Thermal insulation properties of YSZ coatings: Suspension Plasma Spraying (SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS)

Improving efficiency of hot section components of aero engines such as turbine blades or nozzle guide vanes is critical for the aircraft industry. Over many years, the development of advanced Thermal Barrier Coatings (TBCs) has been a field of active research to achieve this purpose. Electron Beam P...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 318; pp. 122 - 128
Main Authors Bernard, Benjamin, Quet, Aurélie, Bianchi, Luc, Joulia, Aurélien, Malié, André, Schick, Vincent, Rémy, Benjamin
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.05.2017
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2016.06.010

Cover

Abstract Improving efficiency of hot section components of aero engines such as turbine blades or nozzle guide vanes is critical for the aircraft industry. Over many years, the development of advanced Thermal Barrier Coatings (TBCs) has been a field of active research to achieve this purpose. Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS) processes are widely used to apply TBCs on metal substrates. High costs and rather high thermal conductivities of EB-PVD coatings, as well as low thermal lifetime of APS ones, are real drawbacks for next generations of turbine engines. In this study, Suspension Plasma Spraying (SPS) was assessed to improve TBC thermal properties. It was shown that the SPS process allows to perform columnar microstructure easily tunable in terms of both compaction of columnar structure and thermal conductivity. Thermal conductivities were in the 0.7–1.25W·m−1·K−1 range for SPS coatings while values of 0.9 and 1.5W·m−1·K−1 were measured for APS and EB-PVD coatings, respectively. The effect of heat conduction paths, which impact thermal diffusivity values, was highlighted for the columnar structure. [Display omitted] •The influence of SPS columnar microstructures on thermal conductivity is studied•Controlling the column compaction allows to reduce heat conduction between them•Thermal conductivity of YSZ SPS coatings has been calculated by combination of flash method measurements and DSC analysis•Thermal diffusivity values seem strongly linked to heat conduction between columns
AbstractList Improving efficiency of hot section components of aero engines such as turbine blades or nozzle guide vanes is critical for the aircraft industry. Over many years, the development of advanced Thermal Barrier Coatings (TBCs) has been a field of active research to achieve this purpose. Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS) processes are widely used to apply TBCs on metal substrates. High costs and rather high thermal conductivities of EB-PVD coatings, as well as low thermal lifetime of APS ones, are real drawbacks for next generations of turbine engines. In this study, Suspension Plasma Spraying (SPS) was assessed to improve TBC thermal properties. It was shown that the SPS process allows to perform columnar microstructure easily tunable in terms of both compaction of columnar structure and thermal conductivity. Thermal conductivities were in the 0.7–1.25W·m−1·K−1 range for SPS coatings while values of 0.9 and 1.5W·m−1·K−1 were measured for APS and EB-PVD coatings, respectively. The effect of heat conduction paths, which impact thermal diffusivity values, was highlighted for the columnar structure. [Display omitted] •The influence of SPS columnar microstructures on thermal conductivity is studied•Controlling the column compaction allows to reduce heat conduction between them•Thermal conductivity of YSZ SPS coatings has been calculated by combination of flash method measurements and DSC analysis•Thermal diffusivity values seem strongly linked to heat conduction between columns
Improving efficiency of hot section components of aero engines such as turbine blades or nozzle guide vanes is critical for the aircraft industry. Over many years, the development of advanced Thermal Barrier Coatings (TBCs) has been a field of active research to achieve this purpose. Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS) processes are widely used to apply TBCs on metal substrates. High costs and rather high thermal conductivities of EB-PVD coatings, as well as low thermal lifetime of APS ones, are real drawbacks for next generations of turbine engines. In this study, Suspension Plasma Spraying (SN) was assessed to improve TBC thermal properties. It was shown that the SN process allows to perform columnar microstructure easily tunable in terms of both compaction of columnar structure and thermal conductivity. Thermal conductivities were in the 0.7-1.25W.m-1.K-1 range for SN coatings while values of 0.9 and 1.25W.m-1.K-1 were measured for APS and EB-PVD coatings, respectively. The effect of heat conduction paths, which impact thermal diffusivity values, was highlighted for the columnar structure.
Author Bernard, Benjamin
Rémy, Benjamin
Quet, Aurélie
Malié, André
Schick, Vincent
Bianchi, Luc
Joulia, Aurélien
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Bernard
  fullname: Bernard, Benjamin
  email: benjamin.bernard@cea.fr
  organization: CEA-DAM, Le Ripault, BP 16, 37260 Monts, France
– sequence: 2
  givenname: Aurélie
  surname: Quet
  fullname: Quet, Aurélie
  email: aurelie.quet@cea.fr
  organization: CEA-DAM, Le Ripault, BP 16, 37260 Monts, France
– sequence: 3
  givenname: Luc
  surname: Bianchi
  fullname: Bianchi, Luc
  email: luc.bianchi@cea.fr
  organization: Safran, Pôle Matériaux et Procédés, Rue de Jeunes Bois, Châteaufort, CS 80112, 78772, Magny-Les-Hameaux, France
– sequence: 4
  givenname: Aurélien
  surname: Joulia
  fullname: Joulia, Aurélien
  email: aurelien.joulia@safran.fr
  organization: Safran, Pôle Matériaux et Procédés, Rue de Jeunes Bois, Châteaufort, CS 80112, 78772, Magny-Les-Hameaux, France
– sequence: 5
  givenname: André
  surname: Malié
  fullname: Malié, André
  email: andre.malie@snecma.fr
  organization: Safran-Snecma, Rue Maryse Bastié, BP 129, 86101 Châtellerault, France
– sequence: 6
  givenname: Vincent
  surname: Schick
  fullname: Schick, Vincent
  email: vincent.schick@univ-lorraine.fr
  organization: LEMTA Université de Lorraine, 2 Avenue de la forêt de Haye, BP 160, 54504, Vandoeuvre-Lès-Nancy, France
– sequence: 7
  givenname: Benjamin
  surname: Rémy
  fullname: Rémy, Benjamin
  email: benjamin.remy@univ-lorraine.fr
  organization: LEMTA Université de Lorraine, 2 Avenue de la forêt de Haye, BP 160, 54504, Vandoeuvre-Lès-Nancy, France
BackLink https://hal.science/hal-02441576$$DView record in HAL
BookMark eNqFUU1rGzEQFSWFOmn_QhH0Eh_WlbRf3tJDncRtCoYaNg20FyFLo1pmvdpodg3-Uf2P1cbNpT0EBoRm3nszvHdOzlrfAiFvOZtxxov3uxkOwWqv-pmI_xmLxdkLMuHzskrSNCvPyISJvEzmVSlekXPEHWOMl1U2Ib_vthD2qqGuxaFRvfMt7YLvIPQOkHpLf9Q_6Sju2l_4gdYDdtDiCFs3CveK1l1Qxzikl_W6ntIDBByQLhvQfYioK1B7ut4e0em45V51PtAb6Dy6x12Xy6tkfX8zpao1dNHvPXbxIKf_V19E9dfkpVUNwpu_7wX5_nl5d32brL59-Xq9WCU6LbM-KUtRbICByZRiVulUGa21gDw1QmgjMhtbtspZZTaFLSor0lwYm-dzozebOLwg05PuVjWyC26vwlF65eTtYiXHHhNZxvOyOPCIfXfCRtseBsBe7vwQ2nie5FWes6xiKYuojyeUDh4xgJXa9Y9290G5RnImxzDlTj6FKccwJYvFR3rxD_3pqmeJn05EiHYdHASJ2kGrwbgQE5LGu-ck_gBo1MJo
CitedBy_id crossref_primary_10_3390_coatings10090894
crossref_primary_10_1016_j_ceramint_2020_06_149
crossref_primary_10_1007_s11666_021_01162_6
crossref_primary_10_1007_s10921_022_00880_3
crossref_primary_10_1016_j_surfcoat_2023_130330
crossref_primary_10_1016_j_surfcoat_2023_130175
crossref_primary_10_1088_2053_1591_ac8857
crossref_primary_10_1016_j_surfcoat_2019_01_078
crossref_primary_10_1016_j_jeurceramsoc_2018_01_006
crossref_primary_10_1016_j_matpr_2020_02_271
crossref_primary_10_3390_coatings14121566
crossref_primary_10_1016_j_matpr_2021_02_672
crossref_primary_10_1016_j_ceramint_2020_07_119
crossref_primary_10_1016_j_surfcoat_2018_08_047
crossref_primary_10_1016_j_jeurceramsoc_2020_08_022
crossref_primary_10_1007_s11666_017_0683_x
crossref_primary_10_1016_j_compositesb_2024_111842
crossref_primary_10_1016_j_surfcoat_2020_125803
crossref_primary_10_3390_ma14247801
crossref_primary_10_1007_s12008_025_02235_4
crossref_primary_10_1016_j_ceramint_2023_10_142
crossref_primary_10_1016_j_surfcoat_2023_130203
crossref_primary_10_1016_j_ceramint_2022_09_182
crossref_primary_10_1007_s42114_021_00270_9
crossref_primary_10_1007_s12008_023_01511_5
crossref_primary_10_1088_1742_6596_1281_1_012008
crossref_primary_10_1007_s11666_018_0778_z
crossref_primary_10_1007_s11666_018_0754_7
crossref_primary_10_1016_j_ceramint_2018_09_281
crossref_primary_10_1016_j_surfcoat_2018_11_055
crossref_primary_10_1016_j_jeurceramsoc_2018_09_020
crossref_primary_10_1038_s41529_020_00134_5
crossref_primary_10_1016_j_jeurceramsoc_2018_09_023
crossref_primary_10_1016_j_ceramint_2021_03_105
crossref_primary_10_1016_j_surfcoat_2019_125218
crossref_primary_10_1016_j_ceramint_2018_03_186
crossref_primary_10_1016_j_rsurfi_2024_100387
crossref_primary_10_1016_j_surfcoat_2021_127175
crossref_primary_10_1088_1361_6463_ac4721
crossref_primary_10_1016_j_bsecv_2018_10_003
crossref_primary_10_1016_j_matchemphys_2020_124051
crossref_primary_10_1007_s11665_023_08164_1
crossref_primary_10_3390_ma12152344
crossref_primary_10_1007_s11666_018_0810_3
crossref_primary_10_2298_TSCI240502195Z
crossref_primary_10_1016_j_apsusc_2019_05_245
crossref_primary_10_1016_j_jallcom_2020_154955
crossref_primary_10_1007_s13369_020_04987_5
crossref_primary_10_1016_j_matdes_2018_02_011
crossref_primary_10_1016_j_ceramint_2022_05_068
crossref_primary_10_1016_j_scriptamat_2018_04_022
crossref_primary_10_1007_s11666_017_0672_0
crossref_primary_10_1007_s11666_021_01228_5
crossref_primary_10_1016_j_mtphys_2021_100481
crossref_primary_10_1007_s11666_020_01029_2
crossref_primary_10_3390_coatings14070899
crossref_primary_10_3390_ma14237249
crossref_primary_10_1007_s11666_020_01134_2
crossref_primary_10_6108_KSPE_2024_28_5_001
crossref_primary_10_1016_j_matchemphys_2022_126499
crossref_primary_10_1134_S2070205122060132
crossref_primary_10_1016_j_surfcoat_2017_08_025
crossref_primary_10_1007_s11837_018_3273_6
crossref_primary_10_1016_j_jmapro_2023_04_052
crossref_primary_10_1080_01614940_2021_1983066
crossref_primary_10_1016_j_surfcoat_2018_04_068
crossref_primary_10_2478_msp_2022_0034
crossref_primary_10_3390_coatings11080912
crossref_primary_10_1016_j_jmatprotec_2018_09_016
crossref_primary_10_4028_p_31Wzme
crossref_primary_10_3740_MRSK_2018_28_3_135
crossref_primary_10_1016_j_actamat_2024_120321
crossref_primary_10_1016_j_surfcoat_2020_125633
crossref_primary_10_1115_1_4067406
crossref_primary_10_1016_j_surfcoat_2018_11_013
crossref_primary_10_3390_nano10020370
crossref_primary_10_1016_j_jeurceramsoc_2019_04_042
crossref_primary_10_3390_coatings13040769
crossref_primary_10_1016_j_ceramint_2021_02_070
crossref_primary_10_1016_j_ceramint_2022_10_222
crossref_primary_10_1016_j_surfcoat_2017_12_023
crossref_primary_10_1002_adem_202300623
crossref_primary_10_1007_s11666_018_0763_6
crossref_primary_10_1016_j_surfin_2021_101120
crossref_primary_10_1016_j_jeurceramsoc_2019_10_061
crossref_primary_10_1016_j_surfin_2024_105084
crossref_primary_10_3367_UFNr_2024_07_039716
crossref_primary_10_1016_j_surfcoat_2021_127704
crossref_primary_10_1016_j_mtcomm_2020_101810
crossref_primary_10_1016_j_surfcoat_2021_127306
crossref_primary_10_1016_j_tsf_2024_140516
crossref_primary_10_1115_1_4042778
crossref_primary_10_1016_j_apsusc_2018_08_040
crossref_primary_10_1016_j_ceramint_2023_01_219
crossref_primary_10_1016_j_ceramint_2019_12_212
crossref_primary_10_1007_s11106_020_00151_8
crossref_primary_10_1007_s11666_017_0584_z
crossref_primary_10_1016_j_tsf_2019_137706
Cites_doi 10.1016/j.surfcoat.2014.11.054
10.1088/0022-3727/37/9/R02
10.1007/s11090-006-9019-1
10.3390/coatings5030338
10.1361/105996398770350963
10.3390/coatings4030630
10.1063/1.1728417
10.1007/s11666-007-9152-2
10.1007/s11666-007-9144-2
10.1016/j.surfcoat.2009.03.005
10.1016/j.jeurceramsoc.2015.11.018
10.1016/j.surfcoat.2014.08.078
10.1111/j.1744-7402.2004.tb00182.x
10.1137/0903022
10.1007/s11666-011-9632-2
10.1007/s11666-007-9146-0
10.1090/qam/10666
10.1016/j.msea.2010.06.082
10.1016/S1359-6454(00)00403-1
10.1007/s11090-006-9020-8
10.1016/S0257-8972(01)01481-5
10.1137/0111030
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright Elsevier BV May 25, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright Elsevier BV May 25, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
1XC
DOI 10.1016/j.surfcoat.2016.06.010
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 128
ExternalDocumentID oai_HAL_hal_02441576v1
10_1016_j_surfcoat_2016_06_010
S0257897216304984
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
SSH
1XC
ID FETCH-LOGICAL-c374t-7726be0ed4aa0fac3adccc2e53d22cd24fc3af9509db6f69f2352df558dcbbfc3
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Fri Sep 12 12:49:54 EDT 2025
Mon Jul 14 07:23:53 EDT 2025
Wed Oct 01 04:41:23 EDT 2025
Thu Apr 24 22:52:25 EDT 2025
Fri Feb 23 02:25:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords YSZ
Thermal diffusivity
Thermal conductivity
Columnar microstructure
Thermal Barrier Coating
Suspension Plasma Spraying
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-7726be0ed4aa0fac3adccc2e53d22cd24fc3af9509db6f69f2352df558dcbbfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2149-8808
PQID 1955049030
PQPubID 2045394
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_02441576v1
proquest_journals_1955049030
crossref_citationtrail_10_1016_j_surfcoat_2016_06_010
crossref_primary_10_1016_j_surfcoat_2016_06_010
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2016_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-25
PublicationDateYYYYMMDD 2017-05-25
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-25
  day: 25
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Miller (bb0010) 1997; 6
Fauchais, Heberlein, Boulos (bb0025) 2014
Van Every, Krane, Trice, Wang, Porter, Besser, Soderlet, Ilaavsky, Almer (bb0065) 2011; 20
Schultz, Saruhan, Fritscher, Leyens (bb0005) 2004; 1
Bernard, Bianchi, Malié, Joulia, Rémy (bb0105) 2016; 36
Rémy, André, Maillet (bb0135) 2011
Levenberg (bb0125) 1944; 2
De Hoog, Knight, Stokes (bb0120) 1982; 3
Curry, VanEvery, Snyder, Susnjar, Bjorklund (bb0095) 2015; 5
Parker, Jenkins, Butler, Abbott (bb0110) 1961; 32
Fauchais (bb0020) 2004; 37
Maillet, André, Batsale, Degiovanni, Moyne (bb0115) 2000
Oberste Berghaus, Bouaricha, Lagroux, Moreau (bb0070) 2005
Curry, Van Every, Snyder, Markocsan (bb0085) 2014; 4
Ganvir, Curry, Markocsan, Nylén, Toma (bb0090) 2015; 268
Schulz, Menzebach, Leyens, Yang (bb0015) 2001; 146–147
Pawlowski (bb0035) 2009; 203
Fazilleau, Delbos, Rat, Coudert, Fauchais, Pateyron (bb0040) 2006; 26
Fauchais, Etchart-Salas, Rat, Coudert, Caron, Wittmann-Ténèze (bb0030) 2008; 17
Oberste Berghaus, Legoux, Moreau, Tarasi, Chraska (bb0060) 2008; 17
Sokolowski, Kozerski, Pawlowski, Ambroziak (bb0100) 2014; 260
Kanouff, Neiser, Roemer (bb0075) 1998; 7
Hass, Slifka, Wadley (bb0080) 2001; 49
Kassner, Siegert, Hathiramani, Vassen, Stoever (bb0050) 2008; 17
Bacciochini, Ilavsky, Montavon, Denoirjean, Ben-Ettouil, Valette, Fauchais, Wittmann-Teneze (bb0055) 2010; 528
Marquardt (bb0130) 1963; 11
Delbos, Fazilleau, Rat, Coudert, Fauchais, Pateyron (bb0045) 2006; 26
Rémy (10.1016/j.surfcoat.2016.06.010_bb0135) 2011
Parker (10.1016/j.surfcoat.2016.06.010_bb0110) 1961; 32
Van Every (10.1016/j.surfcoat.2016.06.010_bb0065) 2011; 20
Sokolowski (10.1016/j.surfcoat.2016.06.010_bb0100) 2014; 260
Bernard (10.1016/j.surfcoat.2016.06.010_bb0105) 2016; 36
Hass (10.1016/j.surfcoat.2016.06.010_bb0080) 2001; 49
Maillet (10.1016/j.surfcoat.2016.06.010_bb0115) 2000
Bacciochini (10.1016/j.surfcoat.2016.06.010_bb0055) 2010; 528
Oberste Berghaus (10.1016/j.surfcoat.2016.06.010_bb0070) 2005
Schulz (10.1016/j.surfcoat.2016.06.010_bb0015) 2001; 146–147
De Hoog (10.1016/j.surfcoat.2016.06.010_bb0120) 1982; 3
Delbos (10.1016/j.surfcoat.2016.06.010_bb0045) 2006; 26
Kanouff (10.1016/j.surfcoat.2016.06.010_bb0075) 1998; 7
Schultz (10.1016/j.surfcoat.2016.06.010_bb0005) 2004; 1
Fauchais (10.1016/j.surfcoat.2016.06.010_bb0020) 2004; 37
Fauchais (10.1016/j.surfcoat.2016.06.010_bb0030) 2008; 17
Levenberg (10.1016/j.surfcoat.2016.06.010_bb0125) 1944; 2
Curry (10.1016/j.surfcoat.2016.06.010_bb0085) 2014; 4
Curry (10.1016/j.surfcoat.2016.06.010_bb0095) 2015; 5
Fazilleau (10.1016/j.surfcoat.2016.06.010_bb0040) 2006; 26
Kassner (10.1016/j.surfcoat.2016.06.010_bb0050) 2008; 17
Oberste Berghaus (10.1016/j.surfcoat.2016.06.010_bb0060) 2008; 17
Marquardt (10.1016/j.surfcoat.2016.06.010_bb0130) 1963; 11
Fauchais (10.1016/j.surfcoat.2016.06.010_bb0025) 2014
Ganvir (10.1016/j.surfcoat.2016.06.010_bb0090) 2015; 268
Miller (10.1016/j.surfcoat.2016.06.010_bb0010) 1997; 6
Pawlowski (10.1016/j.surfcoat.2016.06.010_bb0035) 2009; 203
References_xml – volume: 528
  start-page: 91
  year: 2010
  end-page: 102
  ident: bb0055
  article-title: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultrasmall-angle X-ray scattering (USAXS)
  publication-title: Mater. Sci. Eng. A
– volume: 49
  start-page: 973
  year: 2001
  end-page: 983
  ident: bb0080
  article-title: Low thermal conductivity vapor deposited zirconia microstructures
  publication-title: Acta Mater.
– volume: 26
  start-page: 371
  year: 2006
  end-page: 391
  ident: bb0040
  article-title: Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior
  publication-title: Plasma Chem. Plasma Process.
– year: 2005
  ident: bb0070
  article-title: Injection conditions and in-flight particles states in suspension plasma spraying of alumina and zirconia nano-ceramics, Basel, Switzerland, ASM International, May 2–4
  publication-title: Proceeding of the International Thermal Spray Conference, 2–4
– volume: 3
  start-page: 357
  year: 1982
  end-page: 366
  ident: bb0120
  article-title: An improved method for numerical inversion of Laplace transforms
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 6
  start-page: 5
  year: 1997
  end-page: 42
  ident: bb0010
  article-title: Thermal barrier coatings for industrial gas turbine applications: an industrial note
  publication-title: J. Therm. Spray Technol.
– volume: 17
  start-page: 115
  year: 2008
  end-page: 123
  ident: bb0050
  article-title: Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings
  publication-title: J. Therm. Spray Technol.
– volume: 20
  start-page: 817
  year: 2011
  end-page: 828
  ident: bb0065
  article-title: Column formation in suspension plasma-sprayed coatings and resultant thermal properties
  publication-title: J. Therm. Spray Technol.
– volume: 4
  start-page: 630
  year: 2014
  end-page: 650
  ident: bb0085
  article-title: Thermal conductivity analysis and lifetime testing of suspension plasma sprayed thermal barrier coatings
  publication-title: Coatings
– volume: 260
  start-page: 97
  year: 2014
  end-page: 106
  ident: bb0100
  article-title: The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings
  publication-title: Surf. Coat. Technol.
– volume: 17
  start-page: 31
  year: 2008
  end-page: 59
  ident: bb0030
  article-title: Parameters controlling liquid plasma spraying: solutions, sols, or suspensions
  publication-title: J. Therm. Spray Technol.
– start-page: 1
  year: 2011
  end-page: 71
  ident: bb0135
  article-title: Non linear parameter estimation problems: tools for enhancing metrological objectives
  publication-title: Eurotherme Advanced Metti 5 Spring School, Lecture 4
– volume: 37
  start-page: R86
  year: 2004
  end-page: R108
  ident: bb0020
  article-title: Understanding plasma spraying
  publication-title: J. Phys. D. Appl. Phys.
– volume: 7
  start-page: 219
  year: 1998
  end-page: 228
  ident: bb0075
  article-title: Surface roughness of thermal spray coatings made with off-normal spray angles
  publication-title: J. Therm. Spray Technol.
– volume: 203
  start-page: 2807
  year: 2009
  end-page: 2829
  ident: bb0035
  article-title: Suspension and solution thermal spray coatings
  publication-title: Surf. Coat. Technol.
– volume: 1
  start-page: 302
  year: 2004
  end-page: 315
  ident: bb0005
  article-title: Review on advanced EB-PVD ceramic topcoats for TBC applications
  publication-title: Int. J. Appl. Ceram. Technol.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bb0125
  article-title: A method for the solution of certain nonlinear problems in least squares
  publication-title: Q. Appl. Math.
– year: 2014
  ident: bb0025
  article-title: Thermal Spray Fundamentals from Powder to Part
– volume: 17
  start-page: 91
  year: 2008
  end-page: 104
  ident: bb0060
  article-title: Mechanical and thermal transport properties of suspension thermal-sprayed alumina-zirconia composite coatings
  publication-title: J. Therm. Spray Technol.
– volume: 36
  start-page: 1081
  year: 2016
  end-page: 1089
  ident: bb0105
  article-title: Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application
  publication-title: J. Eur. Ceram. Soc.
– volume: 26
  start-page: 393
  year: 2006
  end-page: 414
  ident: bb0045
  article-title: Phenomena involved in suspension plasma spraying part 2: zirconia particle treatment and coating formation
  publication-title: Plasma Chem. Plasma Process.
– volume: 146–147
  start-page: 117
  year: 2001
  end-page: 123
  ident: bb0015
  article-title: Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems
  publication-title: Surf. Coat. Technol.
– volume: 5
  start-page: 338
  year: 2015
  end-page: 356
  ident: bb0095
  article-title: Performance testing of suspension plasma sprayed thermal barrier coatings produced with varied suspension parameters
  publication-title: Coatings
– volume: 11
  start-page: 68
  year: 1963
  end-page: 78
  ident: bb0130
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 268
  start-page: 70
  year: 2015
  end-page: 76
  ident: bb0090
  article-title: Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
  publication-title: Surf. Coat. Technol.
– volume: 32
  start-page: 1679
  year: 1961
  ident: bb0110
  article-title: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity
  publication-title: J. Appl. Phys.
– year: 2000
  ident: bb0115
  article-title: Thermal Quadripoles Solving the Heat Equation through Integral Transforms
– volume: 268
  start-page: 70
  year: 2015
  ident: 10.1016/j.surfcoat.2016.06.010_bb0090
  article-title: Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.11.054
– volume: 37
  start-page: R86
  year: 2004
  ident: 10.1016/j.surfcoat.2016.06.010_bb0020
  article-title: Understanding plasma spraying
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/37/9/R02
– volume: 26
  start-page: 371
  year: 2006
  ident: 10.1016/j.surfcoat.2016.06.010_bb0040
  article-title: Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-006-9019-1
– start-page: 1
  year: 2011
  ident: 10.1016/j.surfcoat.2016.06.010_bb0135
  article-title: Non linear parameter estimation problems: tools for enhancing metrological objectives
– volume: 5
  start-page: 338
  year: 2015
  ident: 10.1016/j.surfcoat.2016.06.010_bb0095
  article-title: Performance testing of suspension plasma sprayed thermal barrier coatings produced with varied suspension parameters
  publication-title: Coatings
  doi: 10.3390/coatings5030338
– volume: 7
  start-page: 219
  year: 1998
  ident: 10.1016/j.surfcoat.2016.06.010_bb0075
  article-title: Surface roughness of thermal spray coatings made with off-normal spray angles
  publication-title: J. Therm. Spray Technol.
  doi: 10.1361/105996398770350963
– volume: 4
  start-page: 630
  year: 2014
  ident: 10.1016/j.surfcoat.2016.06.010_bb0085
  article-title: Thermal conductivity analysis and lifetime testing of suspension plasma sprayed thermal barrier coatings
  publication-title: Coatings
  doi: 10.3390/coatings4030630
– volume: 32
  start-page: 1679
  year: 1961
  ident: 10.1016/j.surfcoat.2016.06.010_bb0110
  article-title: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728417
– volume: 17
  start-page: 31
  year: 2008
  ident: 10.1016/j.surfcoat.2016.06.010_bb0030
  article-title: Parameters controlling liquid plasma spraying: solutions, sols, or suspensions
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-007-9152-2
– volume: 17
  start-page: 115
  year: 2008
  ident: 10.1016/j.surfcoat.2016.06.010_bb0050
  article-title: Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-007-9144-2
– volume: 203
  start-page: 2807
  year: 2009
  ident: 10.1016/j.surfcoat.2016.06.010_bb0035
  article-title: Suspension and solution thermal spray coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.03.005
– year: 2014
  ident: 10.1016/j.surfcoat.2016.06.010_bb0025
– volume: 36
  start-page: 1081
  year: 2016
  ident: 10.1016/j.surfcoat.2016.06.010_bb0105
  article-title: Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.11.018
– volume: 260
  start-page: 97
  year: 2014
  ident: 10.1016/j.surfcoat.2016.06.010_bb0100
  article-title: The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.08.078
– volume: 1
  start-page: 302
  year: 2004
  ident: 10.1016/j.surfcoat.2016.06.010_bb0005
  article-title: Review on advanced EB-PVD ceramic topcoats for TBC applications
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/j.1744-7402.2004.tb00182.x
– year: 2000
  ident: 10.1016/j.surfcoat.2016.06.010_bb0115
– volume: 3
  start-page: 357
  year: 1982
  ident: 10.1016/j.surfcoat.2016.06.010_bb0120
  article-title: An improved method for numerical inversion of Laplace transforms
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0903022
– volume: 6
  start-page: 5
  year: 1997
  ident: 10.1016/j.surfcoat.2016.06.010_bb0010
  article-title: Thermal barrier coatings for industrial gas turbine applications: an industrial note
  publication-title: J. Therm. Spray Technol.
– volume: 20
  start-page: 817
  year: 2011
  ident: 10.1016/j.surfcoat.2016.06.010_bb0065
  article-title: Column formation in suspension plasma-sprayed coatings and resultant thermal properties
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-011-9632-2
– volume: 17
  start-page: 91
  year: 2008
  ident: 10.1016/j.surfcoat.2016.06.010_bb0060
  article-title: Mechanical and thermal transport properties of suspension thermal-sprayed alumina-zirconia composite coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-007-9146-0
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.surfcoat.2016.06.010_bb0125
  article-title: A method for the solution of certain nonlinear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 528
  start-page: 91
  year: 2010
  ident: 10.1016/j.surfcoat.2016.06.010_bb0055
  article-title: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultrasmall-angle X-ray scattering (USAXS)
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.06.082
– volume: 49
  start-page: 973
  year: 2001
  ident: 10.1016/j.surfcoat.2016.06.010_bb0080
  article-title: Low thermal conductivity vapor deposited zirconia microstructures
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(00)00403-1
– volume: 26
  start-page: 393
  year: 2006
  ident: 10.1016/j.surfcoat.2016.06.010_bb0045
  article-title: Phenomena involved in suspension plasma spraying part 2: zirconia particle treatment and coating formation
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-006-9020-8
– volume: 146–147
  start-page: 117
  year: 2001
  ident: 10.1016/j.surfcoat.2016.06.010_bb0015
  article-title: Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(01)01481-5
– year: 2005
  ident: 10.1016/j.surfcoat.2016.06.010_bb0070
  article-title: Injection conditions and in-flight particles states in suspension plasma spraying of alumina and zirconia nano-ceramics, Basel, Switzerland, ASM International, May 2–4
– volume: 11
  start-page: 68
  year: 1963
  ident: 10.1016/j.surfcoat.2016.06.010_bb0130
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
SSID ssj0001794
Score 2.5446055
Snippet Improving efficiency of hot section components of aero engines such as turbine blades or nozzle guide vanes is critical for the aircraft industry. Over many...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122
SubjectTerms Aircraft components
Aircraft industry
Airplane engines
Coating effects
Columnar microstructure
Columnar structure
Conduction heating
Conductive heat transfer
Conductivity
Electron beams
Electron-beam physical vapor deposition
Engineering Sciences
Guide vanes
Heat transfer
Mechanics
Microstructure
Physical vapor deposition
Plasma spraying
Studies
Substrates
Suspension Plasma Spraying
Thermal Barrier Coating
Thermal barrier coatings
Thermal conductivity
Thermal diffusivity
Thermal insulation
Thermics
Turbine blades
Turbine engines
YSZ
Yttria-stabilized zirconia
Title Thermal insulation properties of YSZ coatings: Suspension Plasma Spraying (SPS) versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS)
URI https://dx.doi.org/10.1016/j.surfcoat.2016.06.010
https://www.proquest.com/docview/1955049030
https://hal.science/hal-02441576
Volume 318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AKRWK
  dateStart: 19860101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKOQCHCgqIpaUaIQ7tIWzitVOHW7rdavmqVgqtChfLcWyxVXc32g-O_CP-IzNZp5QPqQeuTpxEmfHzi_PmmbFXie0dZpnJIpUKG4kShxRmBX6lSONip5RThqqRP56mwzPx7kJebLB-WwtDssqA_WtMb9A6tHTD2-zW43G3iCnbGvMZ-lWkyBOU3L8wp19__yXzoIRr1lkkojGefaNK-BLxae7tzJCmMkkbH0-qpP33BHXnKykl_wDsZhY6eci2An2EfP2Ej9iGm26ze_1217Zt9uCGweBj9gOzAJH3ChrJeRMEqGn5fU4-qjDz8Ln4AvRstGD-BorVoiZFO542Qlo9MVDUc0OVULBfjIoDIBHHagGDsHkOHDkzgVGINZwbZPNw7FolGOwPjqLR-fEBmGkF-XIyW5CLwdj-ffUcr_6EnZ0MPvWHUdigIcIIiyUx87TEkFbCmNgb2zOVtZY72as4txUXHpt8hpyEiv3SzHOke5WXUlW2LPHgU7Y5nU3dMwYq6RknjOWl8gKzWyHWpNzyxFfOIAXqMNlGRdvgXk6baFzpVqZ2qdtoaoqmJr1eEndY97pfvfbvuLVH1gZd_5aJGieZW_u-xCy5vhFZdw_zD5rakAshVzpMvyUdttsmkQ6AsdBJhp-KIkPIff4f999h9znRjlhGXO6yzeV85V4gaVqWe82o2GN387fvh6c_AWGnGac
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7auofBA4IBWmGAhXjYHqImrp0lvGVdp4x1VaVs0-DFchxHdFrbqBf-Ff-Rc1KnGhdpD7w68UU5x58_O985BvgUmO5xHOvYi0JhPJHjlEKvwF2K1Na3UWQjTdHIl8MwvRZfbuXtFvSaWBiSVTrsX2N6jdaupOO-ZqcajzuZT95WJ5-hX0WR2IYdIRGTW7CTnF-kww0gk8_VRy0SARkrPAgUvkOImpdmpklWGYR1Kk8Kpv33GrX9ncSSf2B2vRCdPYdnjkGyZD3IF7Blp3uw22subtuDpw9yDL6En-gICL73rFad13ZgFZ3AzymVKpuV7Gv2jdHY6Mz8M8tWi4pE7fjaCJn1RLOsmmsKhmKH2Sg7YqTjWC1Y392fw06snrCRMze70Ujo2altxGDssH_ijW5Oj5ieFixZTmYLSmQwNn-3nmDrr-D6rH_VSz13R4OHRhZLIudhjlYthNZ-qU1XF8YYbmW34NwUXJRYVMZISyjeL4xLjoyvKKWMCpPn-PA1tKazqd0HFgVdbYU2PI9KgQ4eIdyE3PCgLKxGFtQG2VhFGZfAnO7RuFeNUu1ONdZUZE1Fkr3Ab0NnU69ap_B4tEbcGF395owK15lH635EL9l0RNm702SgqAzpENKl4_BH0IaDxomUw4yFCmLcLYoYUffNf_T_AXbTq8uBGpwPL97CE04sxJcelwfQWs5X9h1yqGX-3s2RX9ugHFI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+insulation+properties+of+YSZ+coatings%3A+Suspension+Plasma+Spraying+%28SPS%29+versus+Electron+Beam+Physical+Vapor+Deposition+%28EB-PVD%29+and+Atmospheric+Plasma+Spraying+%28APS%29&rft.jtitle=Surface+%26+coatings+technology&rft.au=Bernard%2C+Benjamin&rft.au=Quet%2C+Aur%C3%A9lie&rft.au=Bianchi%2C+Luc&rft.au=Joulia%2C+Aur%C3%A9lien&rft.date=2017-05-25&rft.pub=Elsevier+B.V&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=318&rft.spage=122&rft.epage=128&rft_id=info:doi/10.1016%2Fj.surfcoat.2016.06.010&rft.externalDocID=S0257897216304984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon