Nanostructured polymers with embedded self-assembled networks: reversibly tunable phase behaviors and physical properties

1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 15; no. 31; pp. 6427 - 6435
Main Authors Lai, Wei-Chi, Hsueh, Chi-Yuan, Chang, Chun-Wai
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.08.2019
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/c9sm00997c

Cover

Abstract 1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10-20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils. Above the melting point of PEG, gel states were obtained due to the formation of DBS nanofibrillar networks in the PEG matrix, followed by liquid states upon further heating.
AbstractList 1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10-20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils. Above the melting point of PEG, gel states were obtained due to the formation of DBS nanofibrillar networks in the PEG matrix, followed by liquid states upon further heating.
1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10-20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils.1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10-20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils.
1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10–20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils.
Author Chang, Chun-Wai
Hsueh, Chi-Yuan
Lai, Wei-Chi
AuthorAffiliation Department of Chemical and Materials Engineering
Tamkang University
AuthorAffiliation_xml – sequence: 0
  name: Tamkang University
– sequence: 0
  name: Department of Chemical and Materials Engineering
Author_xml – sequence: 1
  givenname: Wei-Chi
  surname: Lai
  fullname: Lai, Wei-Chi
– sequence: 2
  givenname: Chi-Yuan
  surname: Hsueh
  fullname: Hsueh, Chi-Yuan
– sequence: 3
  givenname: Chun-Wai
  surname: Chang
  fullname: Chang, Chun-Wai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31342049$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gwh0UiUuFFBjH3iTmhlYUkAocAIlbZDsTrUtipx6nVf49ptsWqeI043eeecfy-Jgd-OCRsecc3nAQ6q1VNAEo1dhH7Ig3UpZ1K9uD-1z8OmTHRBcAopW8fsIOBReyAqmO2PpV-0ApLjYtEftiDuM6YaTi2qVdgZPBvs8y4TiUmigLYz56TNch_qZ3RcSrTDszrkVavM7VYt5pwsLgTl-5kJ20z7a7lZzVYzHHMGNMDukpezzokfDZbTxhP88-_Nh-Ks-_ffy8fX9eWtHIVFoJaDlYMAPnCqoKB9Vbi5u-l0bU_SCk5nU7bKRpFIKBTVthjpUy7WCwESfsdO-bR18uSKmbHFkcR-0xLNRVVa0kbLioMvrqAXoRlujz7W4ogEoAz9TLW2oxE_bdHN2k49rdPWoGYA_YGIgiDp11SScXfIrajR2H7u_euq36_uVmb9vc8vpBy53rf-EXeziSvef-fQLxB-SNpQc
CitedBy_id crossref_primary_10_3390_nano10061168
crossref_primary_10_1080_02678292_2024_2445149
crossref_primary_10_1080_02678292_2024_2353383
Cites_doi 10.1038/srep12964
10.1016/j.polymer.2018.05.066
10.1021/acs.langmuir.7b02191
10.1039/C7TA04968D
10.1039/C6SM02853E
10.1021/acs.macromol.5b01598
10.1039/C5RA15305K
10.1016/j.electacta.2007.04.076
10.1016/j.polymer.2004.03.003
10.1021/ma030146t
10.1039/C5CC01868D
10.1039/B402324B
10.1021/ie4039136
10.1016/j.polymer.2008.11.019
10.1016/j.enbuild.2018.01.009
10.1021/jacs.5b09691
10.1016/j.addr.2012.09.025
10.1021/jp811416w
10.1088/0957-4484/20/47/475606
10.1039/c3sm51967h
10.1039/c3sm52297k
10.1016/j.progpolymsci.2017.12.004
10.1016/S0021-9797(03)00619-2
10.1021/ma0481712
10.1039/C5SM00845J
10.1016/j.ssi.2005.11.014
10.1007/s10853-013-7486-3
10.1039/C6RA18230E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/c9sm00997c
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 6435
ExternalDocumentID 31342049
10_1039_C9SM00997C
c9sm00997c
Genre Journal Article
GroupedDBID -JG
0-7
0R~
123
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
L-8
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c374t-c40ec10c0bf119022ef9dcce5dd4b36df34a168f54b79e0b0582ee0b29b8fbe73
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 12:44:34 EDT 2025
Mon Jun 30 11:56:45 EDT 2025
Wed Feb 19 02:36:05 EST 2025
Tue Jul 01 03:13:19 EDT 2025
Thu Apr 24 22:49:10 EDT 2025
Tue Dec 17 20:59:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-c40ec10c0bf119022ef9dcce5dd4b36df34a168f54b79e0b0582ee0b29b8fbe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3179-7756
PMID 31342049
PQID 2269002301
PQPubID 2047495
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_C9SM00997C
pubmed_primary_31342049
proquest_journals_2269002301
rsc_primary_c9sm00997c
crossref_primary_10_1039_C9SM00997C
proquest_miscellaneous_2269405132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-21
PublicationDateYYYYMMDD 2019-08-21
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sari (C9SM00997C-(cit23)/*[position()=1]) 2018; 164
Kristiansen (C9SM00997C-(cit6)/*[position()=1]) 2003; 36
Socrates (C9SM00997C-(cit27)/*[position()=1]) 2001
Mindemark (C9SM00997C-(cit24)/*[position()=1]) 2018; 81
Cornwell (C9SM00997C-(cit9)/*[position()=1]) 2015; 137
Cornwell (C9SM00997C-(cit15)/*[position()=1]) 2013; 9
Mohmeyer (C9SM00997C-(cit18)/*[position()=1]) 2004; 14
Lai (C9SM00997C-(cit20)/*[position()=1]) 2009; 20
Yang (C9SM00997C-(cit31)/*[position()=1]) 2013; 48
Sundararajan (C9SM00997C-(cit22)/*[position()=1]) 2017; 5
Nath (C9SM00997C-(cit3)/*[position()=1]) 2015; 5
Lai (C9SM00997C-(cit19)/*[position()=1]) 2009; 113
Howe (C9SM00997C-(cit16)/*[position()=1]) 2015; 51
Lan (C9SM00997C-(cit25)/*[position()=1]) 2007; 52
Diehn (C9SM00997C-(cit14)/*[position()=1]) 2014; 10
Lai (C9SM00997C-(cit21)/*[position()=1]) 2018; 147
Lai (C9SM00997C-(cit11)/*[position()=1]) 2016; 6
Schamper (C9SM00997C-(cit17)/*[position()=1]) 1986; 37
Okesola (C9SM00997C-(cit13)/*[position()=1]) 2015; 11
Min (C9SM00997C-(cit1)/*[position()=1]) 2015; 5
Peak (C9SM00997C-(cit5)/*[position()=1]) 2015; 8
Reddy (C9SM00997C-(cit26)/*[position()=1]) 2006; 177
Roberts (C9SM00997C-(cit2)/*[position()=1]) 2012; 64
Reid (C9SM00997C-(cit4)/*[position()=1]) 2015; 48
Lai (C9SM00997C-(cit29)/*[position()=1]) 2004; 45
Lai (C9SM00997C-(cit12)/*[position()=1]) 2017; 13
Rungswang (C9SM00997C-(cit8)/*[position()=1]) 2014; 53
Wilder (C9SM00997C-(cit28)/*[position()=1]) 2003; 267
Shin (C9SM00997C-(cit30)/*[position()=1]) 2005; 38
Wang (C9SM00997C-(cit7)/*[position()=1]) 2009; 50
Singh (C9SM00997C-(cit10)/*[position()=1]) 2017; 33
References_xml – issn: 2001
  publication-title: Infrared and Raman characteristic group frequencies: tables and charts
  doi: Socrates
– volume: 5
  start-page: 12964
  year: 2015
  ident: C9SM00997C-(cit1)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep12964
– volume: 147
  start-page: 74
  year: 2018
  ident: C9SM00997C-(cit21)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.05.066
– volume: 33
  start-page: 10907
  issue: 41
  year: 2017
  ident: C9SM00997C-(cit10)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02191
– volume: 5
  start-page: 18379
  year: 2017
  ident: C9SM00997C-(cit22)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04968D
– volume: 13
  start-page: 3107
  year: 2017
  ident: C9SM00997C-(cit12)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C6SM02853E
– volume: 48
  start-page: 7359
  year: 2015
  ident: C9SM00997C-(cit4)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01598
– volume: 37
  start-page: 225
  year: 1986
  ident: C9SM00997C-(cit17)/*[position()=1]
  publication-title: J. Soc. Cosmet. Chem.
– volume: 5
  start-page: 95385
  year: 2015
  ident: C9SM00997C-(cit3)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15305K
– volume: 52
  start-page: 6673
  year: 2007
  ident: C9SM00997C-(cit25)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.076
– volume: 45
  start-page: 3073
  year: 2004
  ident: C9SM00997C-(cit29)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.03.003
– volume: 36
  start-page: 5150
  year: 2003
  ident: C9SM00997C-(cit6)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma030146t
– volume: 51
  start-page: 7451
  year: 2015
  ident: C9SM00997C-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01868D
– volume: 14
  start-page: 1905
  year: 2004
  ident: C9SM00997C-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B402324B
– volume: 53
  start-page: 2331
  year: 2014
  ident: C9SM00997C-(cit8)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4039136
– volume: 50
  start-page: 696
  year: 2009
  ident: C9SM00997C-(cit7)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.11.019
– volume: 164
  start-page: 166
  year: 2018
  ident: C9SM00997C-(cit23)/*[position()=1]
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.009
– volume: 8
  start-page: 404
  year: 2015
  ident: C9SM00997C-(cit5)/*[position()=1]
  publication-title: Mol. Biol.
– volume: 137
  start-page: 15486
  year: 2015
  ident: C9SM00997C-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09691
– volume: 64
  start-page: 116
  year: 2012
  ident: C9SM00997C-(cit2)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2012.09.025
– volume: 113
  start-page: 8026
  year: 2009
  ident: C9SM00997C-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp811416w
– volume: 20
  start-page: 475606
  year: 2009
  ident: C9SM00997C-(cit20)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/47/475606
– volume: 9
  start-page: 8730
  year: 2013
  ident: C9SM00997C-(cit15)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c3sm51967h
– volume: 10
  start-page: 2632
  year: 2014
  ident: C9SM00997C-(cit14)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c3sm52297k
– volume: 81
  start-page: 114
  year: 2018
  ident: C9SM00997C-(cit24)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2017.12.004
– volume: 267
  start-page: 509
  year: 2003
  ident: C9SM00997C-(cit28)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00619-2
– volume: 38
  start-page: 104
  year: 2005
  ident: C9SM00997C-(cit30)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0481712
– volume-title: Infrared and Raman characteristic group frequencies: tables and charts
  year: 2001
  ident: C9SM00997C-(cit27)/*[position()=1]
– volume: 11
  start-page: 4768
  year: 2015
  ident: C9SM00997C-(cit13)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM00845J
– volume: 177
  start-page: 253
  year: 2006
  ident: C9SM00997C-(cit26)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2005.11.014
– volume: 48
  start-page: 6811
  year: 2013
  ident: C9SM00997C-(cit31)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7486-3
– volume: 6
  start-page: 98042
  year: 2016
  ident: C9SM00997C-(cit11)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA18230E
SSID ssj0038416
Score 2.3007774
Snippet 1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6427
SubjectTerms Collapse
Crystal structure
Crystallization
Fibrils
Gels
High temperature
Light microscopy
Liquid polymers
Melting point
Melting points
Microscopy
Morphology
Networks
Optical microscopy
Organic solvents
Physical properties
Polyethylene glycol
Polymers
Self-assembly
Small angle X ray scattering
Solidification
Sorbitol
Transmission electron microscopy
X-ray scattering
Title Nanostructured polymers with embedded self-assembled networks: reversibly tunable phase behaviors and physical properties
URI https://www.ncbi.nlm.nih.gov/pubmed/31342049
https://www.proquest.com/docview/2269002301
https://www.proquest.com/docview/2269405132
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKyQuiNdCYUFGcEErL4ntPMxtFXW1oLIcaLXLKbIdRy3qS216WH494zhOWtHDwiWtXCup8n0ez9gznxH6EJY8LikTxMopEQ4zMkkFTUgtJwUjzErj2myLq_hyzL_eRDedoEJdXVKpM_37YF3J_6AKbYCrrZL9B2Tbm0IDfAd84QoIw_VOGINpXDoB2K1NI18tZ7d2Gdotrpq5MmBVitONmZUEfGRomNnNfpf4XafCWf2mNQyKGfigW1dFtZrAvNZW7zsF55UHc2WX7teVTzz85Ut8y-p0LqudTN-hO-X62kxJNpm23AGM3ZbOZEp-bjtiZn7ZOptsF-RaTncXI2z9U0pchXNjPxPOSZw68cwzc6DNG91oh1zNPOBMKAREyUHbHjArjarFZm7d2kR3M5jftb_6nl-Mh8N8NLgZ3UdHNEnCqIeOzgejL0M_PTO7z-qqZN2_8pq1THzq7r3vpfwVeoAjsvYHxNSOyOgxetREEPjc0eEJumcWT9GDOpNXb56h231SYE8KbEmBPSnwPimwJ8Vn3FECN5TANSVwSwkMlMCeErijxHM0vhiMskvSnK9BNEt4RTQPjA4DHagyBL-QUlOKQmsTFQVXLC5KxmUYp2XEVSJMoIIopQY-qVBpqUzCjlFvsVyYlwiHkQxDSctSSsV1oaWgEddcCU1lTKXuo4_-fea6EZ-3Z6DM8joJgok8Ez--1e8-66P3bd-Vk1w52OvEw5I3Q3KTQywh6qg67KN37c9gMO0umFyY5db1gSglZLSPXjg428ewkHEKMXMfHQO-bXPHi1d3uO1r9LAbGieoB4ibN-C5Vuptw8U_xy6e8w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+polymers+with+embedded+self-assembled+networks%3A+reversibly+tunable+phase+behaviors+and+physical+properties&rft.jtitle=Soft+matter&rft.au=Lai%2C+Wei-Chi&rft.au=Hsueh%2C+Chi-Yuan&rft.au=Chang%2C+Chun-Wai&rft.date=2019-08-21&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=15&rft.issue=31&rft.spage=6427&rft_id=info:doi/10.1039%2Fc9sm00997c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon