Linguistic-based Mild Cognitive Impairment detection using Informative Loss
This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected withi...
Saved in:
| Published in | Computers in biology and medicine Vol. 176; p. 108606 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.06.2024
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2024.108606 |
Cover
| Abstract | This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
•Introducing a novel deep learning method for cognitive impairment detection.•Employs Natural Language Processing to analyze speech patterns.•Distinguishing Mild Cognitive Impairment from Normal Cognitive conditions.•Utilizing Transformer-based modules to capture contextual relationships.•Extracting temporal features from video interview transcripts.•Introducing InfoLoss to improve classification accuracy. |
|---|---|
| AbstractList | This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. •Introducing a novel deep learning method for cognitive impairment detection.•Employs Natural Language Processing to analyze speech patterns.•Distinguishing Mild Cognitive Impairment from Normal Cognitive conditions.•Utilizing Transformer-based modules to capture contextual relationships.•Extracting temporal features from video interview transcripts.•Introducing InfoLoss to improve classification accuracy. This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. AbstractThis paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. |
| ArticleNumber | 108606 |
| Author | Dodge, Hiroko H. Mahoor, Mohammad H. Pourramezan Fard, Ali Alsuhaibani, Muath |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-3807-0798 surname: Pourramezan Fard fullname: Pourramezan Fard, Ali email: Ali.PourramezanFard@du.edu organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA – sequence: 2 givenname: Mohammad H. orcidid: 0000-0001-8923-4660 surname: Mahoor fullname: Mahoor, Mohammad H. email: mmahoor@du.edu organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA – sequence: 3 givenname: Muath orcidid: 0009-0007-5164-012X surname: Alsuhaibani fullname: Alsuhaibani, Muath email: muath.alsuhaibani@du.edu organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA – sequence: 4 givenname: Hiroko H. orcidid: 0000-0001-7290-8307 surname: Dodge fullname: Dodge, Hiroko H. email: hdodge@mgh.harvard.edu organization: Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38763068$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU2LFDEQhoOsuLOrf0EavHjpsdJJJ5mLqIMfgyMe1HNIJ9VLxu5kTLoX9t-bdtYVFoQ9BcJTL1Xvc0HOQgxISEVhTYGKV4e1jeOx83FEt26g4eVbCRCPyIoquamhZfyMrAAo1Fw17Tm5yPkAABwYPCHnTEnBQKgV-bz34Wr2efK27kxGV33xg6u28Sr4yV9jtRuPxqcRw1Q5nNBOPoZqzmWq2oU-ptH8wfYx56fkcW-GjM9u30vy48P779tP9f7rx9327b62TPKpVh1tse27ziorFGeqURw3tml7p4wzUnJDFW8BO9cIYyW6DZUchQFLZdtu2CV5eco9pvhrxjzp0WeLw2ACxjlrBq0Eyala0Bf30EOcUyjbFUqAFIKyhXp-S81daVQfkx9NutF_ayqAOgE2lTsT9ncIBb0Y0Qf9z4hejOiTkTL67jSKpZFrj0ln6zFYdD6VNrWL_iEhr--F2MEHb83wE28w391EdW406G-L-MV7wwFEaa8EvPl_wMN2-A1iC8KK |
| Cites_doi | 10.1002/alz.13016 10.1109/CVPRW53098.2021.00168 10.1016/j.trci.2017.01.006 10.1111/j.1365-2796.2004.01388.x 10.18653/v1/D19-1410 10.1186/s13195-021-00848-x 10.1016/j.csl.2020.101113 10.3233/JAD-150520 10.3389/fnagi.2022.830943 10.1186/s12911-022-01864-z 10.1109/ACCESS.2022.3180028 10.1109/ACCESS.2021.3090321 10.1109/ACCESS.2019.2909919 10.1016/j.csl.2021.101298 10.1109/ACCESS.2022.3156598 10.1016/j.jalz.2011.03.003 10.1609/aaai.v37i9.26317 10.3115/v1/D14-1162 10.1016/j.ijforecast.2021.03.012 10.1016/j.artmed.2023.102624 10.1109/ICCV48922.2021.00676 10.3389/fdgth.2021.702772 10.1111/joim.12190 10.1145/2623330.2623677 10.1002/alz.12721 10.3389/fdgth.2021.714813 10.1001/archneur.1994.00540180063015 10.3389/fcomp.2021.634360 10.21437/Interspeech.2021-1850 10.1016/0933-3657(89)90004-3 10.1214/aoms/1177729694 10.1609/aaai.v35i12.17325 10.1016/j.artmed.2022.102393 10.2147/CIA.S39959 10.1001/jama.2014.13806 10.3389/fcomp.2020.624488 10.1109/TASL.2011.2112351 10.1186/s12911-021-01456-3 |
| ContentType | Journal Article |
| Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. Copyright Elsevier Limited Jun 2024 |
| Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Jun 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 |
| DOI | 10.1016/j.compbiomed.2024.108606 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 108606 |
| ExternalDocumentID | 38763068 10_1016_j_compbiomed_2024_108606 S0010482524006917 1_s2_0_S0010482524006917 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG056102 – fundername: NIA NIH HHS grantid: R01 AG051628 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c374t-8b15e5fbbc8c68438284e9c25fd8ada774a18450ebd26ac7ed9174e6a0c175593 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 00:09:04 EDT 2025 Tue Oct 07 06:37:11 EDT 2025 Thu Apr 03 06:55:20 EDT 2025 Wed Oct 01 04:08:06 EDT 2025 Sat Oct 12 15:53:11 EDT 2024 Tue Feb 25 20:03:25 EST 2025 Tue Oct 14 19:37:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | I-CONECT dataset Transformers Informative Loss function Mild Cognitive Impairment classification Linguistic features detection Natural Language Processing |
| Language | English |
| License | Copyright © 2024. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-8b15e5fbbc8c68438284e9c25fd8ada774a18450ebd26ac7ed9174e6a0c175593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8923-4660 0009-0007-5164-012X 0000-0002-3807-0798 0000-0001-7290-8307 |
| PMID | 38763068 |
| PQID | 3060766139 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3057074189 proquest_journals_3060766139 pubmed_primary_38763068 crossref_primary_10_1016_j_compbiomed_2024_108606 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_108606 elsevier_clinicalkeyesjournals_1_s2_0_S0010482524006917 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_108606 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Penfold, Carrell, Cronkite, Pabiniak, Dodd, Glass, Johnson, Thompson, Arrighi, Stang (b14) 2022; 22 Sun, Dodge, Mahoor (b54) 2023 Boschi, Catricalà, Consonni, Chesi, Moro, Cappa (b5) 2017; 6 Petersen, Caracciolo, Brayne, Gauthier, Jelic, Fratiglioni (b3) 2014; 275 R. Pappagari, J. Cho, S. Joshi, L. Moro-Velázquez, P. Zelasko, J. Villalba, N. Dehak, Automatic Detection and Assessment of Alzheimer Disease Using Speech and Language Technologies in Low-Resource Scenarios, in: Interspeech, Vol. 2021, 2021, pp. 3825–3829. Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine (b69) 2011; 7 Yuan, Cai, Bian, Ye, Church (b43) 2021; 2 Dodge, Yu, Wu, Pruitt, Asgari, Kaye, Hampstead, Struble, Potempa, Lichtenberg (b17) 2023 Pompili, Rolland, Abad (b35) 2020 Song, Tan, Qin, Lu, Liu (b59) 2020; 33 Fard, Ferrantelli, Dupuis, Mahoor (b29) 2022; 10 Gilles (b4) 2022 Devlin, Chang, Lee, Toutanova (b48) 2018 Zolnoori, Zolnour, Topaz (b50) 2023; 143 A.P. Fard, H. Abdollahi, M. Mahoor, ASMNet: A lightweight deep neural network for face alignment and pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1521–1530. Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (b20) 2020; 33 Luz, Haider, de la Fuente, Fromm, MacWhinney (b27) 2020 Rohanian, Hough, Purver (b40) 2021 Xu, Meng, Qiu, Yu, Wu (b21) 2019; 7 Petersen (b68) 2004; 256 J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b18) 2017; 30 Lim, Arık, Loeff, Pfister (b23) 2021; 37 A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 11121–11128. HuggingFace (b58) 2023 Syed, Syed, Lech, Pirogova (b45) 2021; 9 Ferris, Farlow (b7) 2013 vd Maaten, Hinton (b66) 2008; 9 Alsuhaibani, Dodge, Mahoor (b55) 2023 Calzà, Gagliardi, Favretti, Tamburini (b6) 2021; 65 Yamada, Shinkawa, Nemoto, Ota, Nemoto, Arai (b38) 2022; 14 Fraser, Meltzer, Rudzicz (b39) 2016; 49 N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–3992. lzheimer’s Association (b1) 2023; 19 Ilias, Askounis (b42) 2022; 14 Toledo, Aluísio, Dos Santos, Brucki, Trés, de Oliveira, Mansur (b9) 2018; 10 Chen, Dodge, Asgari (b52) 2020; Vol. 2020 Roark, Mitchell, Hosom, Hollingshead, Kaye (b8) 2011; 19 A. Fader, L. Zettlemoyer, O. Etzioni, Open question answering over curated and extracted knowledge bases, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 1156–1165. Kingma, Ba (b65) 2014 Clarke, Barrick, Garrard (b11) 2021; 3 H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 11106–11115. Kullback, Leibler (b63) 1951; 22 Fard, Mahoor (b30) 2022 Hussein, Chan, Van Vleck, Beers, Mindt, Wolf, Curtis, Agarwal, Wisnivesky, Nadkarni (b13) 2022 Fard, Mahoor (b31) 2022; 215 Fard, Mahoor, Lamer, Sweeny (b28) 2023 Park, Chan, Zhang, Chiu, Zoph, Cubuk, Le (b37) 2019 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b49) 2020 Henderson, Budzianowski, Casanueva, Coope, Gerz, Kumar, Mrkšić, Spithourakis, Su, Vulić (b61) 2019 Amini, Hao, Zhang, Song, Gupta, Karjadi, Kolachalama, Au, Paschalidis (b15) 2023; 19 N.C. Camgoz, O. Koller, S. Hadfield, R. Bowden, Sign language transformers: Joint end-to-end sign language recognition and translation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10023–10033. A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, Vivit: A video vision transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6836–6846. Yu, Wild, Potempa, Hampstead, Lichtenberg, Struble, Pruitt, Alfaro, Lindsley, MacDonald (b16) 2021; 3 Becker, Boiler, Lopez, Saxton, McGonigle (b26) 1994; 51 Tang, Chen, Dodge, Zhou (b53) 2022; 3 Roshanzamir, Aghajan, Soleymani Baghshah (b41) 2021; 21 Santos, Corrêa Jr., Oliveira, Amancio, Mansur, Aluísio (b10) 2017 Lo, Wang, Neumann, Kinney, Weld (b62) 2020 Gottschalk, Bechtel (b25) 1989; 1 Bertini, Allevi, Lutero, Calzà, Montesi (b36) 2022; 72 Fard, Mahoor (b33) 2022; 10 Asgari, Kaye, Dodge (b51) 2017; 3 Langa, Levine (b67) 2014; 312 Degottex, Kane, Drugman, Raitio, Scherer (b46) 2014 Yeung, Iaboni, Rochon, Lavoie, Santiago, Yancheva, Novikova, Xu, Robin, Kaufman (b12) 2021; 13 Alzheimer’s and Dementia (b2) 2023 Chen, Asgari (b64) 2021 Colla, Delsanto, Agosto, Vitiello, Radicioni (b44) 2022; 134 Lim (10.1016/j.compbiomed.2024.108606_b23) 2021; 37 Asgari (10.1016/j.compbiomed.2024.108606_b51) 2017; 3 HuggingFace (10.1016/j.compbiomed.2024.108606_b58) 2023 Dodge (10.1016/j.compbiomed.2024.108606_b17) 2023 Alzheimer’s and Dementia (10.1016/j.compbiomed.2024.108606_b2) 2023 Kingma (10.1016/j.compbiomed.2024.108606_b65) 2014 Fard (10.1016/j.compbiomed.2024.108606_b29) 2022; 10 Hussein (10.1016/j.compbiomed.2024.108606_b13) 2022 Fard (10.1016/j.compbiomed.2024.108606_b33) 2022; 10 Henderson (10.1016/j.compbiomed.2024.108606_b61) 2019 Lo (10.1016/j.compbiomed.2024.108606_b62) 2020 10.1016/j.compbiomed.2024.108606_b47 Tang (10.1016/j.compbiomed.2024.108606_b53) 2022; 3 Yuan (10.1016/j.compbiomed.2024.108606_b43) 2021; 2 Clarke (10.1016/j.compbiomed.2024.108606_b11) 2021; 3 Gottschalk (10.1016/j.compbiomed.2024.108606_b25) 1989; 1 Chen (10.1016/j.compbiomed.2024.108606_b64) 2021 Penfold (10.1016/j.compbiomed.2024.108606_b14) 2022; 22 Yu (10.1016/j.compbiomed.2024.108606_b16) 2021; 3 Fard (10.1016/j.compbiomed.2024.108606_b31) 2022; 215 Kullback (10.1016/j.compbiomed.2024.108606_b63) 1951; 22 Xu (10.1016/j.compbiomed.2024.108606_b21) 2019; 7 Amini (10.1016/j.compbiomed.2024.108606_b15) 2023; 19 Ilias (10.1016/j.compbiomed.2024.108606_b42) 2022; 14 Fraser (10.1016/j.compbiomed.2024.108606_b39) 2016; 49 Roshanzamir (10.1016/j.compbiomed.2024.108606_b41) 2021; 21 Ferris (10.1016/j.compbiomed.2024.108606_b7) 2013 Roark (10.1016/j.compbiomed.2024.108606_b8) 2011; 19 Luz (10.1016/j.compbiomed.2024.108606_b27) 2020 10.1016/j.compbiomed.2024.108606_b32 Rohanian (10.1016/j.compbiomed.2024.108606_b40) 2021 Alsuhaibani (10.1016/j.compbiomed.2024.108606_b55) 2023 10.1016/j.compbiomed.2024.108606_b34 lzheimer’s Association (10.1016/j.compbiomed.2024.108606_b1) 2023; 19 Calzà (10.1016/j.compbiomed.2024.108606_b6) 2021; 65 vd Maaten (10.1016/j.compbiomed.2024.108606_b66) 2008; 9 Petersen (10.1016/j.compbiomed.2024.108606_b68) 2004; 256 10.1016/j.compbiomed.2024.108606_b19 Devlin (10.1016/j.compbiomed.2024.108606_b48) 2018 Gilles (10.1016/j.compbiomed.2024.108606_b4) 2022 Yeung (10.1016/j.compbiomed.2024.108606_b12) 2021; 13 Yamada (10.1016/j.compbiomed.2024.108606_b38) 2022; 14 Bertini (10.1016/j.compbiomed.2024.108606_b36) 2022; 72 Sun (10.1016/j.compbiomed.2024.108606_b54) 2023 Brown (10.1016/j.compbiomed.2024.108606_b20) 2020; 33 10.1016/j.compbiomed.2024.108606_b60 Langa (10.1016/j.compbiomed.2024.108606_b67) 2014; 312 Syed (10.1016/j.compbiomed.2024.108606_b45) 2021; 9 Colla (10.1016/j.compbiomed.2024.108606_b44) 2022; 134 Boschi (10.1016/j.compbiomed.2024.108606_b5) 2017; 6 Pompili (10.1016/j.compbiomed.2024.108606_b35) 2020 Dosovitskiy (10.1016/j.compbiomed.2024.108606_b49) 2020 10.1016/j.compbiomed.2024.108606_b22 10.1016/j.compbiomed.2024.108606_b24 Degottex (10.1016/j.compbiomed.2024.108606_b46) 2014 Vaswani (10.1016/j.compbiomed.2024.108606_b18) 2017; 30 Fard (10.1016/j.compbiomed.2024.108606_b28) 2023 Sperling (10.1016/j.compbiomed.2024.108606_b69) 2011; 7 Becker (10.1016/j.compbiomed.2024.108606_b26) 1994; 51 Santos (10.1016/j.compbiomed.2024.108606_b10) 2017 Petersen (10.1016/j.compbiomed.2024.108606_b3) 2014; 275 Park (10.1016/j.compbiomed.2024.108606_b37) 2019 Song (10.1016/j.compbiomed.2024.108606_b59) 2020; 33 Zolnoori (10.1016/j.compbiomed.2024.108606_b50) 2023; 143 Toledo (10.1016/j.compbiomed.2024.108606_b9) 2018; 10 Chen (10.1016/j.compbiomed.2024.108606_b52) 2020; Vol. 2020 Fard (10.1016/j.compbiomed.2024.108606_b30) 2022 10.1016/j.compbiomed.2024.108606_b56 10.1016/j.compbiomed.2024.108606_b57 |
| References_xml | – volume: 49 start-page: 407 year: 2016 end-page: 422 ident: b39 article-title: Linguistic features identify Alzheimer’s disease in narrative speech publication-title: J. Alzheimer’s Dis. – year: 2021 ident: b40 article-title: Multi-modal fusion with gating using audio, lexical and disfluency features for Alzheimer’s dementia recognition from spontaneous speech – start-page: 7003 year: 2021 end-page: 7007 ident: b64 article-title: Refining automatic speech recognition system for older adults publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 134 year: 2022 ident: b44 article-title: Semantic coherence markers: The contribution of perplexity metrics publication-title: Artif. Intell. Med. – volume: 143 year: 2023 ident: b50 article-title: Adscreen: A speech processing-based screening system for automatic identification of patients with alzheimer’s disease and related dementia publication-title: Artif. Intell. Med. – volume: 3 year: 2022 ident: b53 article-title: The joint effects of acoustic and linguistic markers for early identification of mild cognitive impairment publication-title: Front. Digit. Health – volume: 33 start-page: 16857 year: 2020 end-page: 16867 ident: b59 article-title: Mpnet: Masked and permuted pre-training for language understanding publication-title: Adv. Neural Inf. Process. Syst. – volume: Vol. 2020 start-page: 63 year: 2020 ident: b52 article-title: Topic-based measures of conversation for detecting mild cognitive impairment publication-title: Proceedings of the Conference. Association for Computational Linguistics. Meeting – volume: 312 start-page: 2551 year: 2014 end-page: 2561 ident: b67 article-title: The diagnosis and management of mild cognitive impairment: a clinical review publication-title: JAMA – year: 2017 ident: b10 article-title: Enriching complex networks with word embeddings for detecting mild cognitive impairment from speech transcripts – year: 2023 ident: b17 article-title: Internet-based conversational engagement randomized controlled clinical trial (I-CONECT) among socially isolated adults 75+ years old with normal cognition or mild cognitive impairment: Topline results publication-title: Gerontologist – year: 2018 ident: b48 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – reference: R. Pappagari, J. Cho, S. Joshi, L. Moro-Velázquez, P. Zelasko, J. Villalba, N. Dehak, Automatic Detection and Assessment of Alzheimer Disease Using Speech and Language Technologies in Low-Resource Scenarios, in: Interspeech, Vol. 2021, 2021, pp. 3825–3829. – volume: 7 start-page: 51522 year: 2019 end-page: 51532 ident: b21 article-title: Sentiment analysis of comment texts based on BiLSTM publication-title: Ieee Access – year: 2023 ident: b2 article-title: What is Alzheimer’s? – volume: 30 year: 2017 ident: b18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 year: 2021 ident: b43 article-title: Pauses for detection of Alzheimer’s disease publication-title: Front. Comput. Sci. – start-page: 1007 year: 2013 end-page: 1014 ident: b7 article-title: Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors publication-title: Clin. Interv. Aging – year: 2020 ident: b49 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – volume: 1 start-page: 131 year: 1989 end-page: 137 ident: b25 article-title: Computerized content analysis of natural language publication-title: Artif. Intell. Med. – volume: 19 start-page: 2081 year: 2011 end-page: 2090 ident: b8 article-title: Spoken language derived measures for detecting mild cognitive impairment publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 21 start-page: 1 year: 2021 end-page: 14 ident: b41 article-title: Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech publication-title: BMC Med. Inform. Decis. Mak. – volume: 14 year: 2022 ident: b38 article-title: Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. – reference: H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 11106–11115. – volume: 33 start-page: 1877 year: 2020 end-page: 1901 ident: b20 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – reference: N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–3992. – year: 2019 ident: b61 article-title: A repository of conversational datasets – start-page: 4969 year: 2020 end-page: 4983 ident: b62 article-title: S2ORC: The semantic scholar open research corpus publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics – reference: N.C. Camgoz, O. Koller, S. Hadfield, R. Bowden, Sign language transformers: Joint end-to-end sign language recognition and translation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10023–10033. – reference: A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 11121–11128. – volume: 9 start-page: 88377 year: 2021 end-page: 88390 ident: b45 article-title: Automated recognition of Alzheimer’s dementia using bag-of-deep-features and model ensembling publication-title: IEEE Access – volume: 19 start-page: 946 year: 2023 end-page: 955 ident: b15 article-title: Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach publication-title: Alzheimer’s Dement. – volume: 13 start-page: 109 year: 2021 ident: b12 article-title: Correlating natural language processing and automated speech analysis with clinician assessment to quantify speech-language changes in mild cognitive impairment and Alzheimer’s dementia publication-title: Alzheimer’s Res. Ther. – volume: 14 year: 2022 ident: b42 article-title: Multimodal deep learning models for detecting dementia from speech and transcripts publication-title: Front. Aging Neurosci. – reference: A. Fader, L. Zettlemoyer, O. Etzioni, Open question answering over curated and extracted knowledge bases, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 1156–1165. – volume: 256 start-page: 183 year: 2004 end-page: 194 ident: b68 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. – volume: 3 year: 2021 ident: b11 article-title: A comparison of connected speech tasks for detecting early Alzheimer’s disease and mild cognitive impairment using natural language processing and machine learning publication-title: Front. Comput. Sci. – volume: 37 start-page: 1748 year: 2021 end-page: 1764 ident: b23 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. – volume: 3 year: 2021 ident: b16 article-title: The internet-based conversational engagement clinical trial (I-CONECT) in socially isolated adults 75+ years old: randomized controlled trial protocol and COVID-19 related study modifications publication-title: Front. Digit. Health – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b66 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – reference: A.P. Fard, H. Abdollahi, M. Mahoor, ASMNet: A lightweight deep neural network for face alignment and pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1521–1530. – year: 2023 ident: b55 article-title: Detection of mild cognitive impairment using facial features in video conversations – volume: 275 start-page: 214 year: 2014 end-page: 228 ident: b3 article-title: Mild cognitive impairment: a concept in evolution publication-title: J. Intern. Med. – reference: A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, Vivit: A video vision transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6836–6846. – year: 2023 ident: b54 article-title: MC-ViViT: Multi-branch classifier-ViViT to detect mild cognitive impairment in older adults using facial videos – volume: 19 start-page: 1598 year: 2023 end-page: 1695 ident: b1 article-title: 2023 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. – volume: 10 start-page: 59413 year: 2022 end-page: 59427 ident: b29 article-title: Sagittal cervical spine landmark point detection in X-Ray using deep convolutional neural networks publication-title: IEEE Access – year: 2020 ident: b35 article-title: The INESC-ID multi-modal system for the ADReSS 2020 challenge – volume: 6 start-page: 269 year: 2017 ident: b5 article-title: Connected speech in neurodegenerative language disorders: a review publication-title: Front. Psychol. – volume: 3 start-page: 219 year: 2017 end-page: 228 ident: b51 article-title: Predicting mild cognitive impairment from spontaneous spoken utterances publication-title: Alzheimer’s Dement.: Transl. Res. Clin. Interv. – volume: 7 start-page: 280 year: 2011 end-page: 292 ident: b69 article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s Dement. – volume: 22 start-page: 1 year: 2022 end-page: 13 ident: b14 article-title: Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening publication-title: BMC Med. Inform. Decis. Mak. – year: 2019 ident: b37 article-title: Specaugment: A simple data augmentation method for automatic speech recognition – start-page: 1807 year: 2022 end-page: 1814 ident: b30 article-title: ACR loss: Adaptive coordinate-based regression loss for face alignment publication-title: 2022 26th International Conference on Pattern Recognition – year: 2023 ident: b58 article-title: Sentence transformers – year: 2020 ident: b27 article-title: Alzheimer’s dementia recognition through spontaneous speech: The ADReSS challenge – volume: 72 year: 2022 ident: b36 article-title: An automatic Alzheimer’s disease classifier based on spontaneous spoken english publication-title: Comput. Speech Lang. – volume: 10 start-page: 31 year: 2018 end-page: 40 ident: b9 article-title: Analysis of macrolinguistic aspects of narratives from individuals with Alzheimer’s disease, mild cognitive impairment, and no cognitive impairment publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. – volume: 65 year: 2021 ident: b6 article-title: Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia publication-title: Comput. Speech Lang. – year: 2014 ident: b65 article-title: Adam: A method for stochastic optimization – volume: 10 start-page: 26756 year: 2022 end-page: 26768 ident: b33 article-title: Ad-corre: Adaptive correlation-based loss for facial expression recognition in the wild publication-title: IEEE Access – year: 2022 ident: b4 article-title: Age-related mild cognitive deficit: a ready-to-use concept? publication-title: Dialogues Clin. Neurosci. – start-page: 960 year: 2014 end-page: 964 ident: b46 article-title: COVAREP—A collaborative voice analysis repository for speech technologies publication-title: 2014 Ieee International Conference on Acoustics, Speech and Signal Processing (Icassp) – year: 2023 ident: b28 article-title: GANalyzer: Analysis and manipulation of GANs latent space for controllable face synthesis – reference: J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543. – volume: 51 start-page: 585 year: 1994 end-page: 594 ident: b26 article-title: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis publication-title: Arch. Neurol. – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: b63 article-title: On information and sufficiency publication-title: Ann. Math. Stat. – year: 2022 ident: b13 article-title: Natural language processing to identify patients with cognitive impairment publication-title: medRxiv – volume: 215 year: 2022 ident: b31 article-title: Facial landmark points detection using knowledge distillation-based neural networks publication-title: Comput. Vis. Image Underst. – volume: 10 start-page: 31 year: 2018 ident: 10.1016/j.compbiomed.2024.108606_b9 article-title: Analysis of macrolinguistic aspects of narratives from individuals with Alzheimer’s disease, mild cognitive impairment, and no cognitive impairment publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. – volume: 215 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b31 article-title: Facial landmark points detection using knowledge distillation-based neural networks publication-title: Comput. Vis. Image Underst. – year: 2019 ident: 10.1016/j.compbiomed.2024.108606_b61 – volume: 19 start-page: 1598 issue: 4 year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b1 article-title: 2023 Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. doi: 10.1002/alz.13016 – ident: 10.1016/j.compbiomed.2024.108606_b32 doi: 10.1109/CVPRW53098.2021.00168 – volume: 3 start-page: 219 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2024.108606_b51 article-title: Predicting mild cognitive impairment from spontaneous spoken utterances publication-title: Alzheimer’s Dement.: Transl. Res. Clin. Interv. doi: 10.1016/j.trci.2017.01.006 – volume: 256 start-page: 183 issue: 3 year: 2004 ident: 10.1016/j.compbiomed.2024.108606_b68 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – ident: 10.1016/j.compbiomed.2024.108606_b57 doi: 10.18653/v1/D19-1410 – volume: 13 start-page: 109 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b12 article-title: Correlating natural language processing and automated speech analysis with clinician assessment to quantify speech-language changes in mild cognitive impairment and Alzheimer’s dementia publication-title: Alzheimer’s Res. Ther. doi: 10.1186/s13195-021-00848-x – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2024.108606_b18 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b58 – volume: 65 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b6 article-title: Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2020.101113 – volume: 49 start-page: 407 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2024.108606_b39 article-title: Linguistic features identify Alzheimer’s disease in narrative speech publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-150520 – volume: 14 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b42 article-title: Multimodal deep learning models for detecting dementia from speech and transcripts publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.830943 – start-page: 1807 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b30 article-title: ACR loss: Adaptive coordinate-based regression loss for face alignment – year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b35 – volume: 22 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b14 article-title: Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-022-01864-z – volume: 10 start-page: 59413 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b29 article-title: Sagittal cervical spine landmark point detection in X-Ray using deep convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3180028 – volume: 9 start-page: 88377 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b45 article-title: Automated recognition of Alzheimer’s dementia using bag-of-deep-features and model ensembling publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090321 – volume: 7 start-page: 51522 year: 2019 ident: 10.1016/j.compbiomed.2024.108606_b21 article-title: Sentiment analysis of comment texts based on BiLSTM publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2909919 – volume: 72 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b36 article-title: An automatic Alzheimer’s disease classifier based on spontaneous spoken english publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2021.101298 – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b54 – year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b40 – volume: 10 start-page: 26756 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b33 article-title: Ad-corre: Adaptive correlation-based loss for facial expression recognition in the wild publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3156598 – start-page: 7003 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b64 article-title: Refining automatic speech recognition system for older adults – volume: 7 start-page: 280 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2024.108606_b69 article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2011.03.003 – ident: 10.1016/j.compbiomed.2024.108606_b24 doi: 10.1609/aaai.v37i9.26317 – ident: 10.1016/j.compbiomed.2024.108606_b47 doi: 10.3115/v1/D14-1162 – volume: 37 start-page: 1748 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b23 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.03.012 – year: 2014 ident: 10.1016/j.compbiomed.2024.108606_b65 – volume: 143 year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b50 article-title: Adscreen: A speech processing-based screening system for automatic identification of patients with alzheimer’s disease and related dementia publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102624 – ident: 10.1016/j.compbiomed.2024.108606_b56 doi: 10.1109/ICCV48922.2021.00676 – volume: 33 start-page: 1877 year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b20 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – volume: Vol. 2020 start-page: 63 year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b52 article-title: Topic-based measures of conversation for detecting mild cognitive impairment – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.compbiomed.2024.108606_b66 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 960 year: 2014 ident: 10.1016/j.compbiomed.2024.108606_b46 article-title: COVAREP—A collaborative voice analysis repository for speech technologies – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b55 – ident: 10.1016/j.compbiomed.2024.108606_b19 – volume: 3 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b53 article-title: The joint effects of acoustic and linguistic markers for early identification of mild cognitive impairment publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.702772 – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b2 – year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b49 – volume: 275 start-page: 214 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2024.108606_b3 article-title: Mild cognitive impairment: a concept in evolution publication-title: J. Intern. Med. doi: 10.1111/joim.12190 – year: 2018 ident: 10.1016/j.compbiomed.2024.108606_b48 – year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b13 article-title: Natural language processing to identify patients with cognitive impairment publication-title: medRxiv – year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b27 – ident: 10.1016/j.compbiomed.2024.108606_b60 doi: 10.1145/2623330.2623677 – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b28 – volume: 19 start-page: 946 issue: 3 year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b15 article-title: Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach publication-title: Alzheimer’s Dement. doi: 10.1002/alz.12721 – volume: 14 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b38 article-title: Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit. – volume: 3 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b16 article-title: The internet-based conversational engagement clinical trial (I-CONECT) in socially isolated adults 75+ years old: randomized controlled trial protocol and COVID-19 related study modifications publication-title: Front. Digit. Health doi: 10.3389/fdgth.2021.714813 – volume: 51 start-page: 585 issue: 6 year: 1994 ident: 10.1016/j.compbiomed.2024.108606_b26 article-title: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis publication-title: Arch. Neurol. doi: 10.1001/archneur.1994.00540180063015 – year: 2017 ident: 10.1016/j.compbiomed.2024.108606_b10 – volume: 6 start-page: 269 issue: 8 year: 2017 ident: 10.1016/j.compbiomed.2024.108606_b5 article-title: Connected speech in neurodegenerative language disorders: a review publication-title: Front. Psychol. – volume: 3 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b11 article-title: A comparison of connected speech tasks for detecting early Alzheimer’s disease and mild cognitive impairment using natural language processing and machine learning publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2021.634360 – year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b4 article-title: Age-related mild cognitive deficit: a ready-to-use concept? publication-title: Dialogues Clin. Neurosci. – ident: 10.1016/j.compbiomed.2024.108606_b34 doi: 10.21437/Interspeech.2021-1850 – volume: 33 start-page: 16857 year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b59 article-title: Mpnet: Masked and permuted pre-training for language understanding publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 131 issue: 3 year: 1989 ident: 10.1016/j.compbiomed.2024.108606_b25 article-title: Computerized content analysis of natural language publication-title: Artif. Intell. Med. doi: 10.1016/0933-3657(89)90004-3 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10.1016/j.compbiomed.2024.108606_b63 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – ident: 10.1016/j.compbiomed.2024.108606_b22 doi: 10.1609/aaai.v35i12.17325 – start-page: 4969 year: 2020 ident: 10.1016/j.compbiomed.2024.108606_b62 article-title: S2ORC: The semantic scholar open research corpus – volume: 134 year: 2022 ident: 10.1016/j.compbiomed.2024.108606_b44 article-title: Semantic coherence markers: The contribution of perplexity metrics publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102393 – start-page: 1007 year: 2013 ident: 10.1016/j.compbiomed.2024.108606_b7 article-title: Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors publication-title: Clin. Interv. Aging doi: 10.2147/CIA.S39959 – year: 2023 ident: 10.1016/j.compbiomed.2024.108606_b17 article-title: Internet-based conversational engagement randomized controlled clinical trial (I-CONECT) among socially isolated adults 75+ years old with normal cognition or mild cognitive impairment: Topline results publication-title: Gerontologist – volume: 312 start-page: 2551 issue: 23 year: 2014 ident: 10.1016/j.compbiomed.2024.108606_b67 article-title: The diagnosis and management of mild cognitive impairment: a clinical review publication-title: JAMA doi: 10.1001/jama.2014.13806 – volume: 2 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b43 article-title: Pauses for detection of Alzheimer’s disease publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2020.624488 – year: 2019 ident: 10.1016/j.compbiomed.2024.108606_b37 – volume: 19 start-page: 2081 issue: 7 year: 2011 ident: 10.1016/j.compbiomed.2024.108606_b8 article-title: Spoken language derived measures for detecting mild cognitive impairment publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2011.2112351 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2024.108606_b41 article-title: Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-021-01456-3 |
| SSID | ssj0004030 |
| Score | 2.4070997 |
| Snippet | This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and... AbstractThis paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 108606 |
| SubjectTerms | Aged Classification Cognitive ability Cognitive Dysfunction - diagnosis Deep Learning Embedding Female Humans I-CONECT dataset Impairment Informative Loss function Internal Medicine Linguistic features detection Linguistics Male Mild Cognitive Impairment classification Modules Multilayer perceptrons Multilayers Natural Language Processing Other Sentences Temporal variations Transformers |
| Title | Linguistic-based Mild Cognitive Impairment detection using Informative Loss |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524006917 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524006917 https://dx.doi.org/10.1016/j.compbiomed.2024.108606 https://www.ncbi.nlm.nih.gov/pubmed/38763068 https://www.proquest.com/docview/3060766139 https://www.proquest.com/docview/3057074189 |
| Volume | 176 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250828 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hkCouFeWj3ZaiIPUayIcT2-oJrVgWKJyKxM1y7AnaqgqI3b3y2zsTO4uqUgmJS6QktmI92-N58RsPwLeidGTxdJOixywVudWpagqV-hxb3RZe564XyF7X0xtxcVvdrsF4iIVhWWW0_cGm99Y6PjmOaB4_zGYc40tUgggOqyBrYh0cwS4kZzE4enqWeYisDGEoZG-4dFTzBI0Xy7ZDmDsxxUL0aYc499HLS9T_XNB-KZpswfvoQyYnoZkfYA27bXh3FXfJd-CSCObdsj-BOeVVyidXs98-GQ9KoeScbMDskf8LJh4XvRirS1gBf5fE8KS-2A9q3S7cTE5_jqdpTJqQulKKBSGdV1i1TeOUqxVv8ymB2hVV65X1lrw9S6SuyrDxRW2dROoOKbC2mSNPotLlHqx39x1-goSYkba1lL5AK7xurW3zHF3bqEZai3IE-YCTeQhnY5hBNPbLPGNrGFsTsB2BHgA1Q-wnWStDBvwVdeVLdXEep93c5GZemMz8MzRG8H1V86_R9crv7g89b1afIqqVSXJuSj2Cw9Vrmpu84WI7vF9ymUqyy6aozMcwYlZAlXwUYFarz29q2hfY5LugXduH9cXjEr-Sl7RoDvppQFc1OTuAjZPzy-n1H3AMEz0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VIgEXxDdbCgSJa2jiOLEtTmhFtaW7PbVSb5ZjT6pFKK26u1d-e2diZytEkSpxjcey9WyP58VvbIDPovLk8UybY8Ail6UzuW6FzkOJnelEMKUfBLInzexM_jivz3dgOubCsKwy-f7o0wdvnb4cJDQPrpZLzvElKkEEh1WQDbGOB_BQ1kIxA_vy-1bnIYsq5qGQw2HzJOeJIi_Wbcc8d6KKQg7vDvHjR3fvUf-KQYe96PAZPE1BZPYt9vM57GD_Ah4t0jH5SzgmhnmxGa5gznmbCtli-Stk01EqlB2RE1he84_BLOB6UGP1GUvgL7KUnzSYzal3r-Ds8PvpdJanVxNyXym5JqjLGuuubb32jeZzPi3ReFF3QbvgKNxzxOrqAtsgGucV0ngoiY0rPIUStalew25_2eNbyIgaGdcoFQQ6GUznXFeW6LtWt8o5VBMoR5zsVbwcw46qsZ_2FlvL2NqI7QTMCKgdkz_JXVny4Peoq-6qi6u07la2tCthC_vX3JjA123NP6bXPdvdH0febpsirlUoim4qM4FP22JanHzi4nq83LBNrThm02TzJs6YLVAV3wVYNHrvv7r2ER7PThdzOz86OX4HT7gkCtn2YXd9vcH3FDKt2w_DkrgBNbgT7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linguistic-based+Mild+Cognitive+Impairment+detection+using+Informative+Loss&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Pourramezan+Fard%2C+Ali&rft.au=Mahoor%2C+Mohammad+H.&rft.au=Alsuhaibani%2C+Muath&rft.au=Dodge%2C+Hiroko+H.&rft.date=2024-06-01&rft.issn=0010-4825&rft.volume=176&rft.spage=108606&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.108606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2024_108606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |