Boosting Stochasticity in Ovonic Threshold Switches Through Cryogenic First Firing for Fast and Reliable Entropy Generation

As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent s...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 9
Main Authors Kim, Dongmin, Lee, Jangseop, Seo, Yoori, Kwon, Ohhyuk, Masouleh, Pendar Azaripour, Lee, Jisung, Kwon, Joonhyun, Kim, Chul‐Heung, Hwang, Hyunsang
Format Journal Article
LanguageEnglish
Published Seoul John Wiley & Sons, Inc 01.06.2025
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2199-160X
2199-160X
DOI10.1002/aelm.202400881

Cover

Abstract As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. Cryogenic first firing in SiGeAsTe‐based Ovonic Threshold Switch (OTS) devices enhances stochastic switching, increasing trap generation and switching variability up to fourfold. This enables stable, high‐speed entropy generation (>20 Mbit s−1) without reference values, ensuring robustness under cycling. The study highlights OTS optimization for efficient True Random Number Generators (TRNGs), advancing next‐gen cryptographic applications.
AbstractList As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s −1 . This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems.
As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems. Cryogenic first firing in SiGeAsTe‐based Ovonic Threshold Switch (OTS) devices enhances stochastic switching, increasing trap generation and switching variability up to fourfold. This enables stable, high‐speed entropy generation (>20 Mbit s−1) without reference values, ensuring robustness under cycling. The study highlights OTS optimization for efficient True Random Number Generators (TRNGs), advancing next‐gen cryptographic applications.
As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems.
Abstract As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent stochastic properties, offering fast, energy‐efficient operation and a minimal footprint. Although most studies have focused on exploiting inherent stochasticity, efforts to analyze and optimize these devices to enhance their randomness remain scarce. In this study, the stochastic switching characteristics of Ovonic Threshold Switch (OTS) devices by controlling the first firing temperatures to amplify their inherent stochasticity are explored. It is demonstrated that firing at cryogenic temperatures (77 K) induces field‐dominant firing and a considerable increase in traps within the device. These additional traps lead to a substantial enhancement in switching variability, with the switching time fluctuation increasing up to four times compared to the first firing temperature of 298 K. Furthermore, a reference‐free entropy‐harvesting method is proposed that ensures robust and stable operation even under cycling degradation. Based on this approach, the OTS devices that undergo first firing at cryogenic temperatures achieve stable entropy generation at speeds exceeding 20 Mbit s−1. This study demonstrates the potential of optimizing OTS devices to satisfy the increasing demand for fast and energy‐efficient entropy sources in advanced cryptographic systems.
Author Kim, Chul‐Heung
Kwon, Ohhyuk
Kwon, Joonhyun
Seo, Yoori
Lee, Jisung
Masouleh, Pendar Azaripour
Hwang, Hyunsang
Kim, Dongmin
Lee, Jangseop
Author_xml – sequence: 1
  givenname: Dongmin
  orcidid: 0009-0004-4300-4527
  surname: Kim
  fullname: Kim, Dongmin
  organization: Pohang University of Science and Technology
– sequence: 2
  givenname: Jangseop
  surname: Lee
  fullname: Lee, Jangseop
  organization: Pohang University of Science and Technology
– sequence: 3
  givenname: Yoori
  surname: Seo
  fullname: Seo, Yoori
  organization: Pohang University of Science and Technology
– sequence: 4
  givenname: Ohhyuk
  surname: Kwon
  fullname: Kwon, Ohhyuk
  organization: Pohang University of Science and Technology
– sequence: 5
  givenname: Pendar Azaripour
  surname: Masouleh
  fullname: Masouleh, Pendar Azaripour
  organization: Pohang University of Science and Technology
– sequence: 6
  givenname: Jisung
  surname: Lee
  fullname: Lee, Jisung
  organization: Hyundai Motor Company
– sequence: 7
  givenname: Joonhyun
  surname: Kwon
  fullname: Kwon, Joonhyun
  organization: Hyundai Motor Company
– sequence: 8
  givenname: Chul‐Heung
  surname: Kim
  fullname: Kim, Chul‐Heung
  organization: Hyundai Motor Company
– sequence: 9
  givenname: Hyunsang
  orcidid: 0000-0003-1930-1914
  surname: Hwang
  fullname: Hwang, Hyunsang
  email: hwanghs@postech.ac.kr
  organization: Pohang University of Science and Technology
BookMark eNqFkc1r3DAQxU1JoWmaa8-Cnnej0YctHdNlNwlsCTQJ5CZkebzW4khbydtg-s_X7pbQWy8zw_DebyTex-IsxIBF8RnoEihlVxb7lyWjTFCqFLwrzhlovYCSPp_9M38oLnPeU0qhKrmQ_Lz49TXGPPiwIw9DdJ2dZueHkfhA7n_G4B157BLmLvYNeXj1g-swz6t43HVklca4w1m08SkPc51JbUxkM5GIDQ35jr23dY9kHYYUDyO5wYDJDj6GT8X71vYZL__2i-Jps35c3S629zd3q-vtwvFK0kWjnBLKuoqCZUzZmivuKg61tJS5GgUIjaK2pStp2yDjleZMlY3GumkrqflFcXfiNtHuzSH5F5tGE603fxYx7YxN0797NBY0d5O9FlIIUGhBsrKWrS21lkypifXlxDqk-OOIeTD7eExher7hTIIUigJMquVJ5VLMOWH7dhWomfMyc17mLa_JIE6GV9_j-B-1uV5vvwFoyn8DJo6asg
Cites_doi 10.1002/pssr.201900672
10.1063/5.0210996
10.1002/aisy.202000127
10.1063/1.4921949
10.1109/LED.2020.2969962
10.35848/1347-4065/acb35e
10.1016/j.jnca.2017.04.002
10.1109/JPROC.2014.2320516
10.1007/s40820-023-01289-x
10.1063/5.0049568
10.1103/PhysRevLett.21.1450
10.1109/LED.2023.3289289
10.1038/s41598-018-30207-0
10.1109/IEDM.2017.8268323
10.1116/1.5144736
10.1063/1.4738746
10.1016/j.chaos.2024.115195
10.1063/1.2715024
10.1109/IMW51353.2021.9439590
10.1038/s41467-020-18382-z
10.1002/aelm.201900198
10.1109/LED.2017.2685435
10.1109/IEDM45625.2022.10019444
10.1126/sciadv.aay2830
10.1109/LED.2019.2960947
10.1016/j.actamat.2021.117465
10.1002/aelm.202300037
10.1109/LED.2023.3259000
10.1002/adma.202300893
10.1002/pssr.202300412
10.1109/IEDM19573.2019.8993439
10.1063/1.2773688
10.1063/1.1944910
10.1002/sstr.202200060
10.1063/5.0183292
10.1109/ACCESS.2023.3288696
10.1038/s41598-017-08251-z
10.1038/s41598-020-73407-3
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOA
DOI 10.1002/aelm.202400881
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a193c932b454418ea1526b5fa6995288
10_1002_aelm_202400881
AELM1190
Genre researchArticle
GrantInformation_xml – fundername: Hyundai Motor Group
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAHHS
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFPKN
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
JQ2
ID FETCH-LOGICAL-c3750-d8c848ac701a228ab383c731b5a02cbe4149e4ba6c60fde23793286d9ebdf7593
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:21:43 EDT 2025
Thu Sep 18 05:10:39 EDT 2025
Thu Aug 14 00:14:12 EDT 2025
Tue Jun 17 09:32:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3750-d8c848ac701a228ab383c731b5a02cbe4149e4ba6c60fde23793286d9ebdf7593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-4300-4527
0000-0003-1930-1914
OpenAccessLink https://doaj.org/article/a193c932b454418ea1526b5fa6995288
PQID 3251548011
PQPubID 6852865
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a193c932b454418ea1526b5fa6995288
proquest_journals_3251548011
crossref_primary_10_1002_aelm_202400881
wiley_primary_10_1002_aelm_202400881_AELM1190
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
20250601
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 7
2007; 102
2023; 35
2023; 11
2021; 3
2019; 5
2017; 4
2023; 34
2020; 41
2023; 18
2017; 88
2019; 35
2023; 9
2007; 90
2020; 38
1996
2024; 186
2020; 14
2024; 11
2020; 11
2020; 10
2024; 125
2024; 36
2024; 16
1968; 21
2023; 62
2020; 6
2018; 8
2023; 44
2012; 112
2023
2022; 3
2021
2021; 258
2022; 5
2020
2017; 38
2021; 118
2005; 98
2015; 117
2013
2022; 223
2014; 102
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
Degraeve R. (e_1_2_8_47_1) 2021; 258
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Katz J. (e_1_2_8_5_1) 1996
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
Wali A. (e_1_2_8_4_1) 2024; 36
Ban S. (e_1_2_8_46_1) 2023; 34
References_xml – volume: 44
  start-page: 1372
  year: 2023
  publication-title: IEEE Electron Device Lett.
– volume: 125
  year: 2024
  publication-title: Appl. Phys Lett.
– volume: 16
  start-page: 81
  year: 2024
  publication-title: Nano‐Micro Lett.
– volume: 88
  start-page: 10
  year: 2017
  publication-title: J. Netw. Comput. Appl.
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 112
  year: 2012
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 2021
  end-page: 4
– volume: 6
  start-page: 2830
  year: 2020
  publication-title: Sci. Adv.
– volume: 14
  year: 2020
  publication-title: Phys. Status Solidi RRL
– year: 1996
– volume: 3
  year: 2022
  publication-title: Small Struct.
– volume: 98
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 38
  start-page: 568
  year: 2017
  publication-title: IEEE Electron Device Lett.
– volume: 11
  year: 2023
  publication-title: IEEE Access
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8103
  year: 2017
  publication-title: Sci. Rep.
– volume: 117
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 258
  start-page: 1
  year: 2021
  publication-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS)
– volume: 5
  start-page: 1
  year: 2022
– start-page: 240
  year: 2013
– volume: 41
  start-page: 373
  year: 2020
  publication-title: IEEE Electron Device Lett.
– volume: 38
  year: 2020
  publication-title: J. Vac. Sci. Technol.
– volume: 44
  start-page: 853
  year: 2023
  publication-title: IEEE Electron Device Lett.
– volume: 3
  year: 2021
  publication-title: Adv. Intell. Syst.
– volume: 11
  start-page: 4636
  year: 2020
  publication-title: Nat. Commun.
– volume: 21
  start-page: 1450
  year: 1968
  publication-title: Phys. Rev. Lett.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 102
  start-page: 1126
  year: 2014
  publication-title: Proc. IEEE
– volume: 36
  start-page: 35
  year: 2024
  publication-title: Adv. Mater.
– volume: 41
  start-page: 228
  year: 2020
  publication-title: IEEE Electron Device Lett.
– year: 2020
– year: 2023
– volume: 223
  year: 2022
  publication-title: Acta Mater.
– volume: 102
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 18
  year: 2023
  publication-title: Phys. Status solid. (RRL)
– volume: 11
  year: 2024
  publication-title: Appl. Phys. Rev.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 10
  year: 2020
  publication-title: Sci. Rep
– volume: 34
  start-page: 128
  year: 2023
  publication-title: IEEE Electron Device Lett.
– volume: 4
  start-page: 1
  year: 2017
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 62
  year: 2023
  publication-title: Jpn. J. Appl. Phys.
– volume: 186
  year: 2024
  publication-title: Chaos Solit. Fractals
– volume: 35
  start-page: 3
  year: 2019
– ident: e_1_2_8_26_1
  doi: 10.1002/pssr.201900672
– ident: e_1_2_8_39_1
  doi: 10.1063/5.0210996
– ident: e_1_2_8_45_1
– ident: e_1_2_8_8_1
  doi: 10.1002/aisy.202000127
– ident: e_1_2_8_41_1
  doi: 10.1063/1.4921949
– ident: e_1_2_8_17_1
  doi: 10.1109/LED.2020.2969962
– ident: e_1_2_8_20_1
  doi: 10.35848/1347-4065/acb35e
– ident: e_1_2_8_43_1
  doi: 10.1109/LED.2020.2969962
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jnca.2017.04.002
– volume-title: Handbook of Applied Cryptography
  year: 1996
  ident: e_1_2_8_5_1
– ident: e_1_2_8_6_1
  doi: 10.1109/JPROC.2014.2320516
– ident: e_1_2_8_11_1
  doi: 10.1007/s40820-023-01289-x
– ident: e_1_2_8_25_1
  doi: 10.1063/5.0049568
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevLett.21.1450
– volume: 258
  start-page: 1
  year: 2021
  ident: e_1_2_8_47_1
  publication-title: Proc. IEEE Int. Rel. Phys. Symp. (IRPS)
– ident: e_1_2_8_14_1
  doi: 10.1109/LED.2023.3289289
– ident: e_1_2_8_30_1
  doi: 10.1038/s41598-018-30207-0
– ident: e_1_2_8_32_1
  doi: 10.1109/IEDM.2017.8268323
– ident: e_1_2_8_29_1
  doi: 10.1116/1.5144736
– ident: e_1_2_8_1_1
– ident: e_1_2_8_42_1
  doi: 10.1063/1.4738746
– ident: e_1_2_8_15_1
  doi: 10.1016/j.chaos.2024.115195
– ident: e_1_2_8_22_1
  doi: 10.1063/1.2715024
– ident: e_1_2_8_18_1
  doi: 10.1109/IMW51353.2021.9439590
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-020-18382-z
– ident: e_1_2_8_7_1
  doi: 10.1002/aelm.201900198
– ident: e_1_2_8_44_1
  doi: 10.1109/LED.2017.2685435
– ident: e_1_2_8_48_1
  doi: 10.1109/IEDM45625.2022.10019444
– ident: e_1_2_8_24_1
  doi: 10.1126/sciadv.aay2830
– ident: e_1_2_8_27_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_12_1
  doi: 10.1109/LED.2019.2960947
– ident: e_1_2_8_36_1
  doi: 10.1016/j.actamat.2021.117465
– ident: e_1_2_8_40_1
  doi: 10.1002/aelm.202300037
– ident: e_1_2_8_13_1
  doi: 10.1109/LED.2023.3259000
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202300893
– ident: e_1_2_8_21_1
  doi: 10.1002/pssr.202300412
– ident: e_1_2_8_19_1
  doi: 10.1109/IEDM19573.2019.8993439
– ident: e_1_2_8_23_1
  doi: 10.1063/1.2773688
– ident: e_1_2_8_28_1
  doi: 10.1063/5.0049568
– volume: 34
  start-page: 128
  year: 2023
  ident: e_1_2_8_46_1
  publication-title: IEEE Electron Device Lett.
– volume: 36
  start-page: 35
  year: 2024
  ident: e_1_2_8_4_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_38_1
  doi: 10.1063/1.1944910
– ident: e_1_2_8_9_1
  doi: 10.1002/sstr.202200060
– ident: e_1_2_8_10_1
  doi: 10.1063/5.0183292
– ident: e_1_2_8_2_1
  doi: 10.1109/ACCESS.2023.3288696
– ident: e_1_2_8_34_1
  doi: 10.1038/s41598-017-08251-z
– ident: e_1_2_8_31_1
  doi: 10.1038/s41598-020-73407-3
SSID ssj0001763453
Score 2.3284957
Snippet As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent...
Abstract As encryption demands at the edges grow, volatile switching devices have emerged as promising candidates for entropy sources because of their inherent...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms cryptography
Data processing
Devices
Electric fields
Entropy
hardware security
Optimization
ovonic threshold switching
Randomness
stochastic
Temperature
Thermal energy
true random‐number generator
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yX3wRRcXplDwIPpW1adqmj9tYGeJU2AZ7C0ma6kBaWacy_Oe9a_fzSXzpQziu4S7XfEnvviPkDhOYDPcV1jpFDo8y4WjPxo7naePjFpNprEYePoWDCX-YBtOdKv6aH2Jz4YaRUX2vMcCVLttb0lBl37GSHHMgBdZeHwKy93GNM_6yvWWB8OEVFSVEJswgdKdr5kaXtfdV7O1MFYH_Hurcxa7V5pOckOMVaqSd2s2n5MDmZ-SnWxQlZi3T0aIwbwoZlwFT01lOn7-Q8ZaOwVEl_l-io-8ZuqfEIezLQ3vzZQFrB4SSGQBAfKImgLA0AU1U5SnFdGWsrKJ9TGf_WNKaoxpdeU4mSX_cGzirXgqO8QEUOKkwggtlItdTjAml4WRqIt_TgXKZ0ZbDSclyrUITullqmQ9xy0SYxlanWRTE_gVp5EVuLwllkY1AJBWRBTjDjWBpxuI0ZjozseKmSe7XdpQfNWWGrMmRmUSLy43Fm6SLZt5IIdV1NVDMX-UqcqQCiGlgMppjuzRhFSCOUAeZCuM4YEI0SWvtJLmKv1L6ANuQyc6DdziV4_6Yiuz0H4ceoKOrf8pfkyOGLYGri5kWaSzmn_YGcMpC31ZL8Rf6QuFO
  priority: 102
  providerName: Wiley-Blackwell
Title Boosting Stochasticity in Ovonic Threshold Switches Through Cryogenic First Firing for Fast and Reliable Entropy Generation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400881
https://www.proquest.com/docview/3251548011
https://doaj.org/article/a193c932b454418ea1526b5fa6995288
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba8IwFA6bp13Gxjbm5iSHwU7FNk3b5KiiyJjbQAVvIUlTJoxW1G3I_vzea1X05GWXHkJIwvsS3pf0ve8R8ogBTJaHGnOdEo8nmfBM4KQXBMaG6GIyg9nIw9d4MOHP02i6V-oLY8IqeeDKcC0NDMMCyTAcq2UJp8HhxCbKdCxlxESZ5utLf-8yVb6uwLHhUbhVafRZS7tPTDzHkEkhggMvVIr1HzDMfZ5aOpr-BTnfMETarlZ2SU5cfkV-O0WxxAhlOloV9kOjujLwZzrL6ds3qtvSMYCyxH9JdPQzQyiW2IQ1eGh3sS5gn0Cn_gzIHn5xJKCrtA8jUZ2nFEOTMYuK9jB0fb6mlR41wnZNJv3euDvwNnUTPBsCAfBSYQUX2iZ-oBkT2sAt1CZhYCLtM2sch1uR40bHNvaz1LEQzigTcSqdSbMkkuENqeVF7m4JZYlLoEsqEgfUhVvB0ozJVDKTWam5rZOnrR3VvJLHUJUQMlNocbWzeJ100My7XihrXTYA2GoDtjoGdp00tiCpzVlbqhAoGqrWBTCHVwJ3ZCmq3XsZBsCE7v5jTffkjGFN4PJlpkFqq8WXewCisjJNcsr4e7PcmX-uluTm
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQO8CCQIAonx6QmKImjpM4Y6laFWhhoEUVi2U7DlRCCWoLCPHnuUvSlk6IJYNlOdadL_d8uXtHyAUmMBnuK6x1ihwepcLRno0dz9PGRxeTaqxGHtyFvRG_GQeLbEKshSn5IZYBN7SM4nuNBo4B6eaKNVTZVywlxyRIgcXX9QDcKRzyeutx9DRaBVrAgnjBRgnGCZsI3fGCvNFlzfVF1pxTweG_Bjx_w9fC_3R3yHYFHGmr1PQu2bDZHvm-yvMZJi7Th3luXhSSLgOsppOM3n8g6S0dgq5m-IuJPnxOUEMzHMLWPLQ9_crh-MCk7gQwID5xJUCxtAsrUZUlFDOWsbiKdjCj_e2LljTVqM19Mup2hu2eU7VTcIwPuMBJhBFcKBO5nmJMKA2XUxP5ng6Uy4y2HC5LlmsVmtBNE8t8MF0mwiS2OkmjIPYPSC3LM3tIKItsBFMSEVlANNwIlqQsTmKmUxMrbhrkciFH-VayZsiSH5lJlLhcSrxBrlDMy1nIdl0M5NNnWRmPVIAyDWxGc-yYJqwC0BHqIFVhHAdMiAY5WShJViY4kz4gNySz8-AdTqG4P7YiW53-wAOAdPTP-edkszcc9GX_-u72mGwx7BBcxGlOSG0-fbenAFvm-qw6mD-i0-aL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kgngRRcX63IPgKZhsNsnm6KPBR1sFLfS27CtakKS0VRH_vDNJW9uTeMlhGTbLPLLfbma-IeQUE5gMDxXWOiUeT3Lh6cClXhBoE-IWk2usRu5045sev-tH_YUq_pofYn7hhpFRfa8xwIc2P_8lDVXuDSvJMQdSYO31KgfnQx9n_PH3lgXCh1dUlBCZsILY78-YG312vjzF0s5UEfgvoc5F7FptPtkm2ZiiRnpRm3mLrLhim3xfluUYs5bp06Q0rwoZlwFT00FBHz6Q8ZY-g6HG-H-JPn0O0DxjHMK-PPRq9FWC74BQNgAAiE-cCSAszWAmqgpLMV0ZK6toC9PZh1-05qhGU-6QXtZ6vrrxpr0UPBMCKPCsMIILZRI_UIwJpeFkapIw0JHymdGOw0nJca1iE_u5dSyEuGUitqnTNk-iNNwljaIs3B6hLHEJiFiROIAz3Ahmc5balOncpIqbJjmb6VEOa8oMWZMjM4kal3ONN8klqnkuhVTX1UA5epHTyJEKIKaBxWiO7dKEU4A4Yh3lKk7TiAnRJIczI8lp_I1lCLANmewCeIdXGe6PpciLVrsTADra_6f8CVl7vM5k-7Z7f0DWGXYHru5oDkljMnp3RwBZJvq48sof9a_j7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Stochasticity+in+Ovonic+Threshold+Switches+Through+Cryogenic+First+Firing+for+Fast+and+Reliable+Entropy+Generation&rft.jtitle=Advanced+electronic+materials&rft.au=Kim%2C+Dongmin&rft.au=Lee%2C+Jangseop&rft.au=Seo%2C+Yoori&rft.au=Kwon%2C+Ohhyuk&rft.date=2025-06-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=9&rft_id=info:doi/10.1002%2Faelm.202400881&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aelm_202400881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon