Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions
Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality,...
Saved in:
Published in | IEEE open journal of vehicular technology Vol. 3; pp. 375 - 387 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2644-1330 2644-1330 |
DOI | 10.1109/OJVT.2022.3202876 |
Cover
Abstract | Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality, and data structures. Hence, the conventional machine learning approaches in data training and processing have exhibited their limited computing capabilities to support the sixth-generation (6G) networks with highly dynamic applications and services. In this regard, the fast developing quantum computing with machine learning for 6G networks is investigated. Quantum machine learning algorithm can significantly enhance the processing efficiency and exponentially computational speed-up for effective quantum data representation and superposition framework, highly capable of guaranteeing high data storage and secured communications. We present the state-of-the-art in quantum computing and provide a comprehensive overview of its potential, via machine learning approaches. Furthermore, we introduce quantum-inspired machine learning applications for 6G networks in terms of resource allocation and network security, considering their enabling technologies and potential challenges. Finally, some dominating research issues and future research directions for the quantum-inspired machine learning in 6G networks are elaborated. |
---|---|
AbstractList | Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality, and data structures. Hence, the conventional machine learning approaches in data training and processing have exhibited their limited computing capabilities to support the sixth-generation (6G) networks with highly dynamic applications and services. In this regard, the fast developing quantum computing with machine learning for 6G networks is investigated. Quantum machine learning algorithm can significantly enhance the processing efficiency and exponentially computational speed-up for effective quantum data representation and superposition framework, highly capable of guaranteeing high data storage and secured communications. We present the state-of-the-art in quantum computing and provide a comprehensive overview of its potential, via machine learning approaches. Furthermore, we introduce quantum-inspired machine learning applications for 6G networks in terms of resource allocation and network security, considering their enabling technologies and potential challenges. Finally, some dominating research issues and future research directions for the quantum-inspired machine learning in 6G networks are elaborated. |
Author | Shin, Hyundong Dobre, Octavia A. Duong, Trung Q. Ansere, James Adu Narottama, Bhaskara Sharma, Vishal |
Author_xml | – sequence: 1 givenname: Trung Q. orcidid: 0000-0002-4703-4836 surname: Duong fullname: Duong, Trung Q. email: trung.q.duong@qub.ac.uk organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K – sequence: 2 givenname: James Adu surname: Ansere fullname: Ansere, James Adu email: jaansere@stu.edu.gh organization: Department of Electrical and Electronic Engineering, Sunyani Technical University, Sunyani, Ghana – sequence: 3 givenname: Bhaskara orcidid: 0000-0001-8596-1027 surname: Narottama fullname: Narottama, Bhaskara email: bhaskara@kumoh.ac.kr organization: Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea – sequence: 4 givenname: Vishal surname: Sharma fullname: Sharma, Vishal email: v.sharma@qub.ac.uk organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K – sequence: 5 givenname: Octavia A. orcidid: 0000-0001-8528-0512 surname: Dobre fullname: Dobre, Octavia A. email: odobre@mun.ca organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada – sequence: 6 givenname: Hyundong orcidid: 0000-0003-3364-8084 surname: Shin fullname: Shin, Hyundong email: hshin@khu.ac.kr organization: Kyung Hee University, Gyeonggi-do, South Korea |
BookMark | eNp9kc9u1DAQxiNUJErpAyAueYBm8Z84drhVCy1bLaqAwtWajMe7rrJ25SSHXnlysrsFVRy42CPP9_3Go-91cRJTpKJ4y9mCc9a-v735ebcQTIiFnE-jmxfFqWjquuJSspNn9avifBjuGWNCcc6lPi1-fZ0gjtOuWsXhIWRy5RfAbYhUrglyDHFT-pTL5vpDeTVFBzuKI_TDRfmdcMphfLwov9GQpoxUXvZ9QhhDinN_uYW-p7ihuYboZvc4ZdqLZy5uy4_zMDxo3xQv_Yyk86f7rPhx9elu-bla316vlpfrCqWux8ozj7o2INGxjkuvDatd0yroOPC66VC1WjtBiKzzzhnFuBLegzLGMAUoz4rVkesS3NuHHHaQH22CYA8PKW8s5DFgT1YpwbTXNSKZmoCbrnEAgiuEVjppZpY-sjCnYcjkLYbxsPqYIfSWM7tPxu6Tsftk7FMys5P_4_zzk_953h09gYj-6lujmZJC_gZNmZ0T |
CODEN | IOJVAO |
CitedBy_id | crossref_primary_10_1007_s11036_024_02343_7 crossref_primary_10_1016_j_jnca_2024_104040 crossref_primary_10_1109_ACCESS_2024_3375530 crossref_primary_10_3103_S0735272723050047 crossref_primary_10_1109_TWC_2023_3330868 crossref_primary_10_1007_s10515_024_00427_y crossref_primary_10_1016_j_seta_2023_103318 crossref_primary_10_1016_j_comnet_2023_110085 crossref_primary_10_1109_ACCESS_2023_3239807 crossref_primary_10_3390_s24041271 crossref_primary_10_1109_OJVT_2024_3368240 crossref_primary_10_1109_TWC_2024_3442091 crossref_primary_10_3390_electronics13214153 crossref_primary_10_1007_s11082_023_06185_7 crossref_primary_10_1016_j_infsof_2024_107454 crossref_primary_10_1109_LWC_2023_3338571 crossref_primary_10_55267_rtic_15824 crossref_primary_10_1109_OJCOMS_2025_3540287 crossref_primary_10_3390_fi17020050 |
Cites_doi | 10.1109/ICMSS53060.2021.9673630 10.1109/TQE.2022.3140376 10.1002/qute.201900038 10.1088/2058-9565/aaea94 10.56042/ijpap.v60i5.60456 10.1145/237814.237866 10.1109/MC.2018.1451646 10.1016/j.neunet.2022.03.043 10.1109/ICCCA49541.2020.9250806 10.1109/TSMC.2016.2596578 10.1109/ACCESS.2013.2259536 10.1201/9781420012293 10.1080/00107514.2014.964942 10.1007/978-3-030-12358-1 10.1109/CompComm.2017.8322607 10.1109/OJCOMS.2021.3071496 10.1109/ICCCNT49239.2020.9225271 10.1109/SMC.2017.8122616 10.1109/TCOMM.2021.3098683 10.1109/ACCESS.2021.3117902 10.1049/cce:19990303 10.1109/JSAC.2020.2969035 10.1109/ACCESS.2021.3056882 10.1109/tnn.1998.712192 10.1109/ACCESS.2020.3041719 10.1049/iet-qtc.2020.0002 10.1007/s10994-012-5316-5 10.1109/ETS50041.2021.9465397 10.1007/s11128-014-0809-8 10.1038/s41467-020-14454-2 10.1142/S0219477502000981 10.1109/JIOT.2021.3091551 10.1109/ISIT45174.2021.9517813 10.1109/ICREST.2019.8644342 10.1016/j.icte.2022.01.014 10.1109/TVT.2019.2946225 10.1016/S0304-3975(02)00377-8 10.1109/TNNLS.2019.2933394 10.1007/s11831-018-9269-0 10.1109/CHICC.2006.4347206 10.1109/ITNG.2009.173 10.1109/IACC.2016.109 10.1109/QCE49297.2020.00038 10.1109/JIOT.2020.2995387 10.1109/tits.2022.3159450 10.1098/rspa.1998.0159 10.1109/MCOM.001.1900411 10.1016/S0079-6638(06)49005-3 10.1109/TWC.2021.3086762 10.1109/CSRSWTC50769.2020.9372501 10.1109/OJCOMS.2022.3195219 10.1109/ICCC49849.2020.9238954 10.1007/jhep04(2021)138 10.1007/s10773-022-05040-x 10.1109/TII.2019.2949354 10.23919/JCC.2019.10.001 10.1109/IPDPS.2005.430 10.1109/MOCAST52088.2021.9493388 10.1109/ISISE.2009.86 10.1002/9781119476863 10.1002/qute.201800077 10.1109/GLOBECOM48099.2022.10001726 10.1109/TVT.2021.3121217 10.1109/ACCESS.2019.2916648 10.1109/TIT.2021.3065452 10.3390/s22051969 10.1080/00033790.2011.588008 10.1109/TCYB.2014.2307349 10.1109/TCOMM.2019.2945334 10.1109/ICAIS50930.2021.9395842 10.1007/978-1-4615-3618-5_1 10.1109/TNNLS.2020.3025711 10.1016/j.neucom.2021.02.102 10.1145/3526241.3530833 10.1109/ACCESS.2018.2839669 10.1103/PhysRevA.51.1015 10.1109/MWC.2017.1600343 10.1109/TSMCB.2008.925743 10.1103/RevModPhys.90.015002 10.1109/ICCONS.2018.8663155 10.1109/PhDEDITS51180.2020.9315301 10.1109/OJCOMS.2021.3057679 10.1007/978-981-15-9735-0_1 10.1016/B978-0-12-804409-4.00002-4 10.1109/JIOT.2021.3056128 10.1109/tnnls.2021.3084467 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJVT.2022.3202876 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2644-1330 |
EndPage | 387 |
ExternalDocumentID | oai_doaj_org_article_55207f74cce84ea18b6daa215ca93d38 10_1109_OJVT_2022_3202876 9870532 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council; U.K. Engineering and Physical Sciences Research Council grantid: EP/P019374/1 funderid: 10.13039/501100000266 – fundername: Royal Academy of Engineering; U.K. Royal Academy of Engineering grantid: RCSRF2021\11\41 funderid: 10.13039/501100000287 |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c374t-f0fc748a3cd0b13f7804d695ab1a146bc5977d2ecc0bfdd850152ffa588805ac3 |
IEDL.DBID | RIE |
ISSN | 2644-1330 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Tue Jul 01 01:47:50 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Wed Aug 27 02:15:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-f0fc748a3cd0b13f7804d695ab1a146bc5977d2ecc0bfdd850152ffa588805ac3 |
ORCID | 0000-0003-3364-8084 0000-0001-8596-1027 0000-0001-8528-0512 0000-0002-4703-4836 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9870532 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9870532 doaj_primary_oai_doaj_org_article_55207f74cce84ea18b6daa215ca93d38 crossref_citationtrail_10_1109_OJVT_2022_3202876 crossref_primary_10_1109_OJVT_2022_3202876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of vehicular technology |
PublicationTitleAbbrev | OJVT |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Williams (ref13) 1998 ref93 ref92 ref51 ref50 ref91 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref4 ref3 ref5 ref82 ref81 ref40 ref84 Vos (ref7) 2022 ref83 Hirvensalo (ref9) 2003 Singh (ref30) 2016 ref80 ref35 ref79 ref34 ref78 ref37 ref36 Pratt (ref90) 2019 ref31 ref75 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Moore (ref6) 1965; 38 ref60 ref62 Ekert (ref14) 2000 ref61 |
References_xml | – ident: ref29 doi: 10.1109/ICMSS53060.2021.9673630 – ident: ref65 doi: 10.1109/TQE.2022.3140376 – ident: ref12 doi: 10.1002/qute.201900038 – ident: ref41 doi: 10.1088/2058-9565/aaea94 – ident: ref62 doi: 10.56042/ijpap.v60i5.60456 – ident: ref75 doi: 10.1145/237814.237866 – ident: ref43 doi: 10.1109/MC.2018.1451646 – ident: ref60 doi: 10.1016/j.neunet.2022.03.043 – ident: ref63 doi: 10.1109/ICCCA49541.2020.9250806 – ident: ref69 doi: 10.1109/TSMC.2016.2596578 – ident: ref76 doi: 10.1109/ACCESS.2013.2259536 – ident: ref19 doi: 10.1201/9781420012293 – start-page: 1310 volume-title: Proc. 3rd Int. Conf. Comput. Sustain. Glob. Develop. year: 2016 ident: ref30 article-title: A review of supervised machine learning algorithms – ident: ref26 doi: 10.1080/00107514.2014.964942 – ident: ref21 doi: 10.1007/978-3-030-12358-1 – ident: ref37 doi: 10.1109/CompComm.2017.8322607 – ident: ref72 doi: 10.1109/OJCOMS.2021.3071496 – ident: ref25 doi: 10.1109/ICCCNT49239.2020.9225271 – ident: ref47 doi: 10.1109/SMC.2017.8122616 – ident: ref73 doi: 10.1109/TCOMM.2021.3098683 – ident: ref93 doi: 10.1109/ACCESS.2021.3117902 – ident: ref8 doi: 10.1049/cce:19990303 – ident: ref53 doi: 10.1109/JSAC.2020.2969035 – ident: ref67 doi: 10.1109/ACCESS.2021.3056882 – ident: ref49 doi: 10.1109/tnn.1998.712192 – ident: ref27 doi: 10.1109/ACCESS.2020.3041719 – ident: ref22 doi: 10.1049/iet-qtc.2020.0002 – ident: ref44 doi: 10.1007/s10994-012-5316-5 – ident: ref82 doi: 10.1109/ETS50041.2021.9465397 – volume: 38 issue: 8 year: 1965 ident: ref6 article-title: Moores law publication-title: Electron. Mag. – volume-title: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation year: 2000 ident: ref14 – ident: ref52 doi: 10.1007/s11128-014-0809-8 – ident: ref58 doi: 10.1038/s41467-020-14454-2 – ident: ref70 doi: 10.1142/S0219477502000981 – ident: ref33 doi: 10.1109/JIOT.2021.3091551 – ident: ref66 doi: 10.1109/ISIT45174.2021.9517813 – ident: ref86 doi: 10.1109/ICREST.2019.8644342 – ident: ref78 doi: 10.1016/j.icte.2022.01.014 – ident: ref92 doi: 10.1109/TVT.2019.2946225 – ident: ref50 doi: 10.1016/S0304-3975(02)00377-8 – ident: ref57 doi: 10.1109/TNNLS.2019.2933394 – ident: ref54 doi: 10.1007/s11831-018-9269-0 – ident: ref15 doi: 10.1109/CHICC.2006.4347206 – ident: ref85 doi: 10.1109/ITNG.2009.173 – ident: ref80 doi: 10.1109/IACC.2016.109 – ident: ref10 doi: 10.1109/QCE49297.2020.00038 – ident: ref91 doi: 10.1109/JIOT.2020.2995387 – ident: ref2 doi: 10.1109/tits.2022.3159450 – ident: ref24 doi: 10.1098/rspa.1998.0159 – ident: ref5 doi: 10.1109/MCOM.001.1900411 – volume-title: Satellite Communications year: 2019 ident: ref90 – ident: ref79 doi: 10.1016/S0079-6638(06)49005-3 – ident: ref74 doi: 10.1109/TWC.2021.3086762 – ident: ref51 doi: 10.1109/CSRSWTC50769.2020.9372501 – ident: ref11 doi: 10.1109/OJCOMS.2022.3195219 – ident: ref48 doi: 10.1109/ICCC49849.2020.9238954 – ident: ref56 doi: 10.1007/jhep04(2021)138 – ident: ref61 doi: 10.1007/s10773-022-05040-x – ident: ref83 doi: 10.1109/TII.2019.2949354 – ident: ref81 doi: 10.23919/JCC.2019.10.001 – ident: ref16 doi: 10.1109/IPDPS.2005.430 – ident: ref35 doi: 10.1109/MOCAST52088.2021.9493388 – ident: ref64 doi: 10.1109/ISISE.2009.86 – volume-title: Quantum Computing year: 2003 ident: ref9 – ident: ref1 doi: 10.1002/9781119476863 – ident: ref55 doi: 10.1002/qute.201800077 – ident: ref77 doi: 10.1109/GLOBECOM48099.2022.10001726 – volume-title: Quantum Computing in Action year: 2022 ident: ref7 – ident: ref38 doi: 10.1109/TVT.2021.3121217 – ident: ref34 doi: 10.1109/ACCESS.2019.2916648 – ident: ref68 doi: 10.1109/TIT.2021.3065452 – ident: ref89 doi: 10.3390/s22051969 – volume-title: Explorations in Quantum Computing year: 1998 ident: ref13 – ident: ref17 doi: 10.1080/00033790.2011.588008 – ident: ref31 doi: 10.1109/TCYB.2014.2307349 – ident: ref36 doi: 10.1109/TCOMM.2019.2945334 – ident: ref20 doi: 10.1109/ICAIS50930.2021.9395842 – ident: ref39 doi: 10.1007/978-1-4615-3618-5_1 – ident: ref40 doi: 10.1109/TNNLS.2020.3025711 – ident: ref28 doi: 10.1016/j.neucom.2021.02.102 – ident: ref84 doi: 10.1145/3526241.3530833 – ident: ref3 doi: 10.1109/ACCESS.2018.2839669 – ident: ref23 doi: 10.1103/PhysRevA.51.1015 – ident: ref4 doi: 10.1109/MWC.2017.1600343 – ident: ref46 doi: 10.1109/TSMCB.2008.925743 – ident: ref18 doi: 10.1103/RevModPhys.90.015002 – ident: ref32 doi: 10.1109/ICCONS.2018.8663155 – ident: ref42 doi: 10.1109/PhDEDITS51180.2020.9315301 – ident: ref71 doi: 10.1109/OJCOMS.2021.3057679 – ident: ref87 doi: 10.1007/978-981-15-9735-0_1 – ident: ref45 doi: 10.1016/B978-0-12-804409-4.00002-4 – ident: ref88 doi: 10.1109/JIOT.2021.3056128 – ident: ref59 doi: 10.1109/tnnls.2021.3084467 |
SSID | ssj0002511137 |
Score | 2.3865964 |
Snippet | Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 375 |
SubjectTerms | 6G mobile communication 6G networks Computational efficiency Logic gates Machine learning Machine learning algorithms Quantum computing quantum machine learning quantum security Qubit |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDlJQ9MqAEntpOYDRDlIQFCtIgt8issEBC0f4Bfzp3jVmWBhc2KbMu6u9zDd_6OkH0RQOvgT_PSmEQoGOkcX4FILsA7lYp5zOje3OaXI3H9JJ_mWn1hTVgLD9wS7kjKjBV1Iaz1pfA6LU3utAZDZbXijodnvkyxuWAKdTA6zikvYhozZero7vpxCOFglh1ix_ASMUbmDFHA6__RYCXYl8EKWY6OIT1pD7RKFnyzRpbm4AK75Ot-AnSYvCZXDebHvaM3oRTS04iS-kzBBaX5xTEd4AOPFrf_s08fYpO6Pp3e1tOTF7RiQej69GzaUQXGunGwGvMKdFqVR6NehLnrZDQ4H55dJrGHQmJ5IcZJzWpbiFJz65hJeY14Qy5XUptUg5I0FvHnXAaMZKZ2rpTgHmR1rSVExkxqyzdIp3lr_CaheVED2aWBANAJkyutMBmsOIQ8XCtX9gibErSyEWAc-1y8VCHQYKpCHlTIgyryoEcOZkveW3SN3yafIpdmExEYO3wAcamiuFR_iUuPdJHHs00U6CvJs63_2HubLOJ52wuaHdIZf0z8LrgsY7MXpPMbJWvl7Q priority: 102 providerName: Directory of Open Access Journals |
Title | Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions |
URI | https://ieeexplore.ieee.org/document/9870532 https://doaj.org/article/55207f74cce84ea18b6daa215ca93d38 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29T90wELeACQZKSxG0gDx0Qi8PJ7aTmA0Qr4D0QKiA2CJ_hQEaqvZl6cDAX86d40RQoYolsiI7OuXO9n3-jpBvIoDWwU7z0phEKBjpHKtAJBegnUrFPEZ0p2f58ZU4vZE3c2Q01MJ470PymR_jMMTy3YNt0VW2C_YxNjKYJ_MgZl2t1uBPQVU55UUMXKZM7Z6fXl-CAZhlY-wRXiKqyIurJyD0v2qpEm6UyQcy7WnpEknuxu3MjO3ff2Aa30vsClmOqiXd72ThI5nzzSey9AJwcJU8XbTwJ9ufyUmDEXbv6DQkU3oacVZvKSixNP--RydYItIh__8Z0R-xzd2I9v5-un-P92AQ2xE97HuywFg3DlZjZIL2eX00nqww9zO5mhxdHh4nsQtDYnkhZknNaluIUnPrmEl5jYhFLldSm1TDMWssIti5DESBmdq5UoKCkdW1lmBbM6ktXyMLzUPj1wnNixo0DGnAhHTC5EorDCcrDkYT18qVG4T1DKpshCjHThn3VTBVmKqQpxXytIo83SA7w5JfHT7H_yYfINeHiQitHV4A46q4UyspM1bUhbDWl8LrtDS50xrotlpxx4HIVWT28JHI5y9vv_5KFpGCzmmzSRZmv1u_BWrMzGwH8x-e08ej7SDLz9N88SY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvAqiPH3ghDZbJ7aTmFupWLalW4TYot4iv8KBkiLYXDjyy5lxnKgghLhZlh2NMmN7nt8APJcRtA5PWlDWZlLjyJRUBaKERO1UaR4oors6KZen8uhMnW3BbKqFCSHE5LMwp2GM5fsL15OrbA_tY2pkcAWuKrQq6qFaa_KokLKciyqFLnOu994dfVyjCVgUc-oSXhOuyKXHJ2L0_9ZUJb4pi1uwGqkZUkk-z_uNnbsffwA1_i-5t-FmUi7Z_iANd2ArdHfhxiXIwR34-b7Hf9l_yQ47irEHz1YxnTKwhLT6iaEay8o3L9mCikQG7P_vM_YhNbqbsdHjz_bP6SWMgjtjB2NXFhybzuNuik2wMbOPpbsV196D08Xr9cEyS30YMicqucla3rpK1kY4z20uWsIs8qVWxuYGL1rrCMPOFygM3Lbe1wpVjKJtjULrmivjxH3Y7i668ABYWbWoYyiLRqSXttRGU0BZCzSbhNG-3gU-MqhxCaScemWcN9FY4bohnjbE0ybxdBdeTFu-Dggd_1r8irg-LSRw7TiBjGvSWW2UKnjVVtK5UMtg8tqW3hik2xktvEAid4jZ00cSnx_-ffoZXFuuV8fN8eHJ20dwnagZXDiPYXvzrQ9PUKnZ2KdRln8BSCjyUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Inspired+Machine+Learning+for+6G%3A+Fundamentals%2C+Security%2C+Resource+Allocations%2C+Challenges%2C+and+Future+Research+Directions&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Duong%2C+Trung+Q.&rft.au=Ansere%2C+James+Adu&rft.au=Narottama%2C+Bhaskara&rft.au=Sharma%2C+Vishal&rft.date=2022&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=3&rft.spage=375&rft.epage=387&rft_id=info:doi/10.1109%2FOJVT.2022.3202876&rft.externalDocID=9870532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon |