Cost-effective and fault-resilient reusability prediction model by using adaptive genetic algorithm based neural network for web-of-service applications
The exponential rise in software technologies and its significances has demanded academia-industries to ensure low cost software solution with assured service quality and reliability. A low cost and fault-resilient software design is must, where to achieve low cost design the developers or programme...
Saved in:
| Published in | Cluster computing Vol. 22; no. Suppl 6; pp. 14559 - 14581 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.11.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 |
| DOI | 10.1007/s10586-018-2359-9 |
Cover
| Abstract | The exponential rise in software technologies and its significances has demanded academia-industries to ensure low cost software solution with assured service quality and reliability. A low cost and fault-resilient software design is must, where to achieve low cost design the developers or programmers prefer exploiting source or function reuse. However, excessive reusability makes software vulnerable to get faulty due to increased complexity and aging proneness. Non-deniably assessing reusability of a class of function in software can enable avoiding any unexpected fault or failure. To achieve it developing a robust and efficient reusability estimation or prediction model is of utmost significance. On the other hand, the aftermath consequences of excess reusability caused faults might lead significant losses. Hence assessing cost effectiveness and efficacy of a reusability prediction model is must for software design optimization. In this paper, we have examined different reusability prediction models for their cost effectiveness and prediction efficiency over object-oriented software design. At first to examine the reusability of a class, three key object oriented software metrics (OO-SM); cohesion, coupling and complexity of the software components are used. Furthermore, our proposed cost-efficient reusability prediction model incorporates Min–Max normalization, outlier detection, reusability threshold estimation;
T
test analysis based feature selection and various classification algorithms. Different classifiers including decision tree (DT), Naïve Bayes (NB), artificial neural network (ANN) algorithms, extreme learning machine (ELM), regression algorithms, multivariate adaptive regression spline (MARS) and adaptive genetic algorithm (AGA) based ANN are used for reusability prediction. Additionally, the cost effectiveness of each reusability prediction model is estimated, where the overall results have revealed that AGA based ANN as classifier in conjunction with OO-SM, normalization,
T
test analysis based feature selection outperforms other state-of-art techniques in terms of both accuracy as well as cost-effectiveness. |
|---|---|
| AbstractList | The exponential rise in software technologies and its significances has demanded academia-industries to ensure low cost software solution with assured service quality and reliability. A low cost and fault-resilient software design is must, where to achieve low cost design the developers or programmers prefer exploiting source or function reuse. However, excessive reusability makes software vulnerable to get faulty due to increased complexity and aging proneness. Non-deniably assessing reusability of a class of function in software can enable avoiding any unexpected fault or failure. To achieve it developing a robust and efficient reusability estimation or prediction model is of utmost significance. On the other hand, the aftermath consequences of excess reusability caused faults might lead significant losses. Hence assessing cost effectiveness and efficacy of a reusability prediction model is must for software design optimization. In this paper, we have examined different reusability prediction models for their cost effectiveness and prediction efficiency over object-oriented software design. At first to examine the reusability of a class, three key object oriented software metrics (OO-SM); cohesion, coupling and complexity of the software components are used. Furthermore, our proposed cost-efficient reusability prediction model incorporates Min–Max normalization, outlier detection, reusability threshold estimation; T test analysis based feature selection and various classification algorithms. Different classifiers including decision tree (DT), Naïve Bayes (NB), artificial neural network (ANN) algorithms, extreme learning machine (ELM), regression algorithms, multivariate adaptive regression spline (MARS) and adaptive genetic algorithm (AGA) based ANN are used for reusability prediction. Additionally, the cost effectiveness of each reusability prediction model is estimated, where the overall results have revealed that AGA based ANN as classifier in conjunction with OO-SM, normalization, T test analysis based feature selection outperforms other state-of-art techniques in terms of both accuracy as well as cost-effectiveness. The exponential rise in software technologies and its significances has demanded academia-industries to ensure low cost software solution with assured service quality and reliability. A low cost and fault-resilient software design is must, where to achieve low cost design the developers or programmers prefer exploiting source or function reuse. However, excessive reusability makes software vulnerable to get faulty due to increased complexity and aging proneness. Non-deniably assessing reusability of a class of function in software can enable avoiding any unexpected fault or failure. To achieve it developing a robust and efficient reusability estimation or prediction model is of utmost significance. On the other hand, the aftermath consequences of excess reusability caused faults might lead significant losses. Hence assessing cost effectiveness and efficacy of a reusability prediction model is must for software design optimization. In this paper, we have examined different reusability prediction models for their cost effectiveness and prediction efficiency over object-oriented software design. At first to examine the reusability of a class, three key object oriented software metrics (OO-SM); cohesion, coupling and complexity of the software components are used. Furthermore, our proposed cost-efficient reusability prediction model incorporates Min–Max normalization, outlier detection, reusability threshold estimation; T test analysis based feature selection and various classification algorithms. Different classifiers including decision tree (DT), Naïve Bayes (NB), artificial neural network (ANN) algorithms, extreme learning machine (ELM), regression algorithms, multivariate adaptive regression spline (MARS) and adaptive genetic algorithm (AGA) based ANN are used for reusability prediction. Additionally, the cost effectiveness of each reusability prediction model is estimated, where the overall results have revealed that AGA based ANN as classifier in conjunction with OO-SM, normalization, T test analysis based feature selection outperforms other state-of-art techniques in terms of both accuracy as well as cost-effectiveness. |
| Author | Singh, R. P. Satapathy, Suresh Chandra Padhy, Neelamadhab |
| Author_xml | – sequence: 1 givenname: Neelamadhab orcidid: 0000-0002-8512-3469 surname: Padhy fullname: Padhy, Neelamadhab email: neela.mbamtech@gmail.com, neelamadhabphd@gmail.com organization: Department of Computer Science and Engineering, Sri Satya Sai University of Technology and Medical Science, SSSUTM – sequence: 2 givenname: R. P. surname: Singh fullname: Singh, R. P. organization: Sri Satya Sai University of Technology and Medical Science (SSSUTM) – sequence: 3 givenname: Suresh Chandra surname: Satapathy fullname: Satapathy, Suresh Chandra organization: PV Siddhartha Institute of Engineering and Technology |
| BookMark | eNp9kEFrHSEUhaWk0CTtD-hOyNpUZ3Qcl-HRJoFAN9mLo9dX03k6USfh_ZP83PjyAoVCu7qK5zvnes7QSUwREPrK6CWjVH4rjIpxIJSNpOuFIuoDOmVC9kQK3p-0c99e5SjkJ3RWygOlVMlOnaKXTSqVgPdga3gCbKLD3qxzJRlKmAPEijOsxUztUvd4yeBCk6aId8nBjKc9XkuIW2ycWd4sthChBovNvE051F87PJkCDkdYs5nbqM8p_8Y-ZfwME0meFMhPwbbwZZmDNQf38hl99GYu8OV9nqP7H9_vNzfk7uf17ebqjthe8ko85c523I1y6B2TVoiOKiYY673nnHGvnB_FKPlAmeJ0MI5Pgx0GsNZTEP05ujjaLjk9rlCqfkhrji1Rd4qNnaQDo03FjiqbUykZvF5y2Jm814zqQ__62L9u_etD_1o1Rv7F2FDf_lazCfN_ye5IlpYSt5D_7PRv6BXsi59X |
| CitedBy_id | crossref_primary_10_3233_JIFS_219036 crossref_primary_10_1002_spe_3013 crossref_primary_10_1007_s12065_019_00201_0 crossref_primary_10_1155_2021_6596548 crossref_primary_10_1007_s10586_020_03148_5 crossref_primary_10_1016_j_matpr_2022_03_165 crossref_primary_10_1002_cpe_8041 crossref_primary_10_1007_s13198_021_01359_6 crossref_primary_10_1142_S0218348X23400340 crossref_primary_10_3390_computers11050070 crossref_primary_10_1038_s41598_024_63025_8 crossref_primary_10_1007_s40010_020_00695_9 crossref_primary_10_1155_2022_4659881 crossref_primary_10_1016_j_asoc_2023_110413 crossref_primary_10_1016_j_asoc_2023_111008 crossref_primary_10_1007_s41870_022_00962_5 |
| Cites_doi | 10.1016/j.compeleceng.2017.11.022 10.5120/1339-1736 10.1002/smr.404 10.1145/1668862.1668868 10.1109/32.295895 10.1016/j.future.2017.09.049 10.5120/12041-8047 10.1109/TSE.2010.9 10.1109/TKDE.2002.1000348 10.4236/jsea.2015.84021 10.1007/978-3-662-03345-6 10.4236/jsea.2015.84018 10.17485/ijst/2017/v10i3/107289 10.1002/0471660264 10.7763/LNSE.2016.V4.222 10.1109/ICETET.2010.159 10.1109/ICOSST.2013.6720609 10.1109/CONFLUENCE.2014.6949307 10.1007/978-981-10-5544-7-42 10.1109/ISSP.2013.6526872 10.1007/978-981-10-5699-4_69 10.1007/s10586-017-1558-0 10.1109/ICMLC.2012.6359011 10.5815/ijitcs.2014.02.01 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10586-018-2359-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| EndPage | 14581 |
| ExternalDocumentID | 10_1007_s10586_018_2359_9 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADKFA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c374t-f04dc24d8763d17c5520915113ff4414f9df858746019406ad4b6c66eccf0e53 |
| IEDL.DBID | U2A |
| ISSN | 1386-7857 |
| IngestDate | Fri Jul 25 23:30:27 EDT 2025 Wed Oct 01 04:12:03 EDT 2025 Thu Apr 24 22:58:51 EDT 2025 Fri Feb 21 02:36:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 6 |
| Keywords | Evolutionary computing Web-of-service Cost-efficient reusability prediction Object-oriented software metrics Software reusability |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-f04dc24d8763d17c5520915113ff4414f9df858746019406ad4b6c66eccf0e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8512-3469 |
| PQID | 2918270610 |
| PQPubID | 2043865 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2918270610 crossref_primary_10_1007_s10586_018_2359_9 crossref_citationtrail_10_1007_s10586_018_2359_9 springer_journals_10_1007_s10586_018_2359_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Aloysius, Maheswar (CR21) 2015; 7 Berander (CR15) 2005 Singh (CR5) 2013; 38 Caldiera, Basili (CR1) 1991; 24 Huda, Arya, Hasan Khan (CR23) 2015; 8 CR37 CR36 CR35 CR33 Singh, Sangwan, Singh, Pratap (CR28) 2015; 02 CR30 Padhy, Singh, Satapathy (CR48) 2017; 79 Nair, Selvarani (CR34) 2010; 35 Chidamber, Kemerer (CR11) 1994; 20 Singh, Thapa, singh, Singh (CR14) 2010; 8 Goel, Bhatia (CR3) 2013; 38 CR8 CR7 Rosenberg, Hyatt (CR10) 1997; 10 Goel, Bhatia (CR18) 2012; 60 CR49 CR47 Goyal, Gupta (CR54) 2014; 3 Kumar (CR25) 2012; 5 CR45 Hudiab, Al-Zaghoul, Saadeh, Saadeh (CR13) 2015; 8 CR42 CR41 CR40 Shatnawi (CR16) 2010; 36 Singhani, Suri (CR6) 2015; 15 Kumar, Kumar, Sharma (CR4) 2013; 70 Han, Kamber, Pei (CR50) 2011 Antony (CR12) 2013; 4 Gandhi, Bhatia (CR22) 2010; 1 Kumar, Kumar, Sharma (CR29) 2013; 70 Sametinger (CR39) 1997 CR53 Goel, Bhatia (CR9) 2012; 60 Torkamani (CR20) 2014; 4 Sommerville (CR2) 2011 Shatnawi, Li, Swain, Newman (CR17) 2010; 22 Ting (CR52) 2002; 14 Bakar (CR19) 2016; 4 Rahmanian, Ghobaei-Arani, Tofighy (CR46) 2018; 79 Kuncheva (CR51) 2004 Padhy, Satapathy, Singh (CR44) 2017 Shri, Sandhu, Gupta, Anand (CR32) 2010; 43 CR27 CR26 Padhy (CR43) 2017 CR24 Dhand, Dhillon, Mago (CR38) 2015; 3 Sandhu, Singh (CR31) 2012; 1 PJ Antony (2359_CR12) 2013; 4 2359_CR41 BM Goel (2359_CR3) 2013; 38 2359_CR42 2359_CR40 2359_CR45 A Hudiab (2359_CR13) 2015; 8 2359_CR49 SR Chidamber (2359_CR11) 1994; 20 2359_CR47 BM Goel (2359_CR9) 2012; 60 P Berander (2359_CR15) 2005 2359_CR7 2359_CR8 2359_CR53 P Dhand (2359_CR38) 2015; 3 V Kumar (2359_CR4) 2013; 70 MA Torkamani (2359_CR20) 2014; 4 BM Goel (2359_CR18) 2012; 60 TR Nair (2359_CR34) 2010; 35 N Padhy (2359_CR43) 2017 LH Rosenberg (2359_CR10) 1997; 10 J Han (2359_CR50) 2011 J Sametinger (2359_CR39) 1997 G Singh (2359_CR5) 2013; 38 LI Kuncheva (2359_CR51) 2004 2359_CR24 2359_CR27 PS Sandhu (2359_CR31) 2012; 1 2359_CR26 M Huda (2359_CR23) 2015; 8 I Sommerville (2359_CR2) 2011 N Goyal (2359_CR54) 2014; 3 N Padhy (2359_CR48) 2017; 79 AA Rahmanian (2359_CR46) 2018; 79 P Gandhi (2359_CR22) 2010; 1 2359_CR30 H Singhani (2359_CR6) 2015; 15 A Aloysius (2359_CR21) 2015; 7 N Padhy (2359_CR44) 2017 2359_CR35 PK Singh (2359_CR28) 2015; 02 2359_CR33 A Kumar (2359_CR25) 2012; 5 Vijai Kumar (2359_CR29) 2013; 70 2359_CR36 2359_CR37 R Shatnawi (2359_CR17) 2010; 22 R Shatnawi (2359_CR16) 2010; 36 KM Ting (2359_CR52) 2002; 14 Normi Sham Awang Abu Bakar (2359_CR19) 2016; 4 Sarbjeet Singh (2359_CR14) 2010; 8 G Caldiera (2359_CR1) 1991; 24 A Shri (2359_CR32) 2010; 43 |
| References_xml | – ident: CR45 – volume: 79 start-page: 54 year: 2017 end-page: 71 ident: CR48 article-title: Enhanced evolutionary computing based artificial intelligence model for web-solutions software reusability estimation publication-title: Clust. Comput. – year: 2017 ident: CR43 article-title: Software reusability metrics estimation: algorithms, models and optimization techniques publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.11.022 – ident: CR49 – volume: 1 start-page: 63 issue: 4 year: 2010 end-page: 72 ident: CR22 article-title: Reusability metrics for object-oriented system: an alternative approach publication-title: Int. J. Softw. Eng. (IJSE) – volume: 8 start-page: 39 issue: 12 year: 2010 end-page: 42 ident: CR14 article-title: Software Engineering - Survey of Reusability Based on Software Component publication-title: International Journal of Computer Applications doi: 10.5120/1339-1736 – volume: 5 start-page: 205 issue: 1 year: 2012 end-page: 209 ident: CR25 article-title: Measuring software reusability using svm based classifier approach publication-title: Int. J. Inf. Technol. Knowl. Manage. – volume: 22 start-page: 1 year: 2010 end-page: 16 ident: CR17 article-title: Finding software metrics threshold values using roc curves publication-title: J. Softw. Maint. Evol. doi: 10.1002/smr.404 – volume: 35 start-page: 1 issue: 1 year: 2010 end-page: 6 ident: CR34 article-title: Estimation of software reusability: an engineering approach, association for computing machinery publication-title: SIGSOFT doi: 10.1145/1668862.1668868 – volume: 7 start-page: 185 issue: 2 year: 2015 end-page: 194 ident: CR21 article-title: A review on component based software metrics publication-title: Int. J. Fuzzy Math. Arch. – ident: CR35 – volume: 20 start-page: 476 year: 1994 end-page: 493 ident: CR11 article-title: A metrics suite for object oriented design publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.295895 – ident: CR8 – volume: 43 start-page: 853 year: 2010 end-page: 856 ident: CR32 article-title: Prediction of reusability of object oriented software systems using clustering approach publication-title: World Acad. Sci. Eng. Technol. – year: 2005 ident: CR15 publication-title: Software Quality Attributes and Trade-Offs – ident: CR42 – volume: 70 start-page: 41 year: 2013 end-page: 47 ident: CR4 article-title: Applying neuro-fuzzy approach to build the reusability assessment framework across software component releases—an empirical evaluation publication-title: Int. J. Comput. Appl. – volume: 15 start-page: 5 year: 2015 ident: CR6 article-title: Testability assessment model for object oriented software based on internal and external quality factors publication-title: Glob. J. Comput. Sci. Technol. C. – volume: 79 start-page: 54 year: 2018 end-page: 71 ident: CR46 article-title: A learning automata-based ensemble resource usage prediction algorithm for cloud computing environment publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.09.049 – volume: 02 start-page: 12 year: 2015 end-page: 20 ident: CR28 article-title: A framework for assessing the software reusability using fuzzy logic approach for aspect oriented software publication-title: Inf. Technol. Comput. Sci. – volume: 70 start-page: 41 issue: 15 year: 2013 end-page: 47 ident: CR29 article-title: Applying Neuro-fuzzy Approach to build the Reusability Assessment Framework across Software Component Releases - An Empirical Evaluation publication-title: International Journal of Computer Applications doi: 10.5120/12041-8047 – ident: CR36 – volume: 3 start-page: 2466 issue: 7 year: 2014 end-page: 2470 ident: CR54 article-title: Reusability calculation of object oriented software model by analyzing CK metric publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) – volume: 36 start-page: 216 year: 2010 end-page: 225 ident: CR16 article-title: A quantitative investigation of the acceptable risk levels of object-oriented metrics in open-source systems publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2010.9 – ident: CR26 – volume: 14 start-page: 659 issue: 3 year: 2002 end-page: 665 ident: CR52 article-title: An instance-weighting method to induce cost-sensitive trees publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1000348 – volume: 38 start-page: 1 year: 2013 end-page: 5 ident: CR5 article-title: Metrics for measuring the quality of object-oriented software publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 4 start-page: 6 year: 2013 ident: CR12 article-title: Predicting reliability of software using thresholds of CK metrics publication-title: Int. J. Adv. Netw. Appl. – volume: 8 start-page: 201 year: 2015 end-page: 210 ident: CR13 article-title: ADTEM—architecture design testability evaluation model to assess software architecture based on testability metrics publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2015.84021 – volume: 60 start-page: 10 year: 2012 ident: CR18 article-title: Analysis of reusability of object-oriented system using CK metrics publication-title: Int. J. Comput. Appl. – ident: CR47 – volume: 10 start-page: 1 year: 1997 end-page: 16 ident: CR10 article-title: Software quality metrics for object-oriented environments publication-title: Crosstalk J. – volume: 3 start-page: 29 year: 2015 end-page: 35 ident: CR38 article-title: Estimating software reusability from oo metrics using fuzzy logic publication-title: Apeejay J. Comput. Sci. Appl. – ident: CR37 – ident: CR53 – volume: 24 start-page: 61 year: 1991 end-page: 70 ident: CR1 article-title: Identifying and qualifying reusable software components publication-title: IEEE Softw. – ident: CR30 – volume: 1 start-page: 247 year: 2012 end-page: 252 ident: CR31 article-title: A reusability evaluation model for oo-based software components publication-title: Int. J. Electr. Comput. Eng. – ident: CR33 – year: 1997 ident: CR39 publication-title: Software Engineering with Reusable Components doi: 10.1007/978-3-662-03345-6 – volume: 8 start-page: 175 year: 2015 end-page: 183 ident: CR23 article-title: Quantifying reusability of object oriented design: a testability perspective publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2015.84018 – ident: CR40 – ident: CR27 – year: 2017 ident: CR44 article-title: Utility of an object oriented reusability metrics and estimation complexity publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2017/v10i3/107289 – volume: 38 start-page: 1 year: 2013 end-page: 5 ident: CR3 article-title: Analysis of reusability of object-oriented systems using object-oriented metrics publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 60 start-page: 0975 issue: 10 year: 2012 end-page: 8887 ident: CR9 article-title: Analysis of reusability of object-oriented system using CK metrics publication-title: Int. J. Comput. Appl. – year: 2011 ident: CR2 publication-title: Software Engineering – year: 2011 ident: CR50 publication-title: Data Mining: Concepts and Techniques – year: 2004 ident: CR51 publication-title: Combining Pattern Classifiers: Methods and Algorithms doi: 10.1002/0471660264 – volume: 4 start-page: 285 issue: 2 year: 2014 end-page: 294 ident: CR20 article-title: Metric suite to evaluate reusability of software product line publication-title: Int. J. Electr. Comput. Eng. (IJECE) – ident: CR7 – ident: CR41 – volume: 4 start-page: 48 issue: 1 year: 2016 end-page: 52 ident: CR19 article-title: The Analysis of Object-Oriented Metrics in C++ Programs publication-title: Lecture Notes on Software Engineering doi: 10.7763/LNSE.2016.V4.222 – ident: CR24 – ident: 2359_CR24 doi: 10.1109/ICETET.2010.159 – volume: 5 start-page: 205 issue: 1 year: 2012 ident: 2359_CR25 publication-title: Int. J. Inf. Technol. Knowl. Manage. – volume: 15 start-page: 5 year: 2015 ident: 2359_CR6 publication-title: Glob. J. Comput. Sci. Technol. C. – volume: 4 start-page: 285 issue: 2 year: 2014 ident: 2359_CR20 publication-title: Int. J. Electr. Comput. Eng. (IJECE) – volume: 7 start-page: 185 issue: 2 year: 2015 ident: 2359_CR21 publication-title: Int. J. Fuzzy Math. Arch. – volume: 70 start-page: 41 issue: 15 year: 2013 ident: 2359_CR29 publication-title: International Journal of Computer Applications doi: 10.5120/12041-8047 – ident: 2359_CR47 – volume: 10 start-page: 1 year: 1997 ident: 2359_CR10 publication-title: Crosstalk J. – volume: 1 start-page: 63 issue: 4 year: 2010 ident: 2359_CR22 publication-title: Int. J. Softw. Eng. (IJSE) – ident: 2359_CR53 – ident: 2359_CR7 – volume: 20 start-page: 476 year: 1994 ident: 2359_CR11 publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/32.295895 – ident: 2359_CR27 doi: 10.1109/ICOSST.2013.6720609 – ident: 2359_CR30 doi: 10.1109/CONFLUENCE.2014.6949307 – volume-title: Software Engineering year: 2011 ident: 2359_CR2 – volume-title: Software Quality Attributes and Trade-Offs year: 2005 ident: 2359_CR15 – volume: 3 start-page: 29 year: 2015 ident: 2359_CR38 publication-title: Apeejay J. Comput. Sci. Appl. – volume: 3 start-page: 2466 issue: 7 year: 2014 ident: 2359_CR54 publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) – ident: 2359_CR42 doi: 10.1007/978-981-10-5544-7-42 – ident: 2359_CR33 – volume: 38 start-page: 1 year: 2013 ident: 2359_CR3 publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 8 start-page: 175 year: 2015 ident: 2359_CR23 publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2015.84018 – ident: 2359_CR37 – volume: 14 start-page: 659 issue: 3 year: 2002 ident: 2359_CR52 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1000348 – ident: 2359_CR8 doi: 10.1109/ISSP.2013.6526872 – ident: 2359_CR45 doi: 10.1007/978-981-10-5699-4_69 – ident: 2359_CR40 – volume-title: Software Engineering with Reusable Components year: 1997 ident: 2359_CR39 doi: 10.1007/978-3-662-03345-6 – volume: 4 start-page: 48 issue: 1 year: 2016 ident: 2359_CR19 publication-title: Lecture Notes on Software Engineering doi: 10.7763/LNSE.2016.V4.222 – volume: 79 start-page: 54 year: 2017 ident: 2359_CR48 publication-title: Clust. Comput. doi: 10.1007/s10586-017-1558-0 – volume: 60 start-page: 10 year: 2012 ident: 2359_CR18 publication-title: Int. J. Comput. Appl. – volume: 02 start-page: 12 year: 2015 ident: 2359_CR28 publication-title: Inf. Technol. Comput. Sci. – ident: 2359_CR35 doi: 10.1109/ICMLC.2012.6359011 – volume: 70 start-page: 41 year: 2013 ident: 2359_CR4 publication-title: Int. J. Comput. Appl. – volume: 8 start-page: 39 issue: 12 year: 2010 ident: 2359_CR14 publication-title: International Journal of Computer Applications doi: 10.5120/1339-1736 – year: 2017 ident: 2359_CR44 publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2017/v10i3/107289 – ident: 2359_CR49 – ident: 2359_CR41 doi: 10.5815/ijitcs.2014.02.01 – year: 2017 ident: 2359_CR43 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.11.022 – volume: 1 start-page: 247 year: 2012 ident: 2359_CR31 publication-title: Int. J. Electr. Comput. Eng. – volume: 60 start-page: 0975 issue: 10 year: 2012 ident: 2359_CR9 publication-title: Int. J. Comput. Appl. – ident: 2359_CR36 – ident: 2359_CR26 – volume: 22 start-page: 1 year: 2010 ident: 2359_CR17 publication-title: J. Softw. Maint. Evol. doi: 10.1002/smr.404 – volume: 35 start-page: 1 issue: 1 year: 2010 ident: 2359_CR34 publication-title: SIGSOFT doi: 10.1145/1668862.1668868 – volume: 38 start-page: 1 year: 2013 ident: 2359_CR5 publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 4 start-page: 6 year: 2013 ident: 2359_CR12 publication-title: Int. J. Adv. Netw. Appl. – volume: 36 start-page: 216 year: 2010 ident: 2359_CR16 publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2010.9 – volume: 8 start-page: 201 year: 2015 ident: 2359_CR13 publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2015.84021 – volume: 79 start-page: 54 year: 2018 ident: 2359_CR46 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.09.049 – volume-title: Combining Pattern Classifiers: Methods and Algorithms year: 2004 ident: 2359_CR51 doi: 10.1002/0471660264 – volume: 43 start-page: 853 year: 2010 ident: 2359_CR32 publication-title: World Acad. Sci. Eng. Technol. – volume-title: Data Mining: Concepts and Techniques year: 2011 ident: 2359_CR50 – volume: 24 start-page: 61 year: 1991 ident: 2359_CR1 publication-title: IEEE Softw. |
| SSID | ssj0009729 |
| Score | 2.3627331 |
| Snippet | The exponential rise in software technologies and its significances has demanded academia-industries to ensure low cost software solution with assured service... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14559 |
| SubjectTerms | Adaptive algorithms Aging Artificial neural networks Classifiers Complexity Computer Communication Networks Computer Science Cost control Cost effectiveness Data analysis Decision trees Design optimization Genetic algorithms Inheritances Low cost Machine learning Neural networks Operating Systems Outliers (statistics) Prediction models Processor Architectures Product design Quality assurance Software development Software industry Software quality Software reuse |
| SummonAdditionalLinks | – databaseName: ProQuest dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS-RAEC10vHhx_VjZcVXq4Mml2cx0d5I-iKgoIjiIKHgLnXRaF8bMOJM5-E_2525VPjYq6DlJE1LVVa9TVe8BHCiltba5EsbJVCgdeEGoKBCEBWwe6jTwkoeTr0fh5b26etAPSzBqZ2G4rbKNiVWgdpOM_5H_HhpCwhFln-B4-iJYNYqrq62Ehm2kFdxRRTG2DCtDZsbqwcrp-ejmtqPhjSrdsoGMQxHFOmrrnPUwnY75dE2eI7UR5n2m6uDnh4pplYgu1mGtQZB4Upt8A5byYhO-teoM2GzWLfh7NpmXou7XoJCGtnDo7WJcCjph_xnzHCTO8kVNsVu-4nTGNRu2E1byOJi-InfFP6J1dlotQc7GM49ox4_0acqnZ-Qk6JBJMemVirqlHAkHI0VnMfFiXocifFsn_w53F-d3Z5ei0WEQmYxUKXygXDZUjsnr3CDKNLfOEFIYSO8JTSlvnI91HCk63BkCCNapNMzCkLzDB7mW29ArJkX-A5A9w1KulKFUSnlvJHnHwEptM5naVPUhaD95kjUc5SyVMU46dmW2UkJWSthKienD4f9HpjVBx1c377Z2TJq9Ok86z-rDr9a23eVPF9v5erGfsErgytRzi7vQK2eLfI8ATJnuN175Dzud7l8 priority: 102 providerName: ProQuest |
| Title | Cost-effective and fault-resilient reusability prediction model by using adaptive genetic algorithm based neural network for web-of-service applications |
| URI | https://link.springer.com/article/10.1007/s10586-018-2359-9 https://www.proquest.com/docview/2918270610 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7543 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: BENPR dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXrz4FuujzMGTspB2d5PssUqrKBYRBT2FTTarQk1Lmx78J_5cZ_OwKip4yiGbJeSbzHzLzHwDcCiElFKnginDYyakZxmxIo8RF9CpL2PPctecfDXwz-_Exb28r_q4p3W1e52SLDz1p2Y3GbrTLyHLpWJqERrSqXmREd91unOl3aAYTdbmtDgIZVCnMn_a4mswmjPMb0nRItb012ClIonYLVFdh4U024DVegADVv_jJrydjqY5K0syyGuhzgxaPRvmjA7Rz0PX6oiTdFaq6OavOJ64tIyDAosJOBi_oit8f0Rt9LjYguzJtTWiHj6OJs_50wu6OGfQ6V7SK2Vl1TgS1UVywGxk2bT0Nvg5Fb4Ft_3e7ek5q0YtsIQHImfWEybpCOP06Uw7SKSrjiEy0ObWEmESVhkbyjAQdH5TxAG0EbGf-D4ZgPVSybdhKRtl6Q6gA19TOOQ-F0JYqzgZQFtzqRMe61g0was_eZRUMuRuGsYwmgsoO5QiQilyKEWqCUcfj4xLDY6_Fu_XOEbV7ziNOoqOUQFRF68JxzW289u_brb7r9V7sEx0SpWdivuwlE9m6QFRljxuwWLYP2tBo3v2cNmj60lvcH3TKgz3HYwV6Jk |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QEuUF4itMAc4AJa4WR3be-hQlBapbSNEApSb6u111uQghMSRyj_hD_Df2PGDwxI9Naz7VWcmcz3TebxATxTSmvtCiWMl5lQOgqCWFEkiAu4ItZZFCQPJ59P4vEn9f5CX2zBz24Whtsqu5hYB2o_z_k_8lcjQ0w4IfSJXi--CVaN4upqJ6HhWmkFf1CvGGsHO06LzXdK4VYHJ-_I3s9Ho-Oj6eFYtCoDIpeJqkSIlM9HyvNqNj9Mcs2NIYSDQxkCcQUVjA-pThNFqYsh-HNeZXEex_TuISpYNIIQYEdJZSj323l7NPnwsd_6m9QyaUOZxiJJddKVVZvZPZ1yMk-OKrUR5m9g7NnuPwXaGveOd-FWS1jxTeNhd2CrKO_C7U4MAtvYcA9-HM5XlWjaQyiCois9BreeVYIS-i8zHrvEZbFuNvpWG1wsuUTEboG1Gg9mG-Qm_Et03i3qI8i3ecQS3eySLFF9_oqMuR55Byd9pLLpYEei3UhgIOZBrJrIh3-W5e_D9DoM8gC2y3lZPARkR3QEzTKWSqkQjCRnHDqpXS4zl6kBRN1XbvN2JTorc8xsv8yZrWTJSpatZM0AXvx-ZNHsA7nq5v3OjrYNDSvbO_IAXna27S__97BHVx_2FG6Mp-dn9uxkcroHN4nXmWZkch-2q-W6eEzcqcqetB6KYK_5N_ELB3opVg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYJMSFHVHWOXACWaS1ndTHqlCxiwOVeoucOIZKJa3a9MCf8LnMZKGAAIlzHCvKG3veaGbeMHYspVLKJJJrKyIulec4siKPIxcwia8izwlqTr679y-78rqneuWc00lV7V6lJIueBlJpSrOzkXVnnxrfVJMiYURZKM31PFuUpJOABt1ttGaqu0E-pqwucHHQVEGV1vxpi6-OacY2vyVIc7_TWWMrJWGEVoHwOptL0g22Wg1jgPJsbrK39nCS8aI8A28wMKkFZ6aDjGNA3R9Q2yOMk2mhqJu9wmhMKRqCBfJpOBC9AhXBP4GxZpRvgbZFLY5gBk_DcT97fgHyeRZIAxM_KS0qyAFpL-BlzIeOT4qbBz6nxbfYY-fisX3Jy7ELPBaBzLjzpI0b0pJWna0HsaJKGSQGdeEckifptHVN1QwkxnIa-YCxMvJj30djcF6ixDZbSIdpssOADMGgaxS-kFI6pwUaQ90IZWIRmUjWmFf98jAuJclpMsYgnIkpE0ohohQSSqGusZOPV0aFHsdfi_crHMPyaE7ChsaQKkAa49XYaYXt7PGvm-3-a_URW3o474S3V_c3e2wZWZYuGhj32UI2niYHyGSy6DC31nfbPOut |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-effective+and+fault-resilient+reusability+prediction+model+by+using+adaptive+genetic+algorithm+based+neural+network+for+web-of-service+applications&rft.jtitle=Cluster+computing&rft.au=Padhy%2C+Neelamadhab&rft.au=Singh%2C+R.+P.&rft.au=Satapathy%2C+Suresh+Chandra&rft.date=2019-11-01&rft.pub=Springer+US&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=22&rft.issue=Suppl+6&rft.spage=14559&rft.epage=14581&rft_id=info:doi/10.1007%2Fs10586-018-2359-9&rft.externalDocID=10_1007_s10586_018_2359_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |