Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions

Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality,...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of vehicular technology Vol. 3; pp. 375 - 387
Main Authors Duong, Trung Q., Ansere, James Adu, Narottama, Bhaskara, Sharma, Vishal, Dobre, Octavia A., Shin, Hyundong
Format Journal Article
LanguageEnglish
Published IEEE 2022
Subjects
Online AccessGet full text
ISSN2644-1330
2644-1330
DOI10.1109/OJVT.2022.3202876

Cover

Abstract Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality, and data structures. Hence, the conventional machine learning approaches in data training and processing have exhibited their limited computing capabilities to support the sixth-generation (6G) networks with highly dynamic applications and services. In this regard, the fast developing quantum computing with machine learning for 6G networks is investigated. Quantum machine learning algorithm can significantly enhance the processing efficiency and exponentially computational speed-up for effective quantum data representation and superposition framework, highly capable of guaranteeing high data storage and secured communications. We present the state-of-the-art in quantum computing and provide a comprehensive overview of its potential, via machine learning approaches. Furthermore, we introduce quantum-inspired machine learning applications for 6G networks in terms of resource allocation and network security, considering their enabling technologies and potential challenges. Finally, some dominating research issues and future research directions for the quantum-inspired machine learning in 6G networks are elaborated.
AbstractList Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and exhaustive search. Recently, there has been a proliferating growth of the size of multi-dimensional datasets, the input-output space dimensionality, and data structures. Hence, the conventional machine learning approaches in data training and processing have exhibited their limited computing capabilities to support the sixth-generation (6G) networks with highly dynamic applications and services. In this regard, the fast developing quantum computing with machine learning for 6G networks is investigated. Quantum machine learning algorithm can significantly enhance the processing efficiency and exponentially computational speed-up for effective quantum data representation and superposition framework, highly capable of guaranteeing high data storage and secured communications. We present the state-of-the-art in quantum computing and provide a comprehensive overview of its potential, via machine learning approaches. Furthermore, we introduce quantum-inspired machine learning applications for 6G networks in terms of resource allocation and network security, considering their enabling technologies and potential challenges. Finally, some dominating research issues and future research directions for the quantum-inspired machine learning in 6G networks are elaborated.
Author Shin, Hyundong
Dobre, Octavia A.
Duong, Trung Q.
Ansere, James Adu
Narottama, Bhaskara
Sharma, Vishal
Author_xml – sequence: 1
  givenname: Trung Q.
  orcidid: 0000-0002-4703-4836
  surname: Duong
  fullname: Duong, Trung Q.
  email: trung.q.duong@qub.ac.uk
  organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K
– sequence: 2
  givenname: James Adu
  surname: Ansere
  fullname: Ansere, James Adu
  email: jaansere@stu.edu.gh
  organization: Department of Electrical and Electronic Engineering, Sunyani Technical University, Sunyani, Ghana
– sequence: 3
  givenname: Bhaskara
  orcidid: 0000-0001-8596-1027
  surname: Narottama
  fullname: Narottama, Bhaskara
  email: bhaskara@kumoh.ac.kr
  organization: Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
– sequence: 4
  givenname: Vishal
  surname: Sharma
  fullname: Sharma, Vishal
  email: v.sharma@qub.ac.uk
  organization: School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, U.K
– sequence: 5
  givenname: Octavia A.
  orcidid: 0000-0001-8528-0512
  surname: Dobre
  fullname: Dobre, Octavia A.
  email: odobre@mun.ca
  organization: Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
– sequence: 6
  givenname: Hyundong
  orcidid: 0000-0003-3364-8084
  surname: Shin
  fullname: Shin, Hyundong
  email: hshin@khu.ac.kr
  organization: Kyung Hee University, Gyeonggi-do, South Korea
BookMark eNp9kc9u1DAQxiNUJErpAyAueYBm8Z84drhVCy1bLaqAwtWajMe7rrJ25SSHXnlysrsFVRy42CPP9_3Go-91cRJTpKJ4y9mCc9a-v735ebcQTIiFnE-jmxfFqWjquuJSspNn9avifBjuGWNCcc6lPi1-fZ0gjtOuWsXhIWRy5RfAbYhUrglyDHFT-pTL5vpDeTVFBzuKI_TDRfmdcMphfLwov9GQpoxUXvZ9QhhDinN_uYW-p7ihuYboZvc4ZdqLZy5uy4_zMDxo3xQv_Yyk86f7rPhx9elu-bla316vlpfrCqWux8ozj7o2INGxjkuvDatd0yroOPC66VC1WjtBiKzzzhnFuBLegzLGMAUoz4rVkesS3NuHHHaQH22CYA8PKW8s5DFgT1YpwbTXNSKZmoCbrnEAgiuEVjppZpY-sjCnYcjkLYbxsPqYIfSWM7tPxu6Tsftk7FMys5P_4_zzk_953h09gYj-6lujmZJC_gZNmZ0T
CODEN IOJVAO
CitedBy_id crossref_primary_10_1007_s11036_024_02343_7
crossref_primary_10_1016_j_jnca_2024_104040
crossref_primary_10_1109_ACCESS_2024_3375530
crossref_primary_10_3103_S0735272723050047
crossref_primary_10_1109_TWC_2023_3330868
crossref_primary_10_1007_s10515_024_00427_y
crossref_primary_10_1016_j_seta_2023_103318
crossref_primary_10_1016_j_comnet_2023_110085
crossref_primary_10_1109_ACCESS_2023_3239807
crossref_primary_10_3390_s24041271
crossref_primary_10_1109_OJVT_2024_3368240
crossref_primary_10_1109_TWC_2024_3442091
crossref_primary_10_3390_electronics13214153
crossref_primary_10_1007_s11082_023_06185_7
crossref_primary_10_1016_j_infsof_2024_107454
crossref_primary_10_1109_LWC_2023_3338571
crossref_primary_10_55267_rtic_15824
crossref_primary_10_1109_OJCOMS_2025_3540287
crossref_primary_10_3390_fi17020050
Cites_doi 10.1109/ICMSS53060.2021.9673630
10.1109/TQE.2022.3140376
10.1002/qute.201900038
10.1088/2058-9565/aaea94
10.56042/ijpap.v60i5.60456
10.1145/237814.237866
10.1109/MC.2018.1451646
10.1016/j.neunet.2022.03.043
10.1109/ICCCA49541.2020.9250806
10.1109/TSMC.2016.2596578
10.1109/ACCESS.2013.2259536
10.1201/9781420012293
10.1080/00107514.2014.964942
10.1007/978-3-030-12358-1
10.1109/CompComm.2017.8322607
10.1109/OJCOMS.2021.3071496
10.1109/ICCCNT49239.2020.9225271
10.1109/SMC.2017.8122616
10.1109/TCOMM.2021.3098683
10.1109/ACCESS.2021.3117902
10.1049/cce:19990303
10.1109/JSAC.2020.2969035
10.1109/ACCESS.2021.3056882
10.1109/tnn.1998.712192
10.1109/ACCESS.2020.3041719
10.1049/iet-qtc.2020.0002
10.1007/s10994-012-5316-5
10.1109/ETS50041.2021.9465397
10.1007/s11128-014-0809-8
10.1038/s41467-020-14454-2
10.1142/S0219477502000981
10.1109/JIOT.2021.3091551
10.1109/ISIT45174.2021.9517813
10.1109/ICREST.2019.8644342
10.1016/j.icte.2022.01.014
10.1109/TVT.2019.2946225
10.1016/S0304-3975(02)00377-8
10.1109/TNNLS.2019.2933394
10.1007/s11831-018-9269-0
10.1109/CHICC.2006.4347206
10.1109/ITNG.2009.173
10.1109/IACC.2016.109
10.1109/QCE49297.2020.00038
10.1109/JIOT.2020.2995387
10.1109/tits.2022.3159450
10.1098/rspa.1998.0159
10.1109/MCOM.001.1900411
10.1016/S0079-6638(06)49005-3
10.1109/TWC.2021.3086762
10.1109/CSRSWTC50769.2020.9372501
10.1109/OJCOMS.2022.3195219
10.1109/ICCC49849.2020.9238954
10.1007/jhep04(2021)138
10.1007/s10773-022-05040-x
10.1109/TII.2019.2949354
10.23919/JCC.2019.10.001
10.1109/IPDPS.2005.430
10.1109/MOCAST52088.2021.9493388
10.1109/ISISE.2009.86
10.1002/9781119476863
10.1002/qute.201800077
10.1109/GLOBECOM48099.2022.10001726
10.1109/TVT.2021.3121217
10.1109/ACCESS.2019.2916648
10.1109/TIT.2021.3065452
10.3390/s22051969
10.1080/00033790.2011.588008
10.1109/TCYB.2014.2307349
10.1109/TCOMM.2019.2945334
10.1109/ICAIS50930.2021.9395842
10.1007/978-1-4615-3618-5_1
10.1109/TNNLS.2020.3025711
10.1016/j.neucom.2021.02.102
10.1145/3526241.3530833
10.1109/ACCESS.2018.2839669
10.1103/PhysRevA.51.1015
10.1109/MWC.2017.1600343
10.1109/TSMCB.2008.925743
10.1103/RevModPhys.90.015002
10.1109/ICCONS.2018.8663155
10.1109/PhDEDITS51180.2020.9315301
10.1109/OJCOMS.2021.3057679
10.1007/978-981-15-9735-0_1
10.1016/B978-0-12-804409-4.00002-4
10.1109/JIOT.2021.3056128
10.1109/tnnls.2021.3084467
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJVT.2022.3202876
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1330
EndPage 387
ExternalDocumentID oai_doaj_org_article_55207f74cce84ea18b6daa215ca93d38
10_1109_OJVT_2022_3202876
9870532
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council; U.K. Engineering and Physical Sciences Research Council
  grantid: EP/P019374/1
  funderid: 10.13039/501100000266
– fundername: Royal Academy of Engineering; U.K. Royal Academy of Engineering
  grantid: RCSRF2021\11\41
  funderid: 10.13039/501100000287
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c374t-f0fc748a3cd0b13f7804d695ab1a146bc5977d2ecc0bfdd850152ffa588805ac3
IEDL.DBID RIE
ISSN 2644-1330
IngestDate Wed Aug 27 01:31:36 EDT 2025
Tue Jul 01 01:47:50 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Wed Aug 27 02:15:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-f0fc748a3cd0b13f7804d695ab1a146bc5977d2ecc0bfdd850152ffa588805ac3
ORCID 0000-0003-3364-8084
0000-0001-8596-1027
0000-0001-8528-0512
0000-0002-4703-4836
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9870532
PageCount 13
ParticipantIDs ieee_primary_9870532
doaj_primary_oai_doaj_org_article_55207f74cce84ea18b6daa215ca93d38
crossref_citationtrail_10_1109_OJVT_2022_3202876
crossref_primary_10_1109_OJVT_2022_3202876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationTitle IEEE open journal of vehicular technology
PublicationTitleAbbrev OJVT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Williams (ref13) 1998
ref93
ref92
ref51
ref50
ref91
ref46
ref45
ref89
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref4
ref3
ref5
ref82
ref81
ref40
ref84
Vos (ref7) 2022
ref83
Hirvensalo (ref9) 2003
Singh (ref30) 2016
ref80
ref35
ref79
ref34
ref78
ref37
ref36
Pratt (ref90) 2019
ref31
ref75
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Moore (ref6) 1965; 38
ref60
ref62
Ekert (ref14) 2000
ref61
References_xml – ident: ref29
  doi: 10.1109/ICMSS53060.2021.9673630
– ident: ref65
  doi: 10.1109/TQE.2022.3140376
– ident: ref12
  doi: 10.1002/qute.201900038
– ident: ref41
  doi: 10.1088/2058-9565/aaea94
– ident: ref62
  doi: 10.56042/ijpap.v60i5.60456
– ident: ref75
  doi: 10.1145/237814.237866
– ident: ref43
  doi: 10.1109/MC.2018.1451646
– ident: ref60
  doi: 10.1016/j.neunet.2022.03.043
– ident: ref63
  doi: 10.1109/ICCCA49541.2020.9250806
– ident: ref69
  doi: 10.1109/TSMC.2016.2596578
– ident: ref76
  doi: 10.1109/ACCESS.2013.2259536
– ident: ref19
  doi: 10.1201/9781420012293
– start-page: 1310
  volume-title: Proc. 3rd Int. Conf. Comput. Sustain. Glob. Develop.
  year: 2016
  ident: ref30
  article-title: A review of supervised machine learning algorithms
– ident: ref26
  doi: 10.1080/00107514.2014.964942
– ident: ref21
  doi: 10.1007/978-3-030-12358-1
– ident: ref37
  doi: 10.1109/CompComm.2017.8322607
– ident: ref72
  doi: 10.1109/OJCOMS.2021.3071496
– ident: ref25
  doi: 10.1109/ICCCNT49239.2020.9225271
– ident: ref47
  doi: 10.1109/SMC.2017.8122616
– ident: ref73
  doi: 10.1109/TCOMM.2021.3098683
– ident: ref93
  doi: 10.1109/ACCESS.2021.3117902
– ident: ref8
  doi: 10.1049/cce:19990303
– ident: ref53
  doi: 10.1109/JSAC.2020.2969035
– ident: ref67
  doi: 10.1109/ACCESS.2021.3056882
– ident: ref49
  doi: 10.1109/tnn.1998.712192
– ident: ref27
  doi: 10.1109/ACCESS.2020.3041719
– ident: ref22
  doi: 10.1049/iet-qtc.2020.0002
– ident: ref44
  doi: 10.1007/s10994-012-5316-5
– ident: ref82
  doi: 10.1109/ETS50041.2021.9465397
– volume: 38
  issue: 8
  year: 1965
  ident: ref6
  article-title: Moores law
  publication-title: Electron. Mag.
– volume-title: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation
  year: 2000
  ident: ref14
– ident: ref52
  doi: 10.1007/s11128-014-0809-8
– ident: ref58
  doi: 10.1038/s41467-020-14454-2
– ident: ref70
  doi: 10.1142/S0219477502000981
– ident: ref33
  doi: 10.1109/JIOT.2021.3091551
– ident: ref66
  doi: 10.1109/ISIT45174.2021.9517813
– ident: ref86
  doi: 10.1109/ICREST.2019.8644342
– ident: ref78
  doi: 10.1016/j.icte.2022.01.014
– ident: ref92
  doi: 10.1109/TVT.2019.2946225
– ident: ref50
  doi: 10.1016/S0304-3975(02)00377-8
– ident: ref57
  doi: 10.1109/TNNLS.2019.2933394
– ident: ref54
  doi: 10.1007/s11831-018-9269-0
– ident: ref15
  doi: 10.1109/CHICC.2006.4347206
– ident: ref85
  doi: 10.1109/ITNG.2009.173
– ident: ref80
  doi: 10.1109/IACC.2016.109
– ident: ref10
  doi: 10.1109/QCE49297.2020.00038
– ident: ref91
  doi: 10.1109/JIOT.2020.2995387
– ident: ref2
  doi: 10.1109/tits.2022.3159450
– ident: ref24
  doi: 10.1098/rspa.1998.0159
– ident: ref5
  doi: 10.1109/MCOM.001.1900411
– volume-title: Satellite Communications
  year: 2019
  ident: ref90
– ident: ref79
  doi: 10.1016/S0079-6638(06)49005-3
– ident: ref74
  doi: 10.1109/TWC.2021.3086762
– ident: ref51
  doi: 10.1109/CSRSWTC50769.2020.9372501
– ident: ref11
  doi: 10.1109/OJCOMS.2022.3195219
– ident: ref48
  doi: 10.1109/ICCC49849.2020.9238954
– ident: ref56
  doi: 10.1007/jhep04(2021)138
– ident: ref61
  doi: 10.1007/s10773-022-05040-x
– ident: ref83
  doi: 10.1109/TII.2019.2949354
– ident: ref81
  doi: 10.23919/JCC.2019.10.001
– ident: ref16
  doi: 10.1109/IPDPS.2005.430
– ident: ref35
  doi: 10.1109/MOCAST52088.2021.9493388
– ident: ref64
  doi: 10.1109/ISISE.2009.86
– volume-title: Quantum Computing
  year: 2003
  ident: ref9
– ident: ref1
  doi: 10.1002/9781119476863
– ident: ref55
  doi: 10.1002/qute.201800077
– ident: ref77
  doi: 10.1109/GLOBECOM48099.2022.10001726
– volume-title: Quantum Computing in Action
  year: 2022
  ident: ref7
– ident: ref38
  doi: 10.1109/TVT.2021.3121217
– ident: ref34
  doi: 10.1109/ACCESS.2019.2916648
– ident: ref68
  doi: 10.1109/TIT.2021.3065452
– ident: ref89
  doi: 10.3390/s22051969
– volume-title: Explorations in Quantum Computing
  year: 1998
  ident: ref13
– ident: ref17
  doi: 10.1080/00033790.2011.588008
– ident: ref31
  doi: 10.1109/TCYB.2014.2307349
– ident: ref36
  doi: 10.1109/TCOMM.2019.2945334
– ident: ref20
  doi: 10.1109/ICAIS50930.2021.9395842
– ident: ref39
  doi: 10.1007/978-1-4615-3618-5_1
– ident: ref40
  doi: 10.1109/TNNLS.2020.3025711
– ident: ref28
  doi: 10.1016/j.neucom.2021.02.102
– ident: ref84
  doi: 10.1145/3526241.3530833
– ident: ref3
  doi: 10.1109/ACCESS.2018.2839669
– ident: ref23
  doi: 10.1103/PhysRevA.51.1015
– ident: ref4
  doi: 10.1109/MWC.2017.1600343
– ident: ref46
  doi: 10.1109/TSMCB.2008.925743
– ident: ref18
  doi: 10.1103/RevModPhys.90.015002
– ident: ref32
  doi: 10.1109/ICCONS.2018.8663155
– ident: ref42
  doi: 10.1109/PhDEDITS51180.2020.9315301
– ident: ref71
  doi: 10.1109/OJCOMS.2021.3057679
– ident: ref87
  doi: 10.1007/978-981-15-9735-0_1
– ident: ref45
  doi: 10.1016/B978-0-12-804409-4.00002-4
– ident: ref88
  doi: 10.1109/JIOT.2021.3056128
– ident: ref59
  doi: 10.1109/tnnls.2021.3084467
SSID ssj0002511137
Score 2.3865964
Snippet Quantum computing is envisaged as an evolving paradigm for solving computationally complex optimization problems with a large-number factorization and...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms 6G mobile communication
6G networks
Computational efficiency
Logic gates
Machine learning
Machine learning algorithms
Quantum computing
quantum machine learning
quantum security
Qubit
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQUBDlJQ9MqAEntpOYDRDlIQFCtIgt8issEBC0f4Bfzp3jVmWBhc2KbMu6u9zDd_6OkH0RQOvgT_PSmEQoGOkcX4FILsA7lYp5zOje3OaXI3H9JJ_mWn1hTVgLD9wS7kjKjBV1Iaz1pfA6LU3utAZDZbXijodnvkyxuWAKdTA6zikvYhozZero7vpxCOFglh1ix_ASMUbmDFHA6__RYCXYl8EKWY6OIT1pD7RKFnyzRpbm4AK75Ot-AnSYvCZXDebHvaM3oRTS04iS-kzBBaX5xTEd4AOPFrf_s08fYpO6Pp3e1tOTF7RiQej69GzaUQXGunGwGvMKdFqVR6NehLnrZDQ4H55dJrGHQmJ5IcZJzWpbiFJz65hJeY14Qy5XUptUg5I0FvHnXAaMZKZ2rpTgHmR1rSVExkxqyzdIp3lr_CaheVED2aWBANAJkyutMBmsOIQ8XCtX9gibErSyEWAc-1y8VCHQYKpCHlTIgyryoEcOZkveW3SN3yafIpdmExEYO3wAcamiuFR_iUuPdJHHs00U6CvJs63_2HubLOJ52wuaHdIZf0z8LrgsY7MXpPMbJWvl7Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions
URI https://ieeexplore.ieee.org/document/9870532
https://doaj.org/article/55207f74cce84ea18b6daa215ca93d38
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29T90wELeACQZKSxG0gDx0Qi8PJ7aTmA0Qr4D0QKiA2CJ_hQEaqvZl6cDAX86d40RQoYolsiI7OuXO9n3-jpBvIoDWwU7z0phEKBjpHKtAJBegnUrFPEZ0p2f58ZU4vZE3c2Q01MJ470PymR_jMMTy3YNt0VW2C_YxNjKYJ_MgZl2t1uBPQVU55UUMXKZM7Z6fXl-CAZhlY-wRXiKqyIurJyD0v2qpEm6UyQcy7WnpEknuxu3MjO3ff2Aa30vsClmOqiXd72ThI5nzzSey9AJwcJU8XbTwJ9ufyUmDEXbv6DQkU3oacVZvKSixNP--RydYItIh__8Z0R-xzd2I9v5-un-P92AQ2xE97HuywFg3DlZjZIL2eX00nqww9zO5mhxdHh4nsQtDYnkhZknNaluIUnPrmEl5jYhFLldSm1TDMWssIti5DESBmdq5UoKCkdW1lmBbM6ktXyMLzUPj1wnNixo0DGnAhHTC5EorDCcrDkYT18qVG4T1DKpshCjHThn3VTBVmKqQpxXytIo83SA7w5JfHT7H_yYfINeHiQitHV4A46q4UyspM1bUhbDWl8LrtDS50xrotlpxx4HIVWT28JHI5y9vv_5KFpGCzmmzSRZmv1u_BWrMzGwH8x-e08ej7SDLz9N88SY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvAqiPH3ghDZbJ7aTmFupWLalW4TYot4iv8KBkiLYXDjyy5lxnKgghLhZlh2NMmN7nt8APJcRtA5PWlDWZlLjyJRUBaKERO1UaR4oors6KZen8uhMnW3BbKqFCSHE5LMwp2GM5fsL15OrbA_tY2pkcAWuKrQq6qFaa_KokLKciyqFLnOu994dfVyjCVgUc-oSXhOuyKXHJ2L0_9ZUJb4pi1uwGqkZUkk-z_uNnbsffwA1_i-5t-FmUi7Z_iANd2ArdHfhxiXIwR34-b7Hf9l_yQ47irEHz1YxnTKwhLT6iaEay8o3L9mCikQG7P_vM_YhNbqbsdHjz_bP6SWMgjtjB2NXFhybzuNuik2wMbOPpbsV196D08Xr9cEyS30YMicqucla3rpK1kY4z20uWsIs8qVWxuYGL1rrCMPOFygM3Lbe1wpVjKJtjULrmivjxH3Y7i668ABYWbWoYyiLRqSXttRGU0BZCzSbhNG-3gU-MqhxCaScemWcN9FY4bohnjbE0ybxdBdeTFu-Dggd_1r8irg-LSRw7TiBjGvSWW2UKnjVVtK5UMtg8tqW3hik2xktvEAid4jZ00cSnx_-ffoZXFuuV8fN8eHJ20dwnagZXDiPYXvzrQ9PUKnZ2KdRln8BSCjyUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum-Inspired+Machine+Learning+for+6G%3A+Fundamentals%2C+Security%2C+Resource+Allocations%2C+Challenges%2C+and+Future+Research+Directions&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Duong%2C+Trung+Q.&rft.au=Ansere%2C+James+Adu&rft.au=Narottama%2C+Bhaskara&rft.au=Sharma%2C+Vishal&rft.date=2022&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=3&rft.spage=375&rft.epage=387&rft_id=info:doi/10.1109%2FOJVT.2022.3202876&rft.externalDocID=9870532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon