Linguistic-based Mild Cognitive Impairment detection using Informative Loss

This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected withi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 176; p. 108606
Main Authors Pourramezan Fard, Ali, Mahoor, Mohammad H., Alsuhaibani, Muath, Dodge, Hiroko H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2024.108606

Cover

Abstract This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. •Introducing a novel deep learning method for cognitive impairment detection.•Employs Natural Language Processing to analyze speech patterns.•Distinguishing Mild Cognitive Impairment from Normal Cognitive conditions.•Utilizing Transformer-based modules to capture contextual relationships.•Extracting temporal features from video interview transcripts.•Introducing InfoLoss to improve classification accuracy.
AbstractList This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%. •Introducing a novel deep learning method for cognitive impairment detection.•Employs Natural Language Processing to analyze speech patterns.•Distinguishing Mild Cognitive Impairment from Normal Cognitive conditions.•Utilizing Transformer-based modules to capture contextual relationships.•Extracting temporal features from video interview transcripts.•Introducing InfoLoss to improve classification accuracy.
This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
AbstractThis paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and Normal Cognitive (NC) conditions in older adults. We propose a framework that analyzes transcripts generated from video interviews collected within the I-CONECT study project, a randomized controlled trial aimed at improving cognitive functions through video chats. Our proposed NLP framework consists of two Transformer-based modules, namely Sentence Embedding (SE) and Sentence Cross Attention (SCA). First, the SE module captures contextual relationships between words within each sentence. Subsequently, the SCA module extracts temporal features from a sequence of sentences. This feature is then used by a Multi-Layer Perceptron (MLP) for the classification of subjects into MCI or NC. To build a robust model, we propose a novel loss function, called InfoLoss, that considers the reduction in entropy by observing each sequence of sentences to ultimately enhance the classification accuracy. The results of our comprehensive model evaluation using the I-CONECT dataset show that our framework can distinguish between MCI and NC with an average area under the curve of 84.75%.
ArticleNumber 108606
Author Dodge, Hiroko H.
Mahoor, Mohammad H.
Pourramezan Fard, Ali
Alsuhaibani, Muath
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-3807-0798
  surname: Pourramezan Fard
  fullname: Pourramezan Fard, Ali
  email: Ali.PourramezanFard@du.edu
  organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
– sequence: 2
  givenname: Mohammad H.
  orcidid: 0000-0001-8923-4660
  surname: Mahoor
  fullname: Mahoor, Mohammad H.
  email: mmahoor@du.edu
  organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
– sequence: 3
  givenname: Muath
  orcidid: 0009-0007-5164-012X
  surname: Alsuhaibani
  fullname: Alsuhaibani, Muath
  email: muath.alsuhaibani@du.edu
  organization: Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
– sequence: 4
  givenname: Hiroko H.
  orcidid: 0000-0001-7290-8307
  surname: Dodge
  fullname: Dodge, Hiroko H.
  email: hdodge@mgh.harvard.edu
  organization: Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38763068$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuLOrf0EavHjpsdJJJ5mLqIMfgyMe1HNIJ9VLxu5kTLoX9t-bdtYVFoQ9BcJTL1Xvc0HOQgxISEVhTYGKV4e1jeOx83FEt26g4eVbCRCPyIoquamhZfyMrAAo1Fw17Tm5yPkAABwYPCHnTEnBQKgV-bz34Wr2efK27kxGV33xg6u28Sr4yV9jtRuPxqcRw1Q5nNBOPoZqzmWq2oU-ptH8wfYx56fkcW-GjM9u30vy48P779tP9f7rx9327b62TPKpVh1tse27ziorFGeqURw3tml7p4wzUnJDFW8BO9cIYyW6DZUchQFLZdtu2CV5eco9pvhrxjzp0WeLw2ACxjlrBq0Eyala0Bf30EOcUyjbFUqAFIKyhXp-S81daVQfkx9NutF_ayqAOgE2lTsT9ncIBb0Y0Qf9z4hejOiTkTL67jSKpZFrj0ln6zFYdD6VNrWL_iEhr--F2MEHb83wE28w391EdW406G-L-MV7wwFEaa8EvPl_wMN2-A1iC8KK
Cites_doi 10.1002/alz.13016
10.1109/CVPRW53098.2021.00168
10.1016/j.trci.2017.01.006
10.1111/j.1365-2796.2004.01388.x
10.18653/v1/D19-1410
10.1186/s13195-021-00848-x
10.1016/j.csl.2020.101113
10.3233/JAD-150520
10.3389/fnagi.2022.830943
10.1186/s12911-022-01864-z
10.1109/ACCESS.2022.3180028
10.1109/ACCESS.2021.3090321
10.1109/ACCESS.2019.2909919
10.1016/j.csl.2021.101298
10.1109/ACCESS.2022.3156598
10.1016/j.jalz.2011.03.003
10.1609/aaai.v37i9.26317
10.3115/v1/D14-1162
10.1016/j.ijforecast.2021.03.012
10.1016/j.artmed.2023.102624
10.1109/ICCV48922.2021.00676
10.3389/fdgth.2021.702772
10.1111/joim.12190
10.1145/2623330.2623677
10.1002/alz.12721
10.3389/fdgth.2021.714813
10.1001/archneur.1994.00540180063015
10.3389/fcomp.2021.634360
10.21437/Interspeech.2021-1850
10.1016/0933-3657(89)90004-3
10.1214/aoms/1177729694
10.1609/aaai.v35i12.17325
10.1016/j.artmed.2022.102393
10.2147/CIA.S39959
10.1001/jama.2014.13806
10.3389/fcomp.2020.624488
10.1109/TASL.2011.2112351
10.1186/s12911-021-01456-3
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright Elsevier Limited Jun 2024
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Jun 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2024.108606
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Nursing & Allied Health Premium
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 108606
ExternalDocumentID 38763068
10_1016_j_compbiomed_2024_108606
S0010482524006917
1_s2_0_S0010482524006917
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01 AG056102
– fundername: NIA NIH HHS
  grantid: R01 AG051628
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c374t-8b15e5fbbc8c68438284e9c25fd8ada774a18450ebd26ac7ed9174e6a0c175593
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 00:09:04 EDT 2025
Tue Oct 07 06:37:11 EDT 2025
Thu Apr 03 06:55:20 EDT 2025
Wed Oct 01 04:08:06 EDT 2025
Sat Oct 12 15:53:11 EDT 2024
Tue Feb 25 20:03:25 EST 2025
Tue Oct 14 19:37:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords I-CONECT dataset
Transformers
Informative Loss function
Mild Cognitive Impairment classification
Linguistic features detection
Natural Language Processing
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-8b15e5fbbc8c68438284e9c25fd8ada774a18450ebd26ac7ed9174e6a0c175593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8923-4660
0009-0007-5164-012X
0000-0002-3807-0798
0000-0001-7290-8307
PMID 38763068
PQID 3060766139
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_3057074189
proquest_journals_3060766139
pubmed_primary_38763068
crossref_primary_10_1016_j_compbiomed_2024_108606
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_108606
elsevier_clinicalkeyesjournals_1_s2_0_S0010482524006917
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_108606
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Penfold, Carrell, Cronkite, Pabiniak, Dodd, Glass, Johnson, Thompson, Arrighi, Stang (b14) 2022; 22
Sun, Dodge, Mahoor (b54) 2023
Boschi, Catricalà, Consonni, Chesi, Moro, Cappa (b5) 2017; 6
Petersen, Caracciolo, Brayne, Gauthier, Jelic, Fratiglioni (b3) 2014; 275
R. Pappagari, J. Cho, S. Joshi, L. Moro-Velázquez, P. Zelasko, J. Villalba, N. Dehak, Automatic Detection and Assessment of Alzheimer Disease Using Speech and Language Technologies in Low-Resource Scenarios, in: Interspeech, Vol. 2021, 2021, pp. 3825–3829.
Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine (b69) 2011; 7
Yuan, Cai, Bian, Ye, Church (b43) 2021; 2
Dodge, Yu, Wu, Pruitt, Asgari, Kaye, Hampstead, Struble, Potempa, Lichtenberg (b17) 2023
Pompili, Rolland, Abad (b35) 2020
Song, Tan, Qin, Lu, Liu (b59) 2020; 33
Fard, Ferrantelli, Dupuis, Mahoor (b29) 2022; 10
Gilles (b4) 2022
Devlin, Chang, Lee, Toutanova (b48) 2018
Zolnoori, Zolnour, Topaz (b50) 2023; 143
A.P. Fard, H. Abdollahi, M. Mahoor, ASMNet: A lightweight deep neural network for face alignment and pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1521–1530.
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell (b20) 2020; 33
Luz, Haider, de la Fuente, Fromm, MacWhinney (b27) 2020
Rohanian, Hough, Purver (b40) 2021
Xu, Meng, Qiu, Yu, Wu (b21) 2019; 7
Petersen (b68) 2004; 256
J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b18) 2017; 30
Lim, Arık, Loeff, Pfister (b23) 2021; 37
A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 11121–11128.
HuggingFace (b58) 2023
Syed, Syed, Lech, Pirogova (b45) 2021; 9
Ferris, Farlow (b7) 2013
vd Maaten, Hinton (b66) 2008; 9
Alsuhaibani, Dodge, Mahoor (b55) 2023
Calzà, Gagliardi, Favretti, Tamburini (b6) 2021; 65
Yamada, Shinkawa, Nemoto, Ota, Nemoto, Arai (b38) 2022; 14
Fraser, Meltzer, Rudzicz (b39) 2016; 49
N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–3992.
lzheimer’s Association (b1) 2023; 19
Ilias, Askounis (b42) 2022; 14
Toledo, Aluísio, Dos Santos, Brucki, Trés, de Oliveira, Mansur (b9) 2018; 10
Chen, Dodge, Asgari (b52) 2020; Vol. 2020
Roark, Mitchell, Hosom, Hollingshead, Kaye (b8) 2011; 19
A. Fader, L. Zettlemoyer, O. Etzioni, Open question answering over curated and extracted knowledge bases, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 1156–1165.
Kingma, Ba (b65) 2014
Clarke, Barrick, Garrard (b11) 2021; 3
H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 11106–11115.
Kullback, Leibler (b63) 1951; 22
Fard, Mahoor (b30) 2022
Hussein, Chan, Van Vleck, Beers, Mindt, Wolf, Curtis, Agarwal, Wisnivesky, Nadkarni (b13) 2022
Fard, Mahoor (b31) 2022; 215
Fard, Mahoor, Lamer, Sweeny (b28) 2023
Park, Chan, Zhang, Chiu, Zoph, Cubuk, Le (b37) 2019
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b49) 2020
Henderson, Budzianowski, Casanueva, Coope, Gerz, Kumar, Mrkšić, Spithourakis, Su, Vulić (b61) 2019
Amini, Hao, Zhang, Song, Gupta, Karjadi, Kolachalama, Au, Paschalidis (b15) 2023; 19
N.C. Camgoz, O. Koller, S. Hadfield, R. Bowden, Sign language transformers: Joint end-to-end sign language recognition and translation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10023–10033.
A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, Vivit: A video vision transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6836–6846.
Yu, Wild, Potempa, Hampstead, Lichtenberg, Struble, Pruitt, Alfaro, Lindsley, MacDonald (b16) 2021; 3
Becker, Boiler, Lopez, Saxton, McGonigle (b26) 1994; 51
Tang, Chen, Dodge, Zhou (b53) 2022; 3
Roshanzamir, Aghajan, Soleymani Baghshah (b41) 2021; 21
Santos, Corrêa Jr., Oliveira, Amancio, Mansur, Aluísio (b10) 2017
Lo, Wang, Neumann, Kinney, Weld (b62) 2020
Gottschalk, Bechtel (b25) 1989; 1
Bertini, Allevi, Lutero, Calzà, Montesi (b36) 2022; 72
Fard, Mahoor (b33) 2022; 10
Asgari, Kaye, Dodge (b51) 2017; 3
Langa, Levine (b67) 2014; 312
Degottex, Kane, Drugman, Raitio, Scherer (b46) 2014
Yeung, Iaboni, Rochon, Lavoie, Santiago, Yancheva, Novikova, Xu, Robin, Kaufman (b12) 2021; 13
Alzheimer’s and Dementia (b2) 2023
Chen, Asgari (b64) 2021
Colla, Delsanto, Agosto, Vitiello, Radicioni (b44) 2022; 134
Lim (10.1016/j.compbiomed.2024.108606_b23) 2021; 37
Asgari (10.1016/j.compbiomed.2024.108606_b51) 2017; 3
HuggingFace (10.1016/j.compbiomed.2024.108606_b58) 2023
Dodge (10.1016/j.compbiomed.2024.108606_b17) 2023
Alzheimer’s and Dementia (10.1016/j.compbiomed.2024.108606_b2) 2023
Kingma (10.1016/j.compbiomed.2024.108606_b65) 2014
Fard (10.1016/j.compbiomed.2024.108606_b29) 2022; 10
Hussein (10.1016/j.compbiomed.2024.108606_b13) 2022
Fard (10.1016/j.compbiomed.2024.108606_b33) 2022; 10
Henderson (10.1016/j.compbiomed.2024.108606_b61) 2019
Lo (10.1016/j.compbiomed.2024.108606_b62) 2020
10.1016/j.compbiomed.2024.108606_b47
Tang (10.1016/j.compbiomed.2024.108606_b53) 2022; 3
Yuan (10.1016/j.compbiomed.2024.108606_b43) 2021; 2
Clarke (10.1016/j.compbiomed.2024.108606_b11) 2021; 3
Gottschalk (10.1016/j.compbiomed.2024.108606_b25) 1989; 1
Chen (10.1016/j.compbiomed.2024.108606_b64) 2021
Penfold (10.1016/j.compbiomed.2024.108606_b14) 2022; 22
Yu (10.1016/j.compbiomed.2024.108606_b16) 2021; 3
Fard (10.1016/j.compbiomed.2024.108606_b31) 2022; 215
Kullback (10.1016/j.compbiomed.2024.108606_b63) 1951; 22
Xu (10.1016/j.compbiomed.2024.108606_b21) 2019; 7
Amini (10.1016/j.compbiomed.2024.108606_b15) 2023; 19
Ilias (10.1016/j.compbiomed.2024.108606_b42) 2022; 14
Fraser (10.1016/j.compbiomed.2024.108606_b39) 2016; 49
Roshanzamir (10.1016/j.compbiomed.2024.108606_b41) 2021; 21
Ferris (10.1016/j.compbiomed.2024.108606_b7) 2013
Roark (10.1016/j.compbiomed.2024.108606_b8) 2011; 19
Luz (10.1016/j.compbiomed.2024.108606_b27) 2020
10.1016/j.compbiomed.2024.108606_b32
Rohanian (10.1016/j.compbiomed.2024.108606_b40) 2021
Alsuhaibani (10.1016/j.compbiomed.2024.108606_b55) 2023
10.1016/j.compbiomed.2024.108606_b34
lzheimer’s Association (10.1016/j.compbiomed.2024.108606_b1) 2023; 19
Calzà (10.1016/j.compbiomed.2024.108606_b6) 2021; 65
vd Maaten (10.1016/j.compbiomed.2024.108606_b66) 2008; 9
Petersen (10.1016/j.compbiomed.2024.108606_b68) 2004; 256
10.1016/j.compbiomed.2024.108606_b19
Devlin (10.1016/j.compbiomed.2024.108606_b48) 2018
Gilles (10.1016/j.compbiomed.2024.108606_b4) 2022
Yeung (10.1016/j.compbiomed.2024.108606_b12) 2021; 13
Yamada (10.1016/j.compbiomed.2024.108606_b38) 2022; 14
Bertini (10.1016/j.compbiomed.2024.108606_b36) 2022; 72
Sun (10.1016/j.compbiomed.2024.108606_b54) 2023
Brown (10.1016/j.compbiomed.2024.108606_b20) 2020; 33
10.1016/j.compbiomed.2024.108606_b60
Langa (10.1016/j.compbiomed.2024.108606_b67) 2014; 312
Syed (10.1016/j.compbiomed.2024.108606_b45) 2021; 9
Colla (10.1016/j.compbiomed.2024.108606_b44) 2022; 134
Boschi (10.1016/j.compbiomed.2024.108606_b5) 2017; 6
Pompili (10.1016/j.compbiomed.2024.108606_b35) 2020
Dosovitskiy (10.1016/j.compbiomed.2024.108606_b49) 2020
10.1016/j.compbiomed.2024.108606_b22
10.1016/j.compbiomed.2024.108606_b24
Degottex (10.1016/j.compbiomed.2024.108606_b46) 2014
Vaswani (10.1016/j.compbiomed.2024.108606_b18) 2017; 30
Fard (10.1016/j.compbiomed.2024.108606_b28) 2023
Sperling (10.1016/j.compbiomed.2024.108606_b69) 2011; 7
Becker (10.1016/j.compbiomed.2024.108606_b26) 1994; 51
Santos (10.1016/j.compbiomed.2024.108606_b10) 2017
Petersen (10.1016/j.compbiomed.2024.108606_b3) 2014; 275
Park (10.1016/j.compbiomed.2024.108606_b37) 2019
Song (10.1016/j.compbiomed.2024.108606_b59) 2020; 33
Zolnoori (10.1016/j.compbiomed.2024.108606_b50) 2023; 143
Toledo (10.1016/j.compbiomed.2024.108606_b9) 2018; 10
Chen (10.1016/j.compbiomed.2024.108606_b52) 2020; Vol. 2020
Fard (10.1016/j.compbiomed.2024.108606_b30) 2022
10.1016/j.compbiomed.2024.108606_b56
10.1016/j.compbiomed.2024.108606_b57
References_xml – volume: 49
  start-page: 407
  year: 2016
  end-page: 422
  ident: b39
  article-title: Linguistic features identify Alzheimer’s disease in narrative speech
  publication-title: J. Alzheimer’s Dis.
– year: 2021
  ident: b40
  article-title: Multi-modal fusion with gating using audio, lexical and disfluency features for Alzheimer’s dementia recognition from spontaneous speech
– start-page: 7003
  year: 2021
  end-page: 7007
  ident: b64
  article-title: Refining automatic speech recognition system for older adults
  publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 134
  year: 2022
  ident: b44
  article-title: Semantic coherence markers: The contribution of perplexity metrics
  publication-title: Artif. Intell. Med.
– volume: 143
  year: 2023
  ident: b50
  article-title: Adscreen: A speech processing-based screening system for automatic identification of patients with alzheimer’s disease and related dementia
  publication-title: Artif. Intell. Med.
– volume: 3
  year: 2022
  ident: b53
  article-title: The joint effects of acoustic and linguistic markers for early identification of mild cognitive impairment
  publication-title: Front. Digit. Health
– volume: 33
  start-page: 16857
  year: 2020
  end-page: 16867
  ident: b59
  article-title: Mpnet: Masked and permuted pre-training for language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: Vol. 2020
  start-page: 63
  year: 2020
  ident: b52
  article-title: Topic-based measures of conversation for detecting mild cognitive impairment
  publication-title: Proceedings of the Conference. Association for Computational Linguistics. Meeting
– volume: 312
  start-page: 2551
  year: 2014
  end-page: 2561
  ident: b67
  article-title: The diagnosis and management of mild cognitive impairment: a clinical review
  publication-title: JAMA
– year: 2017
  ident: b10
  article-title: Enriching complex networks with word embeddings for detecting mild cognitive impairment from speech transcripts
– year: 2023
  ident: b17
  article-title: Internet-based conversational engagement randomized controlled clinical trial (I-CONECT) among socially isolated adults 75+ years old with normal cognition or mild cognitive impairment: Topline results
  publication-title: Gerontologist
– year: 2018
  ident: b48
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– reference: R. Pappagari, J. Cho, S. Joshi, L. Moro-Velázquez, P. Zelasko, J. Villalba, N. Dehak, Automatic Detection and Assessment of Alzheimer Disease Using Speech and Language Technologies in Low-Resource Scenarios, in: Interspeech, Vol. 2021, 2021, pp. 3825–3829.
– volume: 7
  start-page: 51522
  year: 2019
  end-page: 51532
  ident: b21
  article-title: Sentiment analysis of comment texts based on BiLSTM
  publication-title: Ieee Access
– year: 2023
  ident: b2
  article-title: What is Alzheimer’s?
– volume: 30
  year: 2017
  ident: b18
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  year: 2021
  ident: b43
  article-title: Pauses for detection of Alzheimer’s disease
  publication-title: Front. Comput. Sci.
– start-page: 1007
  year: 2013
  end-page: 1014
  ident: b7
  article-title: Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors
  publication-title: Clin. Interv. Aging
– year: 2020
  ident: b49
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 1
  start-page: 131
  year: 1989
  end-page: 137
  ident: b25
  article-title: Computerized content analysis of natural language
  publication-title: Artif. Intell. Med.
– volume: 19
  start-page: 2081
  year: 2011
  end-page: 2090
  ident: b8
  article-title: Spoken language derived measures for detecting mild cognitive impairment
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 14
  ident: b41
  article-title: Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 14
  year: 2022
  ident: b38
  article-title: Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies
  publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit.
– reference: H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient transformer for long sequence time-series forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 11106–11115.
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: b20
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982–3992.
– year: 2019
  ident: b61
  article-title: A repository of conversational datasets
– start-page: 4969
  year: 2020
  end-page: 4983
  ident: b62
  article-title: S2ORC: The semantic scholar open research corpus
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
– reference: N.C. Camgoz, O. Koller, S. Hadfield, R. Bowden, Sign language transformers: Joint end-to-end sign language recognition and translation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10023–10033.
– reference: A. Zeng, M. Chen, L. Zhang, Q. Xu, Are transformers effective for time series forecasting?, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37, 2023, pp. 11121–11128.
– volume: 9
  start-page: 88377
  year: 2021
  end-page: 88390
  ident: b45
  article-title: Automated recognition of Alzheimer’s dementia using bag-of-deep-features and model ensembling
  publication-title: IEEE Access
– volume: 19
  start-page: 946
  year: 2023
  end-page: 955
  ident: b15
  article-title: Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach
  publication-title: Alzheimer’s Dement.
– volume: 13
  start-page: 109
  year: 2021
  ident: b12
  article-title: Correlating natural language processing and automated speech analysis with clinician assessment to quantify speech-language changes in mild cognitive impairment and Alzheimer’s dementia
  publication-title: Alzheimer’s Res. Ther.
– volume: 14
  year: 2022
  ident: b42
  article-title: Multimodal deep learning models for detecting dementia from speech and transcripts
  publication-title: Front. Aging Neurosci.
– reference: A. Fader, L. Zettlemoyer, O. Etzioni, Open question answering over curated and extracted knowledge bases, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 1156–1165.
– volume: 256
  start-page: 183
  year: 2004
  end-page: 194
  ident: b68
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med.
– volume: 3
  year: 2021
  ident: b11
  article-title: A comparison of connected speech tasks for detecting early Alzheimer’s disease and mild cognitive impairment using natural language processing and machine learning
  publication-title: Front. Comput. Sci.
– volume: 37
  start-page: 1748
  year: 2021
  end-page: 1764
  ident: b23
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
– volume: 3
  year: 2021
  ident: b16
  article-title: The internet-based conversational engagement clinical trial (I-CONECT) in socially isolated adults 75+ years old: randomized controlled trial protocol and COVID-19 related study modifications
  publication-title: Front. Digit. Health
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b66
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– reference: A.P. Fard, H. Abdollahi, M. Mahoor, ASMNet: A lightweight deep neural network for face alignment and pose estimation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1521–1530.
– year: 2023
  ident: b55
  article-title: Detection of mild cognitive impairment using facial features in video conversations
– volume: 275
  start-page: 214
  year: 2014
  end-page: 228
  ident: b3
  article-title: Mild cognitive impairment: a concept in evolution
  publication-title: J. Intern. Med.
– reference: A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, C. Schmid, Vivit: A video vision transformer, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6836–6846.
– year: 2023
  ident: b54
  article-title: MC-ViViT: Multi-branch classifier-ViViT to detect mild cognitive impairment in older adults using facial videos
– volume: 19
  start-page: 1598
  year: 2023
  end-page: 1695
  ident: b1
  article-title: 2023 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
– volume: 10
  start-page: 59413
  year: 2022
  end-page: 59427
  ident: b29
  article-title: Sagittal cervical spine landmark point detection in X-Ray using deep convolutional neural networks
  publication-title: IEEE Access
– year: 2020
  ident: b35
  article-title: The INESC-ID multi-modal system for the ADReSS 2020 challenge
– volume: 6
  start-page: 269
  year: 2017
  ident: b5
  article-title: Connected speech in neurodegenerative language disorders: a review
  publication-title: Front. Psychol.
– volume: 3
  start-page: 219
  year: 2017
  end-page: 228
  ident: b51
  article-title: Predicting mild cognitive impairment from spontaneous spoken utterances
  publication-title: Alzheimer’s Dement.: Transl. Res. Clin. Interv.
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: b69
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
– volume: 22
  start-page: 1
  year: 2022
  end-page: 13
  ident: b14
  article-title: Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening
  publication-title: BMC Med. Inform. Decis. Mak.
– year: 2019
  ident: b37
  article-title: Specaugment: A simple data augmentation method for automatic speech recognition
– start-page: 1807
  year: 2022
  end-page: 1814
  ident: b30
  article-title: ACR loss: Adaptive coordinate-based regression loss for face alignment
  publication-title: 2022 26th International Conference on Pattern Recognition
– year: 2023
  ident: b58
  article-title: Sentence transformers
– year: 2020
  ident: b27
  article-title: Alzheimer’s dementia recognition through spontaneous speech: The ADReSS challenge
– volume: 72
  year: 2022
  ident: b36
  article-title: An automatic Alzheimer’s disease classifier based on spontaneous spoken english
  publication-title: Comput. Speech Lang.
– volume: 10
  start-page: 31
  year: 2018
  end-page: 40
  ident: b9
  article-title: Analysis of macrolinguistic aspects of narratives from individuals with Alzheimer’s disease, mild cognitive impairment, and no cognitive impairment
  publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit.
– volume: 65
  year: 2021
  ident: b6
  article-title: Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia
  publication-title: Comput. Speech Lang.
– year: 2014
  ident: b65
  article-title: Adam: A method for stochastic optimization
– volume: 10
  start-page: 26756
  year: 2022
  end-page: 26768
  ident: b33
  article-title: Ad-corre: Adaptive correlation-based loss for facial expression recognition in the wild
  publication-title: IEEE Access
– year: 2022
  ident: b4
  article-title: Age-related mild cognitive deficit: a ready-to-use concept?
  publication-title: Dialogues Clin. Neurosci.
– start-page: 960
  year: 2014
  end-page: 964
  ident: b46
  article-title: COVAREP—A collaborative voice analysis repository for speech technologies
  publication-title: 2014 Ieee International Conference on Acoustics, Speech and Signal Processing (Icassp)
– year: 2023
  ident: b28
  article-title: GANalyzer: Analysis and manipulation of GANs latent space for controllable face synthesis
– reference: J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1532–1543.
– volume: 51
  start-page: 585
  year: 1994
  end-page: 594
  ident: b26
  article-title: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis
  publication-title: Arch. Neurol.
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b63
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– year: 2022
  ident: b13
  article-title: Natural language processing to identify patients with cognitive impairment
  publication-title: medRxiv
– volume: 215
  year: 2022
  ident: b31
  article-title: Facial landmark points detection using knowledge distillation-based neural networks
  publication-title: Comput. Vis. Image Underst.
– volume: 10
  start-page: 31
  year: 2018
  ident: 10.1016/j.compbiomed.2024.108606_b9
  article-title: Analysis of macrolinguistic aspects of narratives from individuals with Alzheimer’s disease, mild cognitive impairment, and no cognitive impairment
  publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit.
– volume: 215
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b31
  article-title: Facial landmark points detection using knowledge distillation-based neural networks
  publication-title: Comput. Vis. Image Underst.
– year: 2019
  ident: 10.1016/j.compbiomed.2024.108606_b61
– volume: 19
  start-page: 1598
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b1
  article-title: 2023 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
  doi: 10.1002/alz.13016
– ident: 10.1016/j.compbiomed.2024.108606_b32
  doi: 10.1109/CVPRW53098.2021.00168
– volume: 3
  start-page: 219
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2024.108606_b51
  article-title: Predicting mild cognitive impairment from spontaneous spoken utterances
  publication-title: Alzheimer’s Dement.: Transl. Res. Clin. Interv.
  doi: 10.1016/j.trci.2017.01.006
– volume: 256
  start-page: 183
  issue: 3
  year: 2004
  ident: 10.1016/j.compbiomed.2024.108606_b68
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2004.01388.x
– ident: 10.1016/j.compbiomed.2024.108606_b57
  doi: 10.18653/v1/D19-1410
– volume: 13
  start-page: 109
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b12
  article-title: Correlating natural language processing and automated speech analysis with clinician assessment to quantify speech-language changes in mild cognitive impairment and Alzheimer’s dementia
  publication-title: Alzheimer’s Res. Ther.
  doi: 10.1186/s13195-021-00848-x
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2024.108606_b18
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b58
– volume: 65
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b6
  article-title: Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2020.101113
– volume: 49
  start-page: 407
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2024.108606_b39
  article-title: Linguistic features identify Alzheimer’s disease in narrative speech
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-150520
– volume: 14
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b42
  article-title: Multimodal deep learning models for detecting dementia from speech and transcripts
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.830943
– start-page: 1807
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b30
  article-title: ACR loss: Adaptive coordinate-based regression loss for face alignment
– year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b35
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b14
  article-title: Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-022-01864-z
– volume: 10
  start-page: 59413
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b29
  article-title: Sagittal cervical spine landmark point detection in X-Ray using deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3180028
– volume: 9
  start-page: 88377
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b45
  article-title: Automated recognition of Alzheimer’s dementia using bag-of-deep-features and model ensembling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090321
– volume: 7
  start-page: 51522
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108606_b21
  article-title: Sentiment analysis of comment texts based on BiLSTM
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2909919
– volume: 72
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b36
  article-title: An automatic Alzheimer’s disease classifier based on spontaneous spoken english
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2021.101298
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b54
– year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b40
– volume: 10
  start-page: 26756
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b33
  article-title: Ad-corre: Adaptive correlation-based loss for facial expression recognition in the wild
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156598
– start-page: 7003
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b64
  article-title: Refining automatic speech recognition system for older adults
– volume: 7
  start-page: 280
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2024.108606_b69
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2011.03.003
– ident: 10.1016/j.compbiomed.2024.108606_b24
  doi: 10.1609/aaai.v37i9.26317
– ident: 10.1016/j.compbiomed.2024.108606_b47
  doi: 10.3115/v1/D14-1162
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b23
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.03.012
– year: 2014
  ident: 10.1016/j.compbiomed.2024.108606_b65
– volume: 143
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b50
  article-title: Adscreen: A speech processing-based screening system for automatic identification of patients with alzheimer’s disease and related dementia
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102624
– ident: 10.1016/j.compbiomed.2024.108606_b56
  doi: 10.1109/ICCV48922.2021.00676
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b20
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: Vol. 2020
  start-page: 63
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b52
  article-title: Topic-based measures of conversation for detecting mild cognitive impairment
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.compbiomed.2024.108606_b66
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 960
  year: 2014
  ident: 10.1016/j.compbiomed.2024.108606_b46
  article-title: COVAREP—A collaborative voice analysis repository for speech technologies
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b55
– ident: 10.1016/j.compbiomed.2024.108606_b19
– volume: 3
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b53
  article-title: The joint effects of acoustic and linguistic markers for early identification of mild cognitive impairment
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2021.702772
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b2
– year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b49
– volume: 275
  start-page: 214
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2024.108606_b3
  article-title: Mild cognitive impairment: a concept in evolution
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12190
– year: 2018
  ident: 10.1016/j.compbiomed.2024.108606_b48
– year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b13
  article-title: Natural language processing to identify patients with cognitive impairment
  publication-title: medRxiv
– year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b27
– ident: 10.1016/j.compbiomed.2024.108606_b60
  doi: 10.1145/2623330.2623677
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b28
– volume: 19
  start-page: 946
  issue: 3
  year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b15
  article-title: Automated detection of mild cognitive impairment and dementia from voice recordings: A natural language processing approach
  publication-title: Alzheimer’s Dement.
  doi: 10.1002/alz.12721
– volume: 14
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b38
  article-title: Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies
  publication-title: Alzheimer’s Dement.: Diagn. Assess. Dis. Monit.
– volume: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b16
  article-title: The internet-based conversational engagement clinical trial (I-CONECT) in socially isolated adults 75+ years old: randomized controlled trial protocol and COVID-19 related study modifications
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2021.714813
– volume: 51
  start-page: 585
  issue: 6
  year: 1994
  ident: 10.1016/j.compbiomed.2024.108606_b26
  article-title: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1994.00540180063015
– year: 2017
  ident: 10.1016/j.compbiomed.2024.108606_b10
– volume: 6
  start-page: 269
  issue: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2024.108606_b5
  article-title: Connected speech in neurodegenerative language disorders: a review
  publication-title: Front. Psychol.
– volume: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b11
  article-title: A comparison of connected speech tasks for detecting early Alzheimer’s disease and mild cognitive impairment using natural language processing and machine learning
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2021.634360
– year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b4
  article-title: Age-related mild cognitive deficit: a ready-to-use concept?
  publication-title: Dialogues Clin. Neurosci.
– ident: 10.1016/j.compbiomed.2024.108606_b34
  doi: 10.21437/Interspeech.2021-1850
– volume: 33
  start-page: 16857
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b59
  article-title: Mpnet: Masked and permuted pre-training for language understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 131
  issue: 3
  year: 1989
  ident: 10.1016/j.compbiomed.2024.108606_b25
  article-title: Computerized content analysis of natural language
  publication-title: Artif. Intell. Med.
  doi: 10.1016/0933-3657(89)90004-3
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.compbiomed.2024.108606_b63
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– ident: 10.1016/j.compbiomed.2024.108606_b22
  doi: 10.1609/aaai.v35i12.17325
– start-page: 4969
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108606_b62
  article-title: S2ORC: The semantic scholar open research corpus
– volume: 134
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108606_b44
  article-title: Semantic coherence markers: The contribution of perplexity metrics
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102393
– start-page: 1007
  year: 2013
  ident: 10.1016/j.compbiomed.2024.108606_b7
  article-title: Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors
  publication-title: Clin. Interv. Aging
  doi: 10.2147/CIA.S39959
– year: 2023
  ident: 10.1016/j.compbiomed.2024.108606_b17
  article-title: Internet-based conversational engagement randomized controlled clinical trial (I-CONECT) among socially isolated adults 75+ years old with normal cognition or mild cognitive impairment: Topline results
  publication-title: Gerontologist
– volume: 312
  start-page: 2551
  issue: 23
  year: 2014
  ident: 10.1016/j.compbiomed.2024.108606_b67
  article-title: The diagnosis and management of mild cognitive impairment: a clinical review
  publication-title: JAMA
  doi: 10.1001/jama.2014.13806
– volume: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b43
  article-title: Pauses for detection of Alzheimer’s disease
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2020.624488
– year: 2019
  ident: 10.1016/j.compbiomed.2024.108606_b37
– volume: 19
  start-page: 2081
  issue: 7
  year: 2011
  ident: 10.1016/j.compbiomed.2024.108606_b8
  article-title: Spoken language derived measures for detecting mild cognitive impairment
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2112351
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108606_b41
  article-title: Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01456-3
SSID ssj0004030
Score 2.4070997
Snippet This paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI) and...
AbstractThis paper presents a deep learning method using Natural Language Processing (NLP) techniques, to distinguish between Mild Cognitive Impairment (MCI)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108606
SubjectTerms Aged
Classification
Cognitive ability
Cognitive Dysfunction - diagnosis
Deep Learning
Embedding
Female
Humans
I-CONECT dataset
Impairment
Informative Loss function
Internal Medicine
Linguistic features detection
Linguistics
Male
Mild Cognitive Impairment classification
Modules
Multilayer perceptrons
Multilayers
Natural Language Processing
Other
Sentences
Temporal variations
Transformers
Title Linguistic-based Mild Cognitive Impairment detection using Informative Loss
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524006917
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524006917
https://dx.doi.org/10.1016/j.compbiomed.2024.108606
https://www.ncbi.nlm.nih.gov/pubmed/38763068
https://www.proquest.com/docview/3060766139
https://www.proquest.com/docview/3057074189
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250828
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hkCouFeWj3ZaiIPUayIcT2-oJrVgWKJyKxM1y7AnaqgqI3b3y2zsTO4uqUgmJS6QktmI92-N58RsPwLeidGTxdJOixywVudWpagqV-hxb3RZe564XyF7X0xtxcVvdrsF4iIVhWWW0_cGm99Y6PjmOaB4_zGYc40tUgggOqyBrYh0cwS4kZzE4enqWeYisDGEoZG-4dFTzBI0Xy7ZDmDsxxUL0aYc499HLS9T_XNB-KZpswfvoQyYnoZkfYA27bXh3FXfJd-CSCObdsj-BOeVVyidXs98-GQ9KoeScbMDskf8LJh4XvRirS1gBf5fE8KS-2A9q3S7cTE5_jqdpTJqQulKKBSGdV1i1TeOUqxVv8ymB2hVV65X1lrw9S6SuyrDxRW2dROoOKbC2mSNPotLlHqx39x1-goSYkba1lL5AK7xurW3zHF3bqEZai3IE-YCTeQhnY5hBNPbLPGNrGFsTsB2BHgA1Q-wnWStDBvwVdeVLdXEep93c5GZemMz8MzRG8H1V86_R9crv7g89b1afIqqVSXJuSj2Cw9Vrmpu84WI7vF9ymUqyy6aozMcwYlZAlXwUYFarz29q2hfY5LugXduH9cXjEr-Sl7RoDvppQFc1OTuAjZPzy-n1H3AMEz0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VIgEXxDdbCgSJa2jiOLEtTmhFtaW7PbVSb5ZjT6pFKK26u1d-e2diZytEkSpxjcey9WyP58VvbIDPovLk8UybY8Ail6UzuW6FzkOJnelEMKUfBLInzexM_jivz3dgOubCsKwy-f7o0wdvnb4cJDQPrpZLzvElKkEEh1WQDbGOB_BQ1kIxA_vy-1bnIYsq5qGQw2HzJOeJIi_Wbcc8d6KKQg7vDvHjR3fvUf-KQYe96PAZPE1BZPYt9vM57GD_Ah4t0jH5SzgmhnmxGa5gznmbCtli-Stk01EqlB2RE1he84_BLOB6UGP1GUvgL7KUnzSYzal3r-Ds8PvpdJanVxNyXym5JqjLGuuubb32jeZzPi3ReFF3QbvgKNxzxOrqAtsgGucV0ngoiY0rPIUStalew25_2eNbyIgaGdcoFQQ6GUznXFeW6LtWt8o5VBMoR5zsVbwcw46qsZ_2FlvL2NqI7QTMCKgdkz_JXVny4Peoq-6qi6u07la2tCthC_vX3JjA123NP6bXPdvdH0febpsirlUoim4qM4FP22JanHzi4nq83LBNrThm02TzJs6YLVAV3wVYNHrvv7r2ER7PThdzOz86OX4HT7gkCtn2YXd9vcH3FDKt2w_DkrgBNbgT7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linguistic-based+Mild+Cognitive+Impairment+detection+using+Informative+Loss&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Pourramezan+Fard%2C+Ali&rft.au=Mahoor%2C+Mohammad+H.&rft.au=Alsuhaibani%2C+Muath&rft.au=Dodge%2C+Hiroko+H.&rft.date=2024-06-01&rft.issn=0010-4825&rft.volume=176&rft.spage=108606&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.108606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2024_108606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon