Boosting Stochasticity in Ovonic Threshold Switches Through Cryogenic First Firing for Fast and Reliable Entropy Generation
As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent s...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
John Wiley & Sons, Inc
01.06.2025
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2199-160X 2199-160X |
DOI | 10.1002/aelm.202400881 |
Cover
Abstract | As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems.
Cryogenic first firing in SiGeAsTe‐based Ovonic Threshold Switch (OTS) devices enhances stochastic switching, increasing trap generation and switching variability up to fourfold. This enables stable, high‐speed entropy generation (>20 Mbit s−1) without reference values, ensuring robustness under cycling. The study highlights OTS optimization for efficient True Random Number Generators (TRNGs), advancing next‐gen cryptographic applications. |
---|---|
AbstractList | As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s −1 . This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. Cryogenic first firing in SiGeAsTe‐based Ovonic Threshold Switch (OTS) devices enhances stochastic switching, increasing trap generation and switching variability up to fourfold. This enables stable, high‐speed entropy generation (>20 Mbit s−1) without reference values, ensuring robustness under cycling. The study highlights OTS optimization for efficient True Random Number Generators (TRNGs), advancing next‐gen cryptographic applications. As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. Abstract As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. |
Author | Kim, Chul‐Heung Kwon, Ohhyuk Kwon, Joonhyun Seo, Yoori Lee, Jisung Masouleh, Pendar Azaripour Hwang, Hyunsang Kim, Dongmin Lee, Jangseop |
Author_xml | – sequence: 1 givenname: Dongmin orcidid: 0009-0004-4300-4527 surname: Kim fullname: Kim, Dongmin organization: Pohang University of Science and Technology – sequence: 2 givenname: Jangseop surname: Lee fullname: Lee, Jangseop organization: Pohang University of Science and Technology – sequence: 3 givenname: Yoori surname: Seo fullname: Seo, Yoori organization: Pohang University of Science and Technology – sequence: 4 givenname: Ohhyuk surname: Kwon fullname: Kwon, Ohhyuk organization: Pohang University of Science and Technology – sequence: 5 givenname: Pendar Azaripour surname: Masouleh fullname: Masouleh, Pendar Azaripour organization: Pohang University of Science and Technology – sequence: 6 givenname: Jisung surname: Lee fullname: Lee, Jisung organization: Hyundai Motor Company – sequence: 7 givenname: Joonhyun surname: Kwon fullname: Kwon, Joonhyun organization: Hyundai Motor Company – sequence: 8 givenname: Chul‐Heung surname: Kim fullname: Kim, Chul‐Heung organization: Hyundai Motor Company – sequence: 9 givenname: Hyunsang orcidid: 0000-0003-1930-1914 surname: Hwang fullname: Hwang, Hyunsang email: hwanghs@postech.ac.kr organization: Pohang University of Science and Technology |
BookMark | eNqFkc1r3DAQxU1JoWmaa8-Cnnej0YctHdNlNwlsCTQJ5CZkebzW4khbydtg-s_X7pbQWy8zw_DebyTex-IsxIBF8RnoEihlVxb7lyWjTFCqFLwrzhlovYCSPp_9M38oLnPeU0qhKrmQ_Lz49TXGPPiwIw9DdJ2dZueHkfhA7n_G4B157BLmLvYNeXj1g-swz6t43HVklca4w1m08SkPc51JbUxkM5GIDQ35jr23dY9kHYYUDyO5wYDJDj6GT8X71vYZL__2i-Jps35c3S629zd3q-vtwvFK0kWjnBLKuoqCZUzZmivuKg61tJS5GgUIjaK2pStp2yDjleZMlY3GumkrqflFcXfiNtHuzSH5F5tGE603fxYx7YxN0797NBY0d5O9FlIIUGhBsrKWrS21lkypifXlxDqk-OOIeTD7eExher7hTIIUigJMquVJ5VLMOWH7dhWomfMyc17mLa_JIE6GV9_j-B-1uV5vvwFoyn8DJo6asg |
Cites_doi | 10.1002/pssr.201900672 10.1063/5.0210996 10.1002/aisy.202000127 10.1063/1.4921949 10.1109/LED.2020.2969962 10.35848/1347-4065/acb35e 10.1016/j.jnca.2017.04.002 10.1109/JPROC.2014.2320516 10.1007/s40820-023-01289-x 10.1063/5.0049568 10.1103/PhysRevLett.21.1450 10.1109/LED.2023.3289289 10.1038/s41598-018-30207-0 10.1109/IEDM.2017.8268323 10.1116/1.5144736 10.1063/1.4738746 10.1016/j.chaos.2024.115195 10.1063/1.2715024 10.1109/IMW51353.2021.9439590 10.1038/s41467-020-18382-z 10.1002/aelm.201900198 10.1109/LED.2017.2685435 10.1109/IEDM45625.2022.10019444 10.1126/sciadv.aay2830 10.1109/LED.2019.2960947 10.1016/j.actamat.2021.117465 10.1002/aelm.202300037 10.1109/LED.2023.3259000 10.1002/adma.202300893 10.1002/pssr.202300412 10.1109/IEDM19573.2019.8993439 10.1063/1.2773688 10.1063/1.1944910 10.1002/sstr.202200060 10.1063/5.0183292 10.1109/ACCESS.2023.3288696 10.1038/s41598-017-08251-z 10.1038/s41598-020-73407-3 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION JQ2 DOA |
DOI | 10.1002/aelm.202400881 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Computer Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a193c932b454418ea1526b5fa6995288 10_1002_aelm_202400881 AELM1190 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Hyundai Motor Group |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAHHS AAXRX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFPKN AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION JQ2 |
ID | FETCH-LOGICAL-c3750-d8c848ac701a228ab383c731b5a02cbe4149e4ba6c60fde23793286d9ebdf7593 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:21:43 EDT 2025 Thu Sep 18 05:10:39 EDT 2025 Thu Aug 14 00:14:12 EDT 2025 Tue Jun 17 09:32:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3750-d8c848ac701a228ab383c731b5a02cbe4149e4ba6c60fde23793286d9ebdf7593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-4300-4527 0000-0003-1930-1914 |
OpenAccessLink | https://doaj.org/article/a193c932b454418ea1526b5fa6995288 |
PQID | 3251548011 |
PQPubID | 6852865 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a193c932b454418ea1526b5fa6995288 proquest_journals_3251548011 crossref_primary_10_1002_aelm_202400881 wiley_primary_10_1002_aelm_202400881_AELM1190 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 20250601 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 7 2007; 102 2023; 35 2023; 11 2021; 3 2019; 5 2017; 4 2023; 34 2020; 41 2023; 18 2017; 88 2019; 35 2023; 9 2007; 90 2020; 38 1996 2024; 186 2020; 14 2024; 11 2020; 11 2020; 10 2024; 125 2024; 36 2024; 16 1968; 21 2023; 62 2020; 6 2018; 8 2023; 44 2012; 112 2023 2022; 3 2021 2021; 258 2022; 5 2020 2017; 38 2021; 118 2005; 98 2015; 117 2013 2022; 223 2014; 102 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 Degraeve R. (e_1_2_8_47_1) 2021; 258 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Katz J. (e_1_2_8_5_1) 1996 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 Wali A. (e_1_2_8_4_1) 2024; 36 Ban S. (e_1_2_8_46_1) 2023; 34 |
References_xml | – volume: 44 start-page: 1372 year: 2023 publication-title: IEEE Electron Device Lett. – volume: 125 year: 2024 publication-title: Appl. Phys Lett. – volume: 16 start-page: 81 year: 2024 publication-title: Nano‐Micro Lett. – volume: 88 start-page: 10 year: 2017 publication-title: J. Netw. Comput. Appl. – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 112 year: 2012 publication-title: J. Appl. Phys. – start-page: 1 year: 2021 end-page: 4 – volume: 6 start-page: 2830 year: 2020 publication-title: Sci. Adv. – volume: 14 year: 2020 publication-title: Phys. Status Solidi RRL – year: 1996 – volume: 3 year: 2022 publication-title: Small Struct. – volume: 98 year: 2005 publication-title: J. Appl. Phys. – volume: 38 start-page: 568 year: 2017 publication-title: IEEE Electron Device Lett. – volume: 11 year: 2023 publication-title: IEEE Access – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 7 start-page: 8103 year: 2017 publication-title: Sci. Rep. – volume: 117 year: 2015 publication-title: J. Appl. Phys. – volume: 258 start-page: 1 year: 2021 publication-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS) – volume: 5 start-page: 1 year: 2022 – start-page: 240 year: 2013 – volume: 41 start-page: 373 year: 2020 publication-title: IEEE Electron Device Lett. – volume: 38 year: 2020 publication-title: J. Vac. Sci. Technol. – volume: 44 start-page: 853 year: 2023 publication-title: IEEE Electron Device Lett. – volume: 3 year: 2021 publication-title: Adv. Intell. Syst. – volume: 11 start-page: 4636 year: 2020 publication-title: Nat. Commun. – volume: 21 start-page: 1450 year: 1968 publication-title: Phys. Rev. Lett. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 102 start-page: 1126 year: 2014 publication-title: Proc. IEEE – volume: 36 start-page: 35 year: 2024 publication-title: Adv. Mater. – volume: 41 start-page: 228 year: 2020 publication-title: IEEE Electron Device Lett. – year: 2020 – year: 2023 – volume: 223 year: 2022 publication-title: Acta Mater. – volume: 102 year: 2007 publication-title: J. Appl. Phys. – volume: 18 year: 2023 publication-title: Phys. Status solid. (RRL) – volume: 11 year: 2024 publication-title: Appl. Phys. Rev. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 10 year: 2020 publication-title: Sci. Rep – volume: 34 start-page: 128 year: 2023 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 1 year: 2017 – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 62 year: 2023 publication-title: Jpn. J. Appl. Phys. – volume: 186 year: 2024 publication-title: Chaos Solit. Fractals – volume: 35 start-page: 3 year: 2019 – ident: e_1_2_8_26_1 doi: 10.1002/pssr.201900672 – ident: e_1_2_8_39_1 doi: 10.1063/5.0210996 – ident: e_1_2_8_45_1 – ident: e_1_2_8_8_1 doi: 10.1002/aisy.202000127 – ident: e_1_2_8_41_1 doi: 10.1063/1.4921949 – ident: e_1_2_8_17_1 doi: 10.1109/LED.2020.2969962 – ident: e_1_2_8_20_1 doi: 10.35848/1347-4065/acb35e – ident: e_1_2_8_43_1 doi: 10.1109/LED.2020.2969962 – ident: e_1_2_8_3_1 doi: 10.1016/j.jnca.2017.04.002 – volume-title: Handbook of Applied Cryptography year: 1996 ident: e_1_2_8_5_1 – ident: e_1_2_8_6_1 doi: 10.1109/JPROC.2014.2320516 – ident: e_1_2_8_11_1 doi: 10.1007/s40820-023-01289-x – ident: e_1_2_8_25_1 doi: 10.1063/5.0049568 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevLett.21.1450 – volume: 258 start-page: 1 year: 2021 ident: e_1_2_8_47_1 publication-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS) – ident: e_1_2_8_14_1 doi: 10.1109/LED.2023.3289289 – ident: e_1_2_8_30_1 doi: 10.1038/s41598-018-30207-0 – ident: e_1_2_8_32_1 doi: 10.1109/IEDM.2017.8268323 – ident: e_1_2_8_29_1 doi: 10.1116/1.5144736 – ident: e_1_2_8_1_1 – ident: e_1_2_8_42_1 doi: 10.1063/1.4738746 – ident: e_1_2_8_15_1 doi: 10.1016/j.chaos.2024.115195 – ident: e_1_2_8_22_1 doi: 10.1063/1.2715024 – ident: e_1_2_8_18_1 doi: 10.1109/IMW51353.2021.9439590 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-020-18382-z – ident: e_1_2_8_7_1 doi: 10.1002/aelm.201900198 – ident: e_1_2_8_44_1 doi: 10.1109/LED.2017.2685435 – ident: e_1_2_8_48_1 doi: 10.1109/IEDM45625.2022.10019444 – ident: e_1_2_8_24_1 doi: 10.1126/sciadv.aay2830 – ident: e_1_2_8_27_1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_12_1 doi: 10.1109/LED.2019.2960947 – ident: e_1_2_8_36_1 doi: 10.1016/j.actamat.2021.117465 – ident: e_1_2_8_40_1 doi: 10.1002/aelm.202300037 – ident: e_1_2_8_13_1 doi: 10.1109/LED.2023.3259000 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202300893 – ident: e_1_2_8_21_1 doi: 10.1002/pssr.202300412 – ident: e_1_2_8_19_1 doi: 10.1109/IEDM19573.2019.8993439 – ident: e_1_2_8_23_1 doi: 10.1063/1.2773688 – ident: e_1_2_8_28_1 doi: 10.1063/5.0049568 – volume: 34 start-page: 128 year: 2023 ident: e_1_2_8_46_1 publication-title: IEEE Electron Device Lett. – volume: 36 start-page: 35 year: 2024 ident: e_1_2_8_4_1 publication-title: Adv. Mater. – ident: e_1_2_8_38_1 doi: 10.1063/1.1944910 – ident: e_1_2_8_9_1 doi: 10.1002/sstr.202200060 – ident: e_1_2_8_10_1 doi: 10.1063/5.0183292 – ident: e_1_2_8_2_1 doi: 10.1109/ACCESS.2023.3288696 – ident: e_1_2_8_34_1 doi: 10.1038/s41598-017-08251-z – ident: e_1_2_8_31_1 doi: 10.1038/s41598-020-73407-3 |
SSID | ssj0001763453 |
Score | 2.3284957 |
Snippet | As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent... Abstract As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | cryptography Data processing Devices Electric fields Entropy hardware security Optimization ovonic threshold switching Randomness stochastic Temperature Thermal energy true random‐number generator |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yX3wRRcXplDwIPpW1adqmj9tYGeJU2AZ7C0ma6kBaWacy_Oe9a_fzSXzpQziu4S7XfEnvviPkDhOYDPcV1jpFDo8y4WjPxo7naePjFpNprEYePoWDCX-YBtOdKv6aH2Jz4YaRUX2vMcCVLttb0lBl37GSHHMgBdZeHwKy93GNM_6yvWWB8OEVFSVEJswgdKdr5kaXtfdV7O1MFYH_Hurcxa7V5pOckOMVaqSd2s2n5MDmZ-SnWxQlZi3T0aIwbwoZlwFT01lOn7-Q8ZaOwVEl_l-io-8ZuqfEIezLQ3vzZQFrB4SSGQBAfKImgLA0AU1U5SnFdGWsrKJ9TGf_WNKaoxpdeU4mSX_cGzirXgqO8QEUOKkwggtlItdTjAml4WRqIt_TgXKZ0ZbDSclyrUITullqmQ9xy0SYxlanWRTE_gVp5EVuLwllkY1AJBWRBTjDjWBpxuI0ZjozseKmSe7XdpQfNWWGrMmRmUSLy43Fm6SLZt5IIdV1NVDMX-UqcqQCiGlgMppjuzRhFSCOUAeZCuM4YEI0SWvtJLmKv1L6ANuQyc6DdziV4_6Yiuz0H4ceoKOrf8pfkyOGLYGri5kWaSzmn_YGcMpC31ZL8Rf6QuFO priority: 102 providerName: Wiley-Blackwell |
Title | Boosting Stochasticity in Ovonic Threshold Switches Through Cryogenic First Firing for Fast and Reliable Entropy Generation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400881 https://www.proquest.com/docview/3251548011 https://doaj.org/article/a193c932b454418ea1526b5fa6995288 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba8IwFA6bp13Gxjbm5iSHwU7FNk3b5KiiyJjbQAVvIUlTJoxW1G3I_vzea1X05GWXHkJIwvsS3pf0ve8R8ogBTJaHGnOdEo8nmfBM4KQXBMaG6GIyg9nIw9d4MOHP02i6V-oLY8IqeeDKcC0NDMMCyTAcq2UJp8HhxCbKdCxlxESZ5utLf-8yVb6uwLHhUbhVafRZS7tPTDzHkEkhggMvVIr1HzDMfZ5aOpr-BTnfMETarlZ2SU5cfkV-O0WxxAhlOloV9kOjujLwZzrL6ds3qtvSMYCyxH9JdPQzQyiW2IQ1eGh3sS5gn0Cn_gzIHn5xJKCrtA8jUZ2nFEOTMYuK9jB0fb6mlR41wnZNJv3euDvwNnUTPBsCAfBSYQUX2iZ-oBkT2sAt1CZhYCLtM2sch1uR40bHNvaz1LEQzigTcSqdSbMkkuENqeVF7m4JZYlLoEsqEgfUhVvB0ozJVDKTWam5rZOnrR3VvJLHUJUQMlNocbWzeJ100My7XihrXTYA2GoDtjoGdp00tiCpzVlbqhAoGqrWBTCHVwJ3ZCmq3XsZBsCE7v5jTffkjGFN4PJlpkFqq8WXewCisjJNcsr4e7PcmX-uluTm |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQO8CCQIAonx6QmKImjpM4Y6laFWhhoEUVi2U7DlRCCWoLCPHnuUvSlk6IJYNlOdadL_d8uXtHyAUmMBnuK6x1ihwepcLRno0dz9PGRxeTaqxGHtyFvRG_GQeLbEKshSn5IZYBN7SM4nuNBo4B6eaKNVTZVywlxyRIgcXX9QDcKRzyeutx9DRaBVrAgnjBRgnGCZsI3fGCvNFlzfVF1pxTweG_Bjx_w9fC_3R3yHYFHGmr1PQu2bDZHvm-yvMZJi7Th3luXhSSLgOsppOM3n8g6S0dgq5m-IuJPnxOUEMzHMLWPLQ9_crh-MCk7gQwID5xJUCxtAsrUZUlFDOWsbiKdjCj_e2LljTVqM19Mup2hu2eU7VTcIwPuMBJhBFcKBO5nmJMKA2XUxP5ng6Uy4y2HC5LlmsVmtBNE8t8MF0mwiS2OkmjIPYPSC3LM3tIKItsBFMSEVlANNwIlqQsTmKmUxMrbhrkciFH-VayZsiSH5lJlLhcSrxBrlDMy1nIdl0M5NNnWRmPVIAyDWxGc-yYJqwC0BHqIFVhHAdMiAY5WShJViY4kz4gNySz8-AdTqG4P7YiW53-wAOAdPTP-edkszcc9GX_-u72mGwx7BBcxGlOSG0-fbenAFvm-qw6mD-i0-aL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kgngRRcX63IPgKZhsNsnm6KPBR1sFLfS27CtakKS0VRH_vDNJW9uTeMlhGTbLPLLfbma-IeQUE5gMDxXWOiUeT3Lh6cClXhBoE-IWk2usRu5045sev-tH_YUq_pofYn7hhpFRfa8xwIc2P_8lDVXuDSvJMQdSYO31KgfnQx9n_PH3lgXCh1dUlBCZsILY78-YG312vjzF0s5UEfgvoc5F7FptPtkm2ZiiRnpRm3mLrLhim3xfluUYs5bp06Q0rwoZlwFT00FBHz6Q8ZY-g6HG-H-JPn0O0DxjHMK-PPRq9FWC74BQNgAAiE-cCSAszWAmqgpLMV0ZK6toC9PZh1-05qhGU-6QXtZ6vrrxpr0UPBMCKPCsMIILZRI_UIwJpeFkapIw0JHymdGOw0nJca1iE_u5dSyEuGUitqnTNk-iNNwljaIs3B6hLHEJiFiROIAz3Ahmc5balOncpIqbJjmb6VEOa8oMWZMjM4kal3ONN8klqnkuhVTX1UA5epHTyJEKIKaBxWiO7dKEU4A4Yh3lKk7TiAnRJIczI8lp_I1lCLANmewCeIdXGe6PpciLVrsTADra_6f8CVl7vM5k-7Z7f0DWGXYHru5oDkljMnp3RwBZJvq48sof9a_j7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Stochasticity+in+Ovonic+Threshold+Switches+Through+Cryogenic+First+Firing+for+Fast+and+Reliable+Entropy+Generation&rft.jtitle=Advanced+electronic+materials&rft.au=Kim%2C+Dongmin&rft.au=Lee%2C+Jangseop&rft.au=Seo%2C+Yoori&rft.au=Kwon%2C+Ohhyuk&rft.date=2025-06-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=9&rft_id=info:doi/10.1002%2Faelm.202400881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aelm_202400881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |