Numerical exploration on buckling instability for directional control in flagellar propulsion

We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 16; no. 3; pp. 64 - 613
Main Authors Huang, Weicheng, Jawed, M. K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 22.01.2020
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/c9sm01843c

Cover

Abstract We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction. We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots.
AbstractList We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction.
We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction.We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction.
We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our model system is comprised of a spherical rigid head and a helical elastic flagellum. The rotation of the flagellum in low Reynolds environment generates a propulsive force that allows the system to swim in fluid. The locomotion is an intricate interplay between the elasticity of the flagellum, the hydrodynamic loading, and the flow generated by the moving head. We use the Discrete Elastic Rods algorithm to capture the geometrically nonlinear deformation in the flagellum, Lighthills Slender Body Theory to simulate the hydrodynamics, and Higdons model for the spherical head in motion within viscous fluid. This flagellated system follows a straight path if the angular velocity of the flagellum is below a critical threshold. Buckling ensues in the flagellum beyond this threshold angular velocity and the system takes a nonlinear trajectory. We consider the angular velocity as the control parameter and solve the inverse problem of computing the angular velocity, that varies with time, given a desired nonlinear trajectory. Our results indicate that bacteria can exploit buckling in flagellum to precisely control their swimming direction. We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots.
Author Huang, Weicheng
Jawed, M. K
AuthorAffiliation Department of Mechanical and Aerospace Engineering
University of California, Los Angeles
AuthorAffiliation_xml – sequence: 0
  name: University of California, Los Angeles
– sequence: 0
  name: Department of Mechanical and Aerospace Engineering
Author_xml – sequence: 1
  givenname: Weicheng
  surname: Huang
  fullname: Huang, Weicheng
– sequence: 2
  givenname: M. K
  surname: Jawed
  fullname: Jawed, M. K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31872849$$D View this record in MEDLINE/PubMed
BookMark eNpt0c9LwzAUB_AgivuhF-9KwYsI1aRJu-Qow18w9aCCFylp-jYy02YmLbj_3uynMIRAcvh8X5L3emi_tjUgdELwFcFUXCvhK0w4o2oPdcmAsTjjjO9vz_Sjg3reTzGmnJHsEHUo4YOEM9FFn89tBU4raSL4mRnrZKNtHYVVtOrL6HoS6do3stBGN_NobF1UagdqoUJG2bpx1gQTjY2cgDHSRTNnZ63xQRyhg7E0Ho7Xex-9392-DR_i0cv94_BmFCs6YE0MBedSkgwTmmWsSAAYYwlXqhSCpAlwIihRjEORFmIAXDAoRZpyknKpWEj10cWqbrj6uwXf5JX2avGaGmzr84RSTBPBUhro-Q6d2taFvywUozjFCc6COlurtqigzGdOV9LN803jAsAroJz13sE4V7pZ9q5xUpuc4Hwxm3woXp-WsxmGyOVOZFP1X3y6ws6rrfsbNP0FUlmYlg
CitedBy_id crossref_primary_10_1007_s43154_023_00105_z
crossref_primary_10_1016_j_compfluid_2021_105038
crossref_primary_10_1016_j_eml_2023_101977
crossref_primary_10_1098_rspa_2021_0378
crossref_primary_10_1039_D2SM01398C
crossref_primary_10_1016_j_eml_2023_101967
crossref_primary_10_1039_D2SM00823H
crossref_primary_10_1088_1748_3190_aca63d
crossref_primary_10_1115_1_4049548
Cites_doi 10.1038/255121a0
10.1529/biophysj.106.094037
10.1038/245380a0
10.1038/nature04090
10.1021/nl900186w
10.1103/PhysRevFluids.2.034101
10.1016/S0022-2836(77)80153-8
10.1021/nl901869j
10.1140/epje/i2012-12015-0
10.1145/1360612.1360662
10.1038/s41598-018-28319-8
10.1103/PhysRevFluids.2.123101
10.1039/C6LC01272H
10.1103/PhysRevLett.115.168101
10.1039/C5SM02625C
10.1137/1018040
10.1063/1.4940904
10.1103/PhysRevLett.111.108103
10.1017/S0022112075000614
10.1038/s41598-018-32686-7
10.1021/acs.nanolett.6b01601
10.1103/PhysRevE.98.042419
10.1038/355242a0
10.1103/PhysRevE.97.012402
10.1007/BF02353701
10.1073/pnas.2633596100
10.1016/j.bpj.2016.12.051
10.1088/1748-3182/9/4/046014
10.1038/nphys2676
10.1017/S0022112079002482
10.1002/anie.201406096
10.1017/jfm.2017.758
10.1007/978-3-319-76965-3
10.1088/0034-4885/72/9/096601
10.1371/journal.pbio.2006989
10.1088/0964-1726/14/6/051
10.1073/pnas.94.21.11307
10.1103/PhysRevLett.101.218304
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/c9sm01843c
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 613
ExternalDocumentID 31872849
10_1039_C9SM01843C
c9sm01843c
Genre Journal Article
GroupedDBID -JG
0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
L-8
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c374t-eb88aa16013664b2ee44428ccd99152e81931c48eb5b97e894ed9558158ac4013
ISSN 1744-683X
1744-6848
IngestDate Thu Oct 02 06:11:54 EDT 2025
Mon Jun 30 12:04:00 EDT 2025
Wed Feb 19 02:31:33 EST 2025
Thu Apr 24 22:50:27 EDT 2025
Tue Jul 01 03:13:21 EDT 2025
Tue Dec 17 20:58:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-eb88aa16013664b2ee44428ccd99152e81931c48eb5b97e894ed9558158ac4013
Notes 10.1039/c9sm01843c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4661-1408
0000-0002-6071-3411
PMID 31872849
PQID 2343050206
PQPubID 2047495
PageCount 1
ParticipantIDs crossref_primary_10_1039_C9SM01843C
proquest_miscellaneous_2330329453
crossref_citationtrail_10_1039_C9SM01843C
rsc_primary_c9sm01843c
pubmed_primary_31872849
proquest_journals_2343050206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200122
PublicationDateYYYYMMDD 2020-01-22
PublicationDate_xml – month: 1
  year: 2020
  text: 20200122
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 2588
Kim (C9SM01843C-(cit27)/*[position()=1]) 2005; 14
Kirchhoff (C9SM01843C-(cit28)/*[position()=1]) 1859; 56
Brown (C9SM01843C-(cit7)/*[position()=1]) 2012
Jawed (C9SM01843C-(cit13)/*[position()=1]) 2015; 115
Zhang (C9SM01843C-(cit20)/*[position()=1]) 2009; 9
Jawed (C9SM01843C-(cit37)/*[position()=1]) 2018
Edd (C9SM01843C-(cit17)/*[position()=1])
Son (C9SM01843C-(cit6)/*[position()=1]) 2013; 9
Martindale (C9SM01843C-(cit40)/*[position()=1]) 2016; 28
Higdon (C9SM01843C-(cit35)/*[position()=1]) 1979; 90
Lighthill (C9SM01843C-(cit29)/*[position()=1]) 1976; 18
Jabbarzadeh (C9SM01843C-(cit31)/*[position()=1]) 2018; 97
Jawed (C9SM01843C-(cit36)/*[position()=1]) 2017; 2
Tierno (C9SM01843C-(cit19)/*[position()=1]) 2008; 101
Duričković (C9SM01843C-(cit41)/*[position()=1]) 2013; 111
Lauga (C9SM01843C-(cit3)/*[position()=1]) 2009; 72
Dreyfus (C9SM01843C-(cit18)/*[position()=1]) 2005; 437
Bergou (C9SM01843C-(cit33)/*[position()=1]) 2008; 27
Peyer (C9SM01843C-(cit22)/*[position()=1]) 2014; 9
Purcell (C9SM01843C-(cit1)/*[position()=1]) 1997; 94
Thawani (C9SM01843C-(cit32)/*[position()=1]) 2018; 835
Ahmed (C9SM01843C-(cit24)/*[position()=1]) 2016; 16
Kaynak (C9SM01843C-(cit25)/*[position()=1]) 2017; 17
Bergou (C9SM01843C-(cit34)/*[position()=1]) 2010
Spöring (C9SM01843C-(cit16)/*[position()=1]) 2018; 16
Vogel (C9SM01843C-(cit14)/*[position()=1]) 2012; 35
Ghosh (C9SM01843C-(cit21)/*[position()=1]) 2009; 9
Kim (C9SM01843C-(cit4)/*[position()=1]) 2003; 100
Chwang (C9SM01843C-(cit38)/*[position()=1]) 1975; 67
Darnton (C9SM01843C-(cit10)/*[position()=1]) 2007; 92
Nguyen (C9SM01843C-(cit30)/*[position()=1]) 2017; 112
Nguyen (C9SM01843C-(cit9)/*[position()=1]) 2018; 98
Man (C9SM01843C-(cit8)/*[position()=1]) 2017; 2
Riley (C9SM01843C-(cit15)/*[position()=1]) 2018; 8
Osada (C9SM01843C-(cit23)/*[position()=1]) 1992; 355
Berg (C9SM01843C-(cit2)/*[position()=1]) 1973; 245
Constantino (C9SM01843C-(cit12)/*[position()=1]) 2018; 8
Jawed (C9SM01843C-(cit42)/*[position()=1]) 2016; 12
Blake (C9SM01843C-(cit39)/*[position()=1]) 1974; 8
Calladine (C9SM01843C-(cit11)/*[position()=1]) 1975; 255
Sánchez (C9SM01843C-(cit26)/*[position()=1]) 2015; 54
Macnab (C9SM01843C-(cit5)/*[position()=1]) 1977; 112
References_xml – issn: 2010
  end-page: 116
  publication-title: ACM Transactions on Graphics (TOG)
  doi: Bergou Audoly Vouga Wardetzky Grinspun
– issn: 2018
  publication-title: A primer on the kinematics of discrete elastic rods
  doi: Jawed Novelia O'Reilly
– year: 2588
  end-page: 2583
  doi: Edd Payen Rubinsky Stoller Sitti
– volume: 255
  start-page: 121
  year: 1975
  ident: C9SM01843C-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/255121a0
– volume: 92
  start-page: 2230
  year: 2007
  ident: C9SM01843C-(cit10)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.094037
– volume: 245
  start-page: 380
  year: 1973
  ident: C9SM01843C-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/245380a0
– start-page: JB-00209
  year: 2012
  ident: C9SM01843C-(cit7)/*[position()=1]
  publication-title: J. Bacteriol.
– volume: 437
  start-page: 862
  year: 2005
  ident: C9SM01843C-(cit18)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04090
– volume: 9
  start-page: 2243
  year: 2009
  ident: C9SM01843C-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl900186w
– volume: 2
  start-page: 034101
  year: 2017
  ident: C9SM01843C-(cit36)/*[position()=1]
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.034101
– volume: 112
  start-page: 1
  year: 1977
  ident: C9SM01843C-(cit5)/*[position()=1]
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(77)80153-8
– volume: 9
  start-page: 3663
  year: 2009
  ident: C9SM01843C-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl901869j
– volume: 35
  start-page: 15
  year: 2012
  ident: C9SM01843C-(cit14)/*[position()=1]
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2012-12015-0
– volume: 56
  start-page: 285
  year: 1859
  ident: C9SM01843C-(cit28)/*[position()=1]
  publication-title: J. Reine Angew. Math.
– volume: 27
  start-page: 63
  year: 2008
  ident: C9SM01843C-(cit33)/*[position()=1]
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1360612.1360662
– volume: 8
  start-page: 10728
  year: 2018
  ident: C9SM01843C-(cit15)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28319-8
– volume: 2
  start-page: 123101
  year: 2017
  ident: C9SM01843C-(cit8)/*[position()=1]
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.123101
– volume: 17
  start-page: 395
  year: 2017
  ident: C9SM01843C-(cit25)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C6LC01272H
– volume: 115
  start-page: 168101
  year: 2015
  ident: C9SM01843C-(cit13)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.168101
– volume: 12
  start-page: 1898
  year: 2016
  ident: C9SM01843C-(cit42)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM02625C
– volume: 18
  start-page: 161
  year: 1976
  ident: C9SM01843C-(cit29)/*[position()=1]
  publication-title: SIAM Rev.
  doi: 10.1137/1018040
– volume: 28
  start-page: 021901
  year: 2016
  ident: C9SM01843C-(cit40)/*[position()=1]
  publication-title: Phys. Fluids
  doi: 10.1063/1.4940904
– volume: 111
  start-page: 108103
  year: 2013
  ident: C9SM01843C-(cit41)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.108103
– volume: 67
  start-page: 787
  year: 1975
  ident: C9SM01843C-(cit38)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112075000614
– volume: 8
  start-page: 14415
  year: 2018
  ident: C9SM01843C-(cit12)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32686-7
– volume: 16
  start-page: 4968
  year: 2016
  ident: C9SM01843C-(cit24)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01601
– volume: 98
  start-page: 042419
  year: 2018
  ident: C9SM01843C-(cit9)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.98.042419
– volume: 355
  start-page: 242
  year: 1992
  ident: C9SM01843C-(cit23)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/355242a0
– volume: 97
  start-page: 012402
  year: 2018
  ident: C9SM01843C-(cit31)/*[position()=1]
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.012402
– volume: 8
  start-page: 23
  year: 1974
  ident: C9SM01843C-(cit39)/*[position()=1]
  publication-title: J. Eng. Math.
  doi: 10.1007/BF02353701
– volume: 100
  start-page: 15481
  year: 2003
  ident: C9SM01843C-(cit4)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2633596100
– volume: 112
  start-page: 1010
  year: 2017
  ident: C9SM01843C-(cit30)/*[position()=1]
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.12.051
– start-page: 2583
  ident: C9SM01843C-(cit17)/*[position()=1]
– volume: 9
  start-page: 046014
  year: 2014
  ident: C9SM01843C-(cit22)/*[position()=1]
  publication-title: Bioinspiration Biomimetics
  doi: 10.1088/1748-3182/9/4/046014
– volume: 9
  start-page: 494
  year: 2013
  ident: C9SM01843C-(cit6)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2676
– volume: 90
  start-page: 685
  year: 1979
  ident: C9SM01843C-(cit35)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112079002482
– volume: 54
  start-page: 1414
  year: 2015
  ident: C9SM01843C-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201406096
– volume: 835
  start-page: 252
  year: 2018
  ident: C9SM01843C-(cit32)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.758
– volume-title: A primer on the kinematics of discrete elastic rods
  year: 2018
  ident: C9SM01843C-(cit37)/*[position()=1]
  doi: 10.1007/978-3-319-76965-3
– volume: 72
  start-page: 096601
  year: 2009
  ident: C9SM01843C-(cit3)/*[position()=1]
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/9/096601
– volume: 16
  start-page: e2006989
  year: 2018
  ident: C9SM01843C-(cit16)/*[position()=1]
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2006989
– volume: 14
  start-page: 1579
  year: 2005
  ident: C9SM01843C-(cit27)/*[position()=1]
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/14/6/051
– start-page: 116
  volume-title: ACM Transactions on Graphics (TOG)
  year: 2010
  ident: C9SM01843C-(cit34)/*[position()=1]
– volume: 94
  start-page: 11307
  year: 1997
  ident: C9SM01843C-(cit1)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.21.11307
– volume: 101
  start-page: 218304
  year: 2008
  ident: C9SM01843C-(cit19)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.218304
SSID ssj0038416
Score 2.3587737
Snippet We report a numerical method to control the swimming direction by exploiting buckling instability in uniflagellar bacteria and bio-inspired soft robots. Our...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Algorithms
Angular velocity
Bacteria
Bacteria - metabolism
Bacterial Physiological Phenomena
Biomimetics
Buckling
Computational fluid dynamics
Computer simulation
Control stability
Directional control
Elastic deformation
Elasticity
Exploration
Flagella
Flagella - metabolism
Fluid flow
Hydrodynamics
Inverse problems
Locomotion
Magnetism
Mathematical models
Models, Biological
Models, Theoretical
Movement
Numerical methods
Rotation
Simulation
Slender bodies
Swimming
Trajectories
Velocity
Viscosity
Viscous fluids
Title Numerical exploration on buckling instability for directional control in flagellar propulsion
URI https://www.ncbi.nlm.nih.gov/pubmed/31872849
https://www.proquest.com/docview/2343050206
https://www.proquest.com/docview/2330329453
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection (IReL)
  customDbUrl: https://pubs.rsc.org
  eissn: 1744-6848
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038416
  issn: 1744-683X
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_i9MwFA-6Q_AX8dtpz1MiiiBHdGvSNvnxGDumbPMHO9wvUpo0BaXXm7eOA_96X5qkrdwhKpQysrB0eZ_mfX8Podeq4HEMig8RmgnCJKVEROWEmKbm1EQ3ldzkOy9X8XzNPm6iTZ9C0GaXNPKd-nljXsn_UBXGgK4mS_YfKNv9KAzAZ6Av3IHCcP8rGq_21t9SmUL9lScmXNJ4bG22Ckh_bfyrDcy0HMya_3yU-rf6pKzgWKlMQOq27ei189T67pN4y-bkPG8GsbzzvbM0f9EmmtQxwDZr_8oaUJfOhOpsCqEJTSNhr4Fay4UPG23DQlzzucFJmTBGgMoby0iGY7Z0Zne8xgMY0cFZGdu-w47txjYl9dqJPqamIKoSu_OxaU2jer7lffWrT9nZerHI0tkmfbP9QUxHMeN5d-1VbqODEE788QgdnM7SDwvPp6lxuNp0WftHfPFaKt73y_0urlzTQUAiufSdYlqJJL2P7jlVAp9aXDxAt3T9EN1pQ3rV7hH62qEDD9CB4fLowAN0YEAHHqADO3TAHNyhA_foeIzWZ7N0OieumQZRNGEN0ZLzPJ_EpkZfzGSoNWOgeipVgIYQhRokQzpRjGsZSZFoLpguRBTxScRzZZTwQzSqL2r9FGEpS0mLMNdJqVhZJJKXwBk46NqwZXnEA_TW71mmXKV50_CkytqIByqyqfi8bPd3GqBX3dytra9y46xjv_WZe_92WUhNuTpAbxygl93XgFPj8sprfbE3c0BECwWLaICeWJJ1y8AzJyCciQAdAg274Z72R39e9Rm62787x2jUXO71c5BQG_nCQe0XWsaWSQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+exploration+on+buckling+instability+for+directional+control+in+flagellar+propulsion&rft.jtitle=Soft+matter&rft.au=Huang%2C+Weicheng&rft.au=Jawed%2C+M+K&rft.date=2020-01-22&rft.pub=Royal+Society+of+Chemistry&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=16&rft.issue=3&rft.spage=604&rft.epage=613&rft_id=info:doi/10.1039%2Fc9sm01843c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon