.159
– ident: e_1_2_8_43_1
  doi: 10.1016/j.bspc.2013.07.004
– ident: e_1_2_8_37_1
  doi: 10.3390/computers8020042
– ident: e_1_2_8_38_1
  doi: 10.1109/tnnls.2016.2582924
– ident: e_1_2_8_22_1
  doi: 10.1109/IEMBS.2010.5626537
– ident: e_1_2_8_47_1
  doi: 10.1016/j.bspc.2020.102144
– ident: e_1_2_8_29_1
  doi: 10.1088/1741-2552/aaf3f6
– ident: e_1_2_8_19_1
  doi: 10.1016/s1388-2457(98)00038-8
– ident: e_1_2_8_24_1
  doi: 10.1109/rbme.2013.2290621
– ident: e_1_2_8_5_1
  doi: 10.1109/tnsre.2018.2839116
– ident: e_1_2_8_34_1
  doi: 10.1109/tbme.2011.2131142
– start-page: 430
  volume-title: Asian conference on machine learning
  year: 2016
  ident: e_1_2_8_25_1
– ident: e_1_2_8_28_1
  doi: 10.1088/1741-2560/12/4/046027
– ident: e_1_2_8_35_1
  doi: 10.3390/e20010007
– ident: e_1_2_8_42_1
  doi: 10.1088/1741-2560/10/4/046014
– ident: e_1_2_8_26_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_18_1
  doi: 10.1002/hbm.23730
– ident: e_1_2_8_31_1
  doi: 10.1088/1741-2552/ac1ed0
– ident: e_1_2_8_9_1
  doi: 10.1109/tnsre.2003.814799
– ident: e_1_2_8_15_1
  doi: 10.1088/1741-2552/ab3471
– ident: e_1_2_8_21_1
  doi: 10.1103/physrevlett.103.214101
– ident: e_1_2_8_45_1
  doi: 10.1109/tnsre.2015.2398573
SSID ssj0056512
Score 2.2931845
Snippet The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject...
Abstract The most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms deep learning
information theory
motor imagery
transfer learning
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yF92D-InrFwG9KNRt0zRNjiqKinpRwVtJk4ks1K7oquy_d5J2lxVEL95KOtDyZpJ5Q5I3hOzHyjkOzEWKAURcMxspnZmo1NIkCucTt35H9-ZWXDzwq8fscabVlz8T1sgDN8D1M3_Jz8bCaGe5SXOdSCuETIGlacKN9asvprFJMdWswchSmn3O3DeRR048ESblqv82qNhRgmmRfUtFQbG_S-bf6xc9_tRV9Z2thnRzvkQWW55Ij5v_WyZzUK-Q7ox64CoZHNN6-AEVxQIVnoH6hGTpsKatGKqHnIaLimOqa0tHgaPCK207RTxRNKPhRCE1nkTDG0XH4djg2StbjKnF2tTntjXycH52f3oRtZ0TIkQoY1FZSp4ZW2bOpakWMgYlEmtELBExmTjOXZyDyRNlVGZxUrpUIHFwSLeUk2DTddKphzVsEIrvRI68BVhpeChoQWMZIhXEDAxjPXIwAbEwray4725RFWF7m6vCA14EwHtkb2r70ohp_Gh14n0xtfAC2GEAw6Jow6L4Kyx6ZH_qyV-_dRic_ItJcXd5zcLT5n_82BZZ8B3rmzOT26Qzen2HHeQ1o3I3hPAX1uXzhA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELem8jDxwNgA0YlNlsbLkFISx3HtxzINwbQhJKgET5Fjn1FFmlalBZW_fmcnrShCCIk3y7l82Hfnu4t9vyNkP1bOcWAuUgwg4prZSOnMRIWWJlGoT9z6Hd1_Z-Kkz_9cZVdPsvhrfIjlDzevGWG99go-tq5e5-uok6vDu0HJOgmaOFyE14TfYmqRtf7Zee865EH6CvIiYO02bZkuEEpXbl6xSQG6f518nFVjPX_QZbnqtga7c_yJ6MUX18dNbjuzadExj8_AHN8zpE2y0TiltFdL0WfyAaovZP0JVOEWGfRoNbqHkmI0DEOg3vpZOqpog7zq-UtDVuSc6srSaXCIYUKbshQ3FMloOL5IjffY4Y6ilGDfYOhhNObUYiDsDek26R__vvx1EjVlGiKTdjMWFYXkmbFF5lyaaiFjUCKxRsSSGysTx7mLu2C6iTIqs7gCuFSgl-LQt1NOgk13SKsaVbBLKF4TXXSSgBWGh-gZNMY8UkHMwDDWJj8XjMpNg2HuS2mUedhL5yr305eH6WuTH0vacY3c8SLVkef3ksKjbYeO0eQmb5Q3z3yiqY2F0c5yHLROpBUoTMDSNMFBtsn-UlpefddB4P4rJPnF6V8WWl_f9sw90ppOZvANPaNp8b0R_v8eCQ6d
  priority: 102
  providerName: Unpaywall
Title A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12222
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/sil2.12222
https://doaj.org/article/50628d06cafd4c37a18d6683e23314cd
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9683
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056512
  issn: 1751-9683
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9K-6B9kPqFp_ZYsC8K0WSz2WShL1exVNFS0IP6FDa7s-UgzZXz2nL_vTOb3GlBCr6FzYRkZzI7v9mP3wAcpCYEhTIkRiImykqfGFu4pLGVywz5k_K8ovvtVJ9M1Zfz4nwLDtdnYXp-iM2EG3tGHK_ZwW3TVyEhUMuHXmetfJ9ReKMBeCfjsM-8zupsPQ4TUunXOksuJE-4eE1OqsyHP8_eCUeRtX8XHlx3V3Z1a9v2LmKNIed4Dx4NWFFMeuM-hi3snsDuXwyCT2E2Ed38BltBSSpeouCg5MW8EwMhKqtdxMOKK2E7L5YRp-JCDNUiLgSJibirUDgG0vhLkPGobXbJ7BYr4Sk_5fj2DKbHn358PEmG6gmJy8tCJk1TqcL5pgghz62uUjQ6806nlXK-yoJSIS3RlZlxpvDkmCHXBB4CQS4TKvT5c9ju5h2-AEH3dEnYBWXjVExq0VIqUhlMJTopR_B2rcTaDdTiXOGireMStzI1K7yOCh_Bm43sVU-o8U-pI7bFRoJJsGPDfHFRDz5VF3z-06fa2eAVddpmldeaPk7meUadHMHBxpL3vutdNPI9IvX3z19lvHr5P8Kv4CFXp-_3R76G7eXiGvcJwyybcfxVx3EGYAw709Ozyc_f0ZfutA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEA-iD54Ph3p33J5fgfPFg961aZo2jyrKqqscnIJvJU0mslC7sq7K_vfOpN09BRF8K-2UNjOZzG_y8RvGdmPtvQThIy0AImmEi7TJbFSZwiYa_Uk6WtE9v1D9K3l6nV13e3PoLEzLDzGfcCPPCOM1OThNSLcJpySSzPthLX4nGN9wBF6SSsTUqYX8OxuIEaq0i505VZJHYDxjJ5X6z_93X8WjQNu_wpYfmjszfTJ1_RqyhphzvMo-d2CR77fWXWML0KyzlRcUgl_YcJ83o0eoOWapcAucopLjo4Z3jKikdx5OK065aRyfBKAKY96Vi7jhKMbDtkJuCUnDPUfr4b3hLdFbTLnDBJUC3Fd2dXx0ediPuvIJkU3zTERVVcjMuirzPk2NKmLQKnFWxYW0rki8lD7OweaJtjpz6Jk-VYgePGIu7Qtw6Te22Iwa-M44PlM5ghcQlZUhqwWDuUihIRZgheixvZkSS9txi1OJi7oMa9xSl6TwMii8x37OZe9aRo03pQ7IFnMJYsEON0bjm7JzqjKjA6AuVtZ4J7HRJimcUvhzIk0TbGSP7c4t-e63fgUjvyNS_jsZiHD14yPCO2y5f3k-KAcnF2cb7BOVqm83S26yxcn4AbYQ0Eyq7dBtnwGkWu9-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KBbUP4iee9WPBvihEk81mkwVf2urRai0FLfQtbHZny0GaO67Xyv33zmxypwUp-BY2E5Kdyez8Zj9-A7CTmhAUypAYiZgoK31ibOGSxlYuM-RPyvOK7vdjfXCqvp4VZxvwaXUWpueHWE-4sWfE8ZodfOZDn28q5si8nLTyQ0bhjQbgO4o5W5jXWZ2sxmFCKv1aZ8mF5AkXr8hJlfn459kb4Siy9m_BvatuZpe_bNveRKwx5IwfwoMBK4rd3riPYAO7x7D1F4PgE5jsim56ja2gJBUvUHBQ8mLaiYEQldUu4mHFpbCdF4uIU3EuhmoR54LERNxVKBwDabwUZDxqm1wwu8VSeMpPOb49hdPxl5_7B8lQPSFxeVnIpGkqVTjfFCHkudVVikZn3um0Us5XWVAqpCW6MjPOFJ4cM-SawEMgyGVChT5_BpvdtMPnIOieLgm7oGycikktWkpFKoOpRCflCN6tlFi7gVqcK1y0dVziVqZmhddR4SN4u5ad9YQa_5TaY1usJZgEOzZM5-f14FN1wec_faqdDV5Rp21Wea3p42SeZ9TJEeysLXnru95HI98iUv84PJLx6sX_CL-Buyefx_XR4fG3bbjPher7rZIvYXMxv8JXBGcWzev41_4GTG3usA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELem8jDxwNgA0YlNlsbLkFISx3HtxzINwbQhJKgET5Fjn1FFmlalBZW_fmcnrShCCIk3y7l82Hfnu4t9vyNkP1bOcWAuUgwg4prZSOnMRIWWJlGoT9z6Hd1_Z-Kkz_9cZVdPsvhrfIjlDzevGWG99go-tq5e5-uok6vDu0HJOgmaOFyE14TfYmqRtf7Zee865EH6CvIiYO02bZkuEEpXbl6xSQG6f518nFVjPX_QZbnqtga7c_yJ6MUX18dNbjuzadExj8_AHN8zpE2y0TiltFdL0WfyAaovZP0JVOEWGfRoNbqHkmI0DEOg3vpZOqpog7zq-UtDVuSc6srSaXCIYUKbshQ3FMloOL5IjffY4Y6ilGDfYOhhNObUYiDsDek26R__vvx1EjVlGiKTdjMWFYXkmbFF5lyaaiFjUCKxRsSSGysTx7mLu2C6iTIqs7gCuFSgl-LQt1NOgk13SKsaVbBLKF4TXXSSgBWGh-gZNMY8UkHMwDDWJj8XjMpNg2HuS2mUedhL5yr305eH6WuTH0vacY3c8SLVkef3ksKjbYeO0eQmb5Q3z3yiqY2F0c5yHLROpBUoTMDSNMFBtsn-UlpefddB4P4rJPnF6V8WWl_f9sw90ppOZvANPaNp8b0R_v8eCQ6d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+scheme+based+on+information+theory+and+transfer+learning+for+multi+classes+motor+imagery+decoding&rft.jtitle=IET+signal+processing&rft.au=Parchami%2C+Jaber&rft.au=Sarbishaei%2C+Ghazaleh&rft.date=2023-05-01&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=17&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fsil2.12222&rft.externalDBID=10.1049%252Fsil2.12222&rft.externalDocID=SIL212222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon