A self-stabilizing 2 3 -approximation algorithm for the maximum matching problem

The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and the self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal ( 1 2 -approximation) matchin...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 412; no. 40; pp. 5515 - 5526
Main Authors Manne, Fredrik, Mjelde, Morten, Pilard, Laurence, Tixeuil, Sébastien
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford Elsevier 16.09.2011
Subjects
Online AccessGet full text
ISSN0304-3975
1879-2294
DOI10.1016/j.tcs.2011.05.019

Cover

Abstract The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and the self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal ( 1 2 -approximation) matching in a general graph, as well as computing a 2 3 -approximation on more specific graph types. In this paper, we present the first self-stabilizing algorithm for finding a 2 3 -approximation to the maximum matching problem in a general graph. We show that our new algorithm, when run under a distributed adversarial daemon, stabilizes after at most O ( n 2 ) rounds. However, it might still use an exponential number of time steps.
AbstractList The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and the self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal ( 1 2 -approximation) matching in a general graph, as well as computing a 2 3 -approximation on more specific graph types. In this paper, we present the first self-stabilizing algorithm for finding a 2 3 -approximation to the maximum matching problem in a general graph. We show that our new algorithm, when run under a distributed adversarial daemon, stabilizes after at most O ( n 2 ) rounds. However, it might still use an exponential number of time steps.
The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and self-stabilizing literature. Previous work has resulted in self-stabilizing algorithms for computing a maximal ($\frac{1}{2}$-approximation) matching in a general graph, as well as computing a $\frac{2}{3}$-approximation on more specific graph types. In the following we present the first self-stabilizing algorithm for finding a $\frac{2}{3}$-approximation to the maximum matching problem in a general graph. We show that our new algorithm when run under the distributed adversarial daemon, stabilizes after at most $O(n^2)$ rounds. However, it might still use an exponential number of time steps.
Author Tixeuil, Sébastien
Mjelde, Morten
Pilard, Laurence
Manne, Fredrik
Author_xml – sequence: 1
  givenname: Fredrik
  surname: Manne
  fullname: Manne, Fredrik
– sequence: 2
  givenname: Morten
  surname: Mjelde
  fullname: Mjelde, Morten
– sequence: 3
  givenname: Laurence
  surname: Pilard
  fullname: Pilard, Laurence
– sequence: 4
  givenname: Sébastien
  surname: Tixeuil
  fullname: Tixeuil, Sébastien
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24537097$$DView record in Pascal Francis
https://hal.science/hal-01154122$$DView record in HAL
BookMark eNp9kUFP3DAQhS0EEgv0B_SWCwIOST2TOF4fV6iFSiu1h_ZseR2H9cpJFtuLaH99Z7vQQyXwZaTx98bP887Y8TiNjrGPwCvg0H7aVNmmCjlAxUXFQR2xGcylKhFVc8xmvOZNWSspTtlZShtOR8h2xr4viuRCX6ZsVj743358KLCoi9Jst3F69oPJfhoLEx6m6PN6KPopFnntisHQ5W6gmu16ryJ8FdxwwU56E5L78FLP2c8vn3_c3pfLb3dfbxfL0tayyaVFASBsx3kved9Rr0XZAbTSKQurbu4sfUJhZ5y0RsAcu3YumgZdLxDapj5nN4e5axP0NpLR-EtPxuv7xVLve7QK0QDiExB7dWDJ4-POpawHn6wLwYxu2iWt6CXRIkcir98lyR8goSgIvXxBTbIm9NGM1qd_VrARteRKEicPnI1TStH12vr8d6s5Gh80cL1PUG80Jaj3CWouyL0iJfynfB3-tuYPjkSfNA
CODEN TCSCDI
CitedBy_id crossref_primary_10_1093_comjnl_bxz102
crossref_primary_10_1016_j_tcs_2011_07_007
crossref_primary_10_1016_j_tcs_2019_02_031
Cites_doi 10.1016/S0020-0190(01)00171-5
10.1016/0020-0190(92)90015-N
10.1145/361179.361202
10.1016/0020-0190(94)90098-1
10.1016/j.tcs.2008.02.009
10.1137/0202019
10.1016/j.tcs.2008.12.022
ContentType Journal Article
Conference Proceeding
Copyright 2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.tcs.2011.05.019
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 5526
ExternalDocumentID oai:HAL:hal-01154122v1
24537097
10_1016_j_tcs_2011_05_019
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
RIG
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c374t-c25115cd00f70fd374627d1167e9c1bd8ec01992dae7ca5182d685442ef521643
ISSN 0304-3975
IngestDate Tue Oct 14 20:40:43 EDT 2025
Sat Sep 27 23:46:36 EDT 2025
Thu Oct 02 05:48:10 EDT 2025
Mon Jul 21 09:14:23 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Wed Oct 01 03:58:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords Maximum
Approximation
Computer theory
Sequential method
Maximum matching
Self-stabilizing algorithm
Approximation algorithm
Computing
Edge set
2/3-approximation
Graph matching
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MeetingName Stabilization, Safety and Security
MergedId FETCHMERGED-LOGICAL-c374t-c25115cd00f70fd374627d1167e9c1bd8ec01992dae7ca5182d685442ef521643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0002-0948-7172
0000-0002-1104-8216
PQID 1671256225
PQPubID 23500
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01154122v1
proquest_miscellaneous_919956202
proquest_miscellaneous_1671256225
pascalfrancis_primary_24537097
crossref_citationtrail_10_1016_j_tcs_2011_05_019
crossref_primary_10_1016_j_tcs_2011_05_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-16
PublicationDateYYYYMMDD 2011-09-16
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-16
  day: 16
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Theoretical computer science
PublicationYear 2011
Publisher Elsevier
Publisher_xml – name: Elsevier
References Hsu (10.1016/j.tcs.2011.05.019_br000065) 1992; 43
Goddard (10.1016/j.tcs.2011.05.019_br000040) 2006; vol. 2
Manne (10.1016/j.tcs.2011.05.019_br000070) 2009; 410
Hedetniemi (10.1016/j.tcs.2011.05.019_br000055) 2001; 80
Goddard (10.1016/j.tcs.2011.05.019_br000035) 2008; 399
Hopcroft (10.1016/j.tcs.2011.05.019_br000060) 1973; 2
Dolev (10.1016/j.tcs.2011.05.019_br000020) 2000
Blair (10.1016/j.tcs.2011.05.019_br000005) 2003
Danturi (10.1016/j.tcs.2011.05.019_br000010) 2006; vol. 4280
Goddard (10.1016/j.tcs.2011.05.019_br000030) 2003
Tel (10.1016/j.tcs.2011.05.019_br000075) 1994; 49
Gradinariu (10.1016/j.tcs.2011.05.019_br000045) 2001; vol. 2150
Gradinariu (10.1016/j.tcs.2011.05.019_br000050) 2007
10.1016/j.tcs.2011.05.019_br000025
Dijkstra (10.1016/j.tcs.2011.05.019_br000015) 1974; 17
References_xml – ident: 10.1016/j.tcs.2011.05.019_br000025
– volume: 80
  start-page: 221
  issue: 5
  year: 2001
  ident: 10.1016/j.tcs.2011.05.019_br000055
  article-title: Maximal matching stabilizes in time O(m)
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(01)00171-5
– year: 2007
  ident: 10.1016/j.tcs.2011.05.019_br000050
  article-title: Conflict managers for self-stabilization without fairness assumption
– volume: 43
  start-page: 77
  issue: 2
  year: 1992
  ident: 10.1016/j.tcs.2011.05.019_br000065
  article-title: A self-stabilizing algorithm for maximal matching
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(92)90015-N
– volume: 17
  start-page: 643
  issue: 11
  year: 1974
  ident: 10.1016/j.tcs.2011.05.019_br000015
  article-title: Self-stabilizing systems in spite of distributed control
  publication-title: Commun. ACM
  doi: 10.1145/361179.361202
– volume: 49
  start-page: 271
  issue: 6
  year: 1994
  ident: 10.1016/j.tcs.2011.05.019_br000075
  article-title: Maximal matching stabilizes in quadratic time
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(94)90098-1
– start-page: 20
  year: 2003
  ident: 10.1016/j.tcs.2011.05.019_br000005
  article-title: Efficient self-stabilizing algorithms for tree networks
– volume: vol. 4280
  start-page: 214
  year: 2006
  ident: 10.1016/j.tcs.2011.05.019_br000010
  article-title: Self-stabilizing philosophers with generic conflicts
– volume: 399
  start-page: 118
  issue: 1-2
  year: 2008
  ident: 10.1016/j.tcs.2011.05.019_br000035
  article-title: Distance-k knowledge in self-stabilizing algorithms
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.02.009
– volume: vol. 2150
  start-page: 458
  year: 2001
  ident: 10.1016/j.tcs.2011.05.019_br000045
  article-title: Self-stabilizing neighborhood unique naming under unfair scheduler
– volume: 2
  start-page: 225
  issue: 4
  year: 1973
  ident: 10.1016/j.tcs.2011.05.019_br000060
  article-title: An n5/2 algorithm for maximum matchings in bipartite graphs
  publication-title: SIAM J. Comput.
  doi: 10.1137/0202019
– year: 2000
  ident: 10.1016/j.tcs.2011.05.019_br000020
– volume: vol. 2
  start-page: 797
  year: 2006
  ident: 10.1016/j.tcs.2011.05.019_br000040
  article-title: An anonymous self-stabilizing algorithm for 1-maximal matching in trees
– volume: 410
  start-page: 1336
  issue: 14
  year: 2009
  ident: 10.1016/j.tcs.2011.05.019_br000070
  article-title: A new self-stabilizing maximal matching algorithm
  publication-title: J. Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2008.12.022
– start-page: 162.2
  year: 2003
  ident: 10.1016/j.tcs.2011.05.019_br000030
  article-title: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks
SSID ssj0000576
Score 2.0623817
Snippet The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and the...
The matching problem asks for a large set of disjoint edges in a graph. It is a problem that has received considerable attention in both the sequential and...
SourceID hal
proquest
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5515
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computation
Computer Science
Computer science; control theory; systems
Exact sciences and technology
Graphs
Information retrieval. Graph
Matching
Miscellaneous
Theoretical computing
Title A self-stabilizing 2 3 -approximation algorithm for the maximum matching problem
URI https://www.proquest.com/docview/1671256225
https://www.proquest.com/docview/919956202
https://hal.science/hal-01154122
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: ACRLP
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211012
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIKHN
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: IXB
  dateStart: 19750601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AKRWK
  dateStart: 19750601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5QJCAkoR4VEtiBORw3pje-1jRIOSKi1VlUi5WfZ63abKo4odhHrgyO9m1vuImxQQXBxrvY4jz5eZ2Z2ZbxD6wNOAummeOEkYZo5HeeRELIMzRjPCojz0Ki6907OgP_ZOJv6k0fhZy1pal2mb395bV_I_UoUxkKuskv0HydovhQE4B_nCESQMx10Z329qanWIXDdoaGmrVkdDt1WIWe6AKyiTYW_l_oCkRO04Faf496kqYGwls8vlalpezW324TyBi-s5fJYq61J3oLGC6l4MznrKBRbZamoLf05PesPj6kKVz2sxeD4Ydi-OTUm2qGFuNJj0xoNhtR-r4vdgYiXra31nQm61Ro4qnFTbZdq21zRaR4ZhItUqxahfz6U1nCnuJq1NwZvza5bZ91Vx_Y7WVxsQ1-2SF5qUVXKxRhsTZ8L6W5bP5iNSz-8wErE99IDCidSX7R-bVCHwaVXMW_98Ex2v8gS3HnrHv9m7ktm1j2-SAmCQq04pO0a_8mRGT9HhpsYTn1tIPUMNsThAT_SiBGuVX8CQ6fthxg7Qo1PL9Vs8R1-7eBtbmH7aQha2yMKALAy3Y40sbJCFNbIO0fhLb_S57-g2HQ7vMK90uFyl-jwjJGckz2AsoCyT8T0RcTfNQsGJTHLOEsF44sOCNgtC3_OoyMF3BI_4BdpfLBfipSQQgNU0SyOf5rkniEiZ7KIEi-oscRMS5k1EzMuNueawl61UZrFJVryOQR6xlEdM_Bie20Qf7S03isDlT5Pfg8TsPEm93u8OYzlW8Va5lH5zm-jojkDtdIOiJnpnJByDspYRuGQhlusihncCC4oAbGgT4d_MiSRpQkAJffW357xGDzd_uzdov1ytxVtwkcv0qMLvLwI1uoI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Theoretical+computer+science&rft.atitle=A+self-stabilizing+2%2F3-approximation+algorithm+for+the+maximum+matching+problem&rft.au=MARINE%2C+Fredrik&rft.au=MJELDE%2C+Morten&rft.au=PILARD%2C+Laurence&rft.au=TIXEUIL%2C+S%C3%A9bastien&rft.date=2011-09-16&rft.pub=Elsevier&rft.issn=0304-3975&rft.volume=412&rft.issue=40&rft.spage=5515&rft.epage=5526&rft_id=info:doi/10.1016%2Fj.tcs.2011.05.019&rft.externalDBID=n%2Fa&rft.externalDocID=24537097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon