Numerical exploration on buckling instability for directional control in flagellar propulsion
We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment...
Saved in:
| Published in | Soft matter Vol. 16; no. 3; pp. 64 - 613 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Royal Society of Chemistry
22.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1744-683X 1744-6848 1744-6848 |
| DOI | 10.1039/c9sm01843c |
Cover
| Abstract | We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction.
We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. |
|---|---|
| AbstractList | We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction. We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction.We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction. We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction. We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. |
| Author | Huang, Weicheng Jawed, M. K |
| AuthorAffiliation | Department of Mechanical and Aerospace Engineering University of California, Los Angeles |
| AuthorAffiliation_xml | – sequence: 0 name: University of California, Los Angeles – sequence: 0 name: Department of Mechanical and Aerospace Engineering |
| Author_xml | – sequence: 1 givenname: Weicheng surname: Huang fullname: Huang, Weicheng – sequence: 2 givenname: M. K surname: Jawed fullname: Jawed, M. K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31872849$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0c9LwzAUB_AgivuhF-9KwYsI1aRJu-Qow18w9aCCFylp-jYy02YmLbj_3uynMIRAcvh8X5L3emi_tjUgdELwFcFUXCvhK0w4o2oPdcmAsTjjjO9vz_Sjg3reTzGmnJHsEHUo4YOEM9FFn89tBU4raSL4mRnrZKNtHYVVtOrL6HoS6do3stBGN_NobF1UagdqoUJG2bpx1gQTjY2cgDHSRTNnZ63xQRyhg7E0Ho7Xex-9392-DR_i0cv94_BmFCs6YE0MBedSkgwTmmWsSAAYYwlXqhSCpAlwIihRjEORFmIAXDAoRZpyknKpWEj10cWqbrj6uwXf5JX2avGaGmzr84RSTBPBUhro-Q6d2taFvywUozjFCc6COlurtqigzGdOV9LN803jAsAroJz13sE4V7pZ9q5xUpuc4Hwxm3woXp-WsxmGyOVOZFP1X3y6ws6rrfsbNP0FUlmYlg |
| CitedBy_id | crossref_primary_10_1007_s43154_023_00105_z crossref_primary_10_1016_j_compfluid_2021_105038 crossref_primary_10_1016_j_eml_2023_101977 crossref_primary_10_1098_rspa_2021_0378 crossref_primary_10_1039_D2SM01398C crossref_primary_10_1016_j_eml_2023_101967 crossref_primary_10_1039_D2SM00823H crossref_primary_10_1088_1748_3190_aca63d crossref_primary_10_1115_1_4049548 |
| Cites_doi | 10.1038/255121a0 10.1529/biophysj.106.094037 10.1038/245380a0 10.1038/nature04090 10.1021/nl900186w 10.1103/PhysRevFluids.2.034101 10.1016/S0022-2836(77)80153-8 10.1021/nl901869j 10.1140/epje/i2012-12015-0 10.1145/1360612.1360662 10.1038/s41598-018-28319-8 10.1103/PhysRevFluids.2.123101 10.1039/C6LC01272H 10.1103/PhysRevLett.115.168101 10.1039/C5SM02625C 10.1137/1018040 10.1063/1.4940904 10.1103/PhysRevLett.111.108103 10.1017/S0022112075000614 10.1038/s41598-018-32686-7 10.1021/acs.nanolett.6b01601 10.1103/PhysRevE.98.042419 10.1038/355242a0 10.1103/PhysRevE.97.012402 10.1007/BF02353701 10.1073/pnas.2633596100 10.1016/j.bpj.2016.12.051 10.1088/1748-3182/9/4/046014 10.1038/nphys2676 10.1017/S0022112079002482 10.1002/anie.201406096 10.1017/jfm.2017.758 10.1007/978-3-319-76965-3 10.1088/0034-4885/72/9/096601 10.1371/journal.pbio.2006989 10.1088/0964-1726/14/6/051 10.1073/pnas.94.21.11307 10.1103/PhysRevLett.101.218304 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2020 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1039/c9sm01843c |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1744-6848 |
| EndPage | 613 |
| ExternalDocumentID | 31872849 10_1039_C9SM01843C c9sm01843c |
| Genre | Journal Article |
| GroupedDBID | -JG 0-7 0R~ 123 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION L-8 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c374t-eb88aa16013664b2ee44428ccd99152e81931c48eb5b97e894ed9558158ac4013 |
| ISSN | 1744-683X 1744-6848 |
| IngestDate | Thu Oct 02 06:11:54 EDT 2025 Mon Jun 30 12:04:00 EDT 2025 Wed Feb 19 02:31:33 EST 2025 Thu Apr 24 22:50:27 EDT 2025 Tue Jul 01 03:13:21 EDT 2025 Tue Dec 17 20:58:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c374t-eb88aa16013664b2ee44428ccd99152e81931c48eb5b97e894ed9558158ac4013 |
| Notes | 10.1039/c9sm01843c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4661-1408 0000-0002-6071-3411 |
| PMID | 31872849 |
| PQID | 2343050206 |
| PQPubID | 2047495 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1039_C9SM01843C proquest_miscellaneous_2330329453 crossref_citationtrail_10_1039_C9SM01843C rsc_primary_c9sm01843c pubmed_primary_31872849 proquest_journals_2343050206 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200122 |
| PublicationDateYYYYMMDD | 2020-01-22 |
| PublicationDate_xml | – month: 1 year: 2020 text: 20200122 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Soft matter |
| PublicationTitleAlternate | Soft Matter |
| PublicationYear | 2020 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | 2588 Kim (C9SM01843C-(cit27)/*[position()=1]) 2005; 14 Kirchhoff (C9SM01843C-(cit28)/*[position()=1]) 1859; 56 Brown (C9SM01843C-(cit7)/*[position()=1]) 2012 Jawed (C9SM01843C-(cit13)/*[position()=1]) 2015; 115 Zhang (C9SM01843C-(cit20)/*[position()=1]) 2009; 9 Jawed (C9SM01843C-(cit37)/*[position()=1]) 2018 Edd (C9SM01843C-(cit17)/*[position()=1]) Son (C9SM01843C-(cit6)/*[position()=1]) 2013; 9 Martindale (C9SM01843C-(cit40)/*[position()=1]) 2016; 28 Higdon (C9SM01843C-(cit35)/*[position()=1]) 1979; 90 Lighthill (C9SM01843C-(cit29)/*[position()=1]) 1976; 18 Jabbarzadeh (C9SM01843C-(cit31)/*[position()=1]) 2018; 97 Jawed (C9SM01843C-(cit36)/*[position()=1]) 2017; 2 Tierno (C9SM01843C-(cit19)/*[position()=1]) 2008; 101 Duričković (C9SM01843C-(cit41)/*[position()=1]) 2013; 111 Lauga (C9SM01843C-(cit3)/*[position()=1]) 2009; 72 Dreyfus (C9SM01843C-(cit18)/*[position()=1]) 2005; 437 Bergou (C9SM01843C-(cit33)/*[position()=1]) 2008; 27 Peyer (C9SM01843C-(cit22)/*[position()=1]) 2014; 9 Purcell (C9SM01843C-(cit1)/*[position()=1]) 1997; 94 Thawani (C9SM01843C-(cit32)/*[position()=1]) 2018; 835 Ahmed (C9SM01843C-(cit24)/*[position()=1]) 2016; 16 Kaynak (C9SM01843C-(cit25)/*[position()=1]) 2017; 17 Bergou (C9SM01843C-(cit34)/*[position()=1]) 2010 Spöring (C9SM01843C-(cit16)/*[position()=1]) 2018; 16 Vogel (C9SM01843C-(cit14)/*[position()=1]) 2012; 35 Ghosh (C9SM01843C-(cit21)/*[position()=1]) 2009; 9 Kim (C9SM01843C-(cit4)/*[position()=1]) 2003; 100 Chwang (C9SM01843C-(cit38)/*[position()=1]) 1975; 67 Darnton (C9SM01843C-(cit10)/*[position()=1]) 2007; 92 Nguyen (C9SM01843C-(cit30)/*[position()=1]) 2017; 112 Nguyen (C9SM01843C-(cit9)/*[position()=1]) 2018; 98 Man (C9SM01843C-(cit8)/*[position()=1]) 2017; 2 Riley (C9SM01843C-(cit15)/*[position()=1]) 2018; 8 Osada (C9SM01843C-(cit23)/*[position()=1]) 1992; 355 Berg (C9SM01843C-(cit2)/*[position()=1]) 1973; 245 Constantino (C9SM01843C-(cit12)/*[position()=1]) 2018; 8 Jawed (C9SM01843C-(cit42)/*[position()=1]) 2016; 12 Blake (C9SM01843C-(cit39)/*[position()=1]) 1974; 8 Calladine (C9SM01843C-(cit11)/*[position()=1]) 1975; 255 Sánchez (C9SM01843C-(cit26)/*[position()=1]) 2015; 54 Macnab (C9SM01843C-(cit5)/*[position()=1]) 1977; 112 |
| References_xml | – issn: 2010 end-page: 116 publication-title: ACM Transactions on Graphics (TOG) doi: Bergou Audoly Vouga Wardetzky Grinspun – issn: 2018 publication-title: A primer on the kinematics of discrete elastic rods doi: Jawed Novelia O'Reilly – year: 2588 end-page: 2583 doi: Edd Payen Rubinsky Stoller Sitti – volume: 255 start-page: 121 year: 1975 ident: C9SM01843C-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/255121a0 – volume: 92 start-page: 2230 year: 2007 ident: C9SM01843C-(cit10)/*[position()=1] publication-title: Biophys. J. doi: 10.1529/biophysj.106.094037 – volume: 245 start-page: 380 year: 1973 ident: C9SM01843C-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/245380a0 – start-page: JB-00209 year: 2012 ident: C9SM01843C-(cit7)/*[position()=1] publication-title: J. Bacteriol. – volume: 437 start-page: 862 year: 2005 ident: C9SM01843C-(cit18)/*[position()=1] publication-title: Nature doi: 10.1038/nature04090 – volume: 9 start-page: 2243 year: 2009 ident: C9SM01843C-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl900186w – volume: 2 start-page: 034101 year: 2017 ident: C9SM01843C-(cit36)/*[position()=1] publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.034101 – volume: 112 start-page: 1 year: 1977 ident: C9SM01843C-(cit5)/*[position()=1] publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(77)80153-8 – volume: 9 start-page: 3663 year: 2009 ident: C9SM01843C-(cit20)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl901869j – volume: 35 start-page: 15 year: 2012 ident: C9SM01843C-(cit14)/*[position()=1] publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys. doi: 10.1140/epje/i2012-12015-0 – volume: 56 start-page: 285 year: 1859 ident: C9SM01843C-(cit28)/*[position()=1] publication-title: J. Reine Angew. Math. – volume: 27 start-page: 63 year: 2008 ident: C9SM01843C-(cit33)/*[position()=1] publication-title: ACM Trans. Graph. doi: 10.1145/1360612.1360662 – volume: 8 start-page: 10728 year: 2018 ident: C9SM01843C-(cit15)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-28319-8 – volume: 2 start-page: 123101 year: 2017 ident: C9SM01843C-(cit8)/*[position()=1] publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.123101 – volume: 17 start-page: 395 year: 2017 ident: C9SM01843C-(cit25)/*[position()=1] publication-title: Lab Chip doi: 10.1039/C6LC01272H – volume: 115 start-page: 168101 year: 2015 ident: C9SM01843C-(cit13)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.168101 – volume: 12 start-page: 1898 year: 2016 ident: C9SM01843C-(cit42)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM02625C – volume: 18 start-page: 161 year: 1976 ident: C9SM01843C-(cit29)/*[position()=1] publication-title: SIAM Rev. doi: 10.1137/1018040 – volume: 28 start-page: 021901 year: 2016 ident: C9SM01843C-(cit40)/*[position()=1] publication-title: Phys. Fluids doi: 10.1063/1.4940904 – volume: 111 start-page: 108103 year: 2013 ident: C9SM01843C-(cit41)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.108103 – volume: 67 start-page: 787 year: 1975 ident: C9SM01843C-(cit38)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112075000614 – volume: 8 start-page: 14415 year: 2018 ident: C9SM01843C-(cit12)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-32686-7 – volume: 16 start-page: 4968 year: 2016 ident: C9SM01843C-(cit24)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01601 – volume: 98 start-page: 042419 year: 2018 ident: C9SM01843C-(cit9)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.98.042419 – volume: 355 start-page: 242 year: 1992 ident: C9SM01843C-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/355242a0 – volume: 97 start-page: 012402 year: 2018 ident: C9SM01843C-(cit31)/*[position()=1] publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.012402 – volume: 8 start-page: 23 year: 1974 ident: C9SM01843C-(cit39)/*[position()=1] publication-title: J. Eng. Math. doi: 10.1007/BF02353701 – volume: 100 start-page: 15481 year: 2003 ident: C9SM01843C-(cit4)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2633596100 – volume: 112 start-page: 1010 year: 2017 ident: C9SM01843C-(cit30)/*[position()=1] publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.12.051 – start-page: 2583 ident: C9SM01843C-(cit17)/*[position()=1] – volume: 9 start-page: 046014 year: 2014 ident: C9SM01843C-(cit22)/*[position()=1] publication-title: Bioinspiration Biomimetics doi: 10.1088/1748-3182/9/4/046014 – volume: 9 start-page: 494 year: 2013 ident: C9SM01843C-(cit6)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2676 – volume: 90 start-page: 685 year: 1979 ident: C9SM01843C-(cit35)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112079002482 – volume: 54 start-page: 1414 year: 2015 ident: C9SM01843C-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201406096 – volume: 835 start-page: 252 year: 2018 ident: C9SM01843C-(cit32)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.758 – volume-title: A primer on the kinematics of discrete elastic rods year: 2018 ident: C9SM01843C-(cit37)/*[position()=1] doi: 10.1007/978-3-319-76965-3 – volume: 72 start-page: 096601 year: 2009 ident: C9SM01843C-(cit3)/*[position()=1] publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/9/096601 – volume: 16 start-page: e2006989 year: 2018 ident: C9SM01843C-(cit16)/*[position()=1] publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2006989 – volume: 14 start-page: 1579 year: 2005 ident: C9SM01843C-(cit27)/*[position()=1] publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/6/051 – start-page: 116 volume-title: ACM Transactions on Graphics (TOG) year: 2010 ident: C9SM01843C-(cit34)/*[position()=1] – volume: 94 start-page: 11307 year: 1997 ident: C9SM01843C-(cit1)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.21.11307 – volume: 101 start-page: 218304 year: 2008 ident: C9SM01843C-(cit19)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.218304 |
| SSID | ssj0038416 |
| Score | 2.3587737 |
| Snippet | We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our... |
| SourceID | proquest pubmed crossref rsc |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 64 |
| SubjectTerms | Algorithms Angular velocity Bacteria Bacteria - metabolism Bacterial Physiological Phenomena Biomimetics Buckling Computational fluid dynamics Computer simulation Control stability Directional control Elastic deformation Elasticity Exploration Flagella Flagella - metabolism Fluid flow Hydrodynamics Inverse problems Locomotion Magnetism Mathematical models Models, Biological Models, Theoretical Movement Numerical methods Rotation Simulation Slender bodies Swimming Trajectories Velocity Viscosity Viscous fluids |
| Title | Numerical exploration on buckling instability for directional control in flagellar propulsion |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31872849 https://www.proquest.com/docview/2343050206 https://www.proquest.com/docview/2330329453 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection (IReL) customDbUrl: https://pubs.rsc.org eissn: 1744-6848 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038416 issn: 1744-683X databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_i9MwFA-6Q_AX8dtpz1MiiiBHdGvSNvnxGDumbPMHO9wvUpo0BaXXm7eOA_96X5qkrdwhKpQysrB0eZ_mfX8Podeq4HEMig8RmgnCJKVEROWEmKbm1EQ3ldzkOy9X8XzNPm6iTZ9C0GaXNPKd-nljXsn_UBXGgK4mS_YfKNv9KAzAZ6Av3IHCcP8rGq_21t9SmUL9lScmXNJ4bG22Ckh_bfyrDcy0HMya_3yU-rf6pKzgWKlMQOq27ei189T67pN4y-bkPG8GsbzzvbM0f9EmmtQxwDZr_8oaUJfOhOpsCqEJTSNhr4Fay4UPG23DQlzzucFJmTBGgMoby0iGY7Z0Zne8xgMY0cFZGdu-w47txjYl9dqJPqamIKoSu_OxaU2jer7lffWrT9nZerHI0tkmfbP9QUxHMeN5d-1VbqODEE788QgdnM7SDwvPp6lxuNp0WftHfPFaKt73y_0urlzTQUAiufSdYlqJJL2P7jlVAp9aXDxAt3T9EN1pQ3rV7hH62qEDD9CB4fLowAN0YEAHHqADO3TAHNyhA_foeIzWZ7N0OieumQZRNGEN0ZLzPJ_EpkZfzGSoNWOgeipVgIYQhRokQzpRjGsZSZFoLpguRBTxScRzZZTwQzSqL2r9FGEpS0mLMNdJqVhZJJKXwBk46NqwZXnEA_TW71mmXKV50_CkytqIByqyqfi8bPd3GqBX3dytra9y46xjv_WZe_92WUhNuTpAbxygl93XgFPj8sprfbE3c0BECwWLaICeWJJ1y8AzJyCciQAdAg274Z72R39e9Rm62787x2jUXO71c5BQG_nCQe0XWsaWSQ |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+exploration+on+buckling+instability+for+directional+control+in+flagellar+propulsion&rft.jtitle=Soft+matter&rft.au=Huang%2C+Weicheng&rft.au=Jawed%2C+M+K&rft.date=2020-01-22&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=16&rft.issue=3&rft.spage=604&rft.epage=613&rft_id=info:doi/10.1039%2Fc9sm01843c&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |