A new adaptive cascaded stochastic resonance method for impact features extraction in gear fault diagnosis
•An adaptive SR enhancement method for weak impact signal detection is proposed.•The performance features of cascaded SR for weak signal detection are analyzed.•New measurement indexes are proposed to further improve the performance of SR.•The superiority of the proposed method is verified by experi...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 91; pp. 499 - 508 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 1873-412X |
| DOI | 10.1016/j.measurement.2016.05.086 |
Cover
| Abstract | •An adaptive SR enhancement method for weak impact signal detection is proposed.•The performance features of cascaded SR for weak signal detection are analyzed.•New measurement indexes are proposed to further improve the performance of SR.•The superiority of the proposed method is verified by experiments and application.
Gearboxes are widely used in engineering machinery, but tough operation environments often make them subject to failure. And the emergence of periodic impact components is generally associated with gear failure in vibration analysis. However, effective extraction of weak impact features submerged in strong noise has remained a major challenge. Therefore, the paper presents a new adaptive cascaded stochastic resonance (SR) method for impact features extraction in gear fault diagnosis. Through the multi-filtered procession of cascaded SR, the weak impact features can be further enhanced to be more evident in the time domain. By analyzing the characteristics of non-dimensional index for impact signal detection, new measurement indexes are constructed, and can further promote the extraction capability of SR for impact features by combining the data segmentation algorithm via sliding window. Simulation and application have confirmed the effectiveness and superiority of the proposed method in gear fault diagnosis. |
|---|---|
| AbstractList | •An adaptive SR enhancement method for weak impact signal detection is proposed.•The performance features of cascaded SR for weak signal detection are analyzed.•New measurement indexes are proposed to further improve the performance of SR.•The superiority of the proposed method is verified by experiments and application.
Gearboxes are widely used in engineering machinery, but tough operation environments often make them subject to failure. And the emergence of periodic impact components is generally associated with gear failure in vibration analysis. However, effective extraction of weak impact features submerged in strong noise has remained a major challenge. Therefore, the paper presents a new adaptive cascaded stochastic resonance (SR) method for impact features extraction in gear fault diagnosis. Through the multi-filtered procession of cascaded SR, the weak impact features can be further enhanced to be more evident in the time domain. By analyzing the characteristics of non-dimensional index for impact signal detection, new measurement indexes are constructed, and can further promote the extraction capability of SR for impact features by combining the data segmentation algorithm via sliding window. Simulation and application have confirmed the effectiveness and superiority of the proposed method in gear fault diagnosis. |
| Author | Zhang, Yungang Li, Jimeng Xie, Ping |
| Author_xml | – sequence: 1 givenname: Jimeng orcidid: 0000-0002-7570-6118 surname: Li fullname: Li, Jimeng email: jim_li@ysu.edu.cn – sequence: 2 givenname: Yungang surname: Zhang fullname: Zhang, Yungang – sequence: 3 givenname: Ping surname: Xie fullname: Xie, Ping |
| BookMark | eNqNkMtKAzEUhoNUsK2-Q3yAGZPJXFdSijcouFFwF84kZ9qUTlKSWPXtTdGFuOrqwA__5XwzMrHOIiHXnOWc8fpmm48I4d3jiDbmRZJyVuWsrc_IlLeNyEpevE3IlBW1yIqi5BdkFsKWMVaLrp6S7YJa_KCgYR_NAamCoECjpiE6tYEQjaIeg7NgFdIR48ZpOjhPzbgHFemAEFN7oPgZfRKMs9RYukbwdID3XaTawNq6YMIlOR9gF_Dq987J6_3dy_IxWz0_PC0Xq0yJpoxZw_qec81Q8UKoEgfO2oG3VdcKpYGJVvQINRZNh6m8wK4UFdNQNT30Td-CmJPbn1zlXQgeB6lMhOOytNDsJGfyiE5u5R908ohOskomdCmh-5ew92YE_3WSd_njxfTiwaCXQRlM8LTxqKLUzpyQ8g0UlJcU |
| CitedBy_id | crossref_primary_10_1016_j_chaos_2023_113812 crossref_primary_10_1109_ACCESS_2019_2917042 crossref_primary_10_3390_s23094429 crossref_primary_10_1007_s11071_023_09129_8 crossref_primary_10_1007_s42417_025_01775_z crossref_primary_10_1016_j_apacoust_2021_108587 crossref_primary_10_1088_1402_4896_ad6bfc crossref_primary_10_1088_1361_6501_ad4b4f crossref_primary_10_1142_S0217984918502597 crossref_primary_10_1115_1_4042526 crossref_primary_10_1016_j_physa_2023_129438 crossref_primary_10_1007_s11071_023_08873_1 crossref_primary_10_1109_ACCESS_2018_2856620 crossref_primary_10_1177_1475921719897317 crossref_primary_10_1016_j_cjph_2018_05_001 crossref_primary_10_1016_j_ymssp_2018_12_032 crossref_primary_10_3233_JCM_180829 crossref_primary_10_1155_2021_8888079 crossref_primary_10_1016_j_isatra_2022_01_032 crossref_primary_10_1016_j_measurement_2021_109304 crossref_primary_10_3390_electronics13244931 crossref_primary_10_1007_s10033_017_0150_0 crossref_primary_10_1007_s11012_023_01640_x crossref_primary_10_1155_2017_5716296 crossref_primary_10_1016_j_chaos_2020_110428 crossref_primary_10_1016_j_measurement_2020_107709 crossref_primary_10_1109_ACCESS_2022_3188780 crossref_primary_10_1016_j_measurement_2024_115183 crossref_primary_10_1155_2019_1201084 crossref_primary_10_1016_j_ymssp_2019_02_051 crossref_primary_10_3390_s20113269 crossref_primary_10_1109_TIM_2022_3145356 crossref_primary_10_1007_s11071_022_07373_y crossref_primary_10_1007_s11071_024_10464_7 crossref_primary_10_1088_1361_6501_ad5de4 crossref_primary_10_1115_1_4043063 crossref_primary_10_1109_JSEN_2023_3277516 crossref_primary_10_1007_s13198_019_00816_7 crossref_primary_10_1088_1361_6501_ad0c30 crossref_primary_10_1109_JSEN_2024_3510613 crossref_primary_10_1007_s11071_021_07078_8 crossref_primary_10_1177_1687814020941953 crossref_primary_10_1016_j_ymssp_2018_06_032 crossref_primary_10_1109_JSEN_2023_3344999 crossref_primary_10_1016_j_ymssp_2017_09_042 crossref_primary_10_21595_jve_2017_17727 crossref_primary_10_1016_j_apacoust_2023_109702 crossref_primary_10_3390_machines9110275 |
| Cites_doi | 10.1088/0305-4470/14/11/006 10.1016/j.measurement.2015.05.007 10.1016/j.ymssp.2008.07.011 10.1016/j.measurement.2013.09.008 10.1016/j.eswa.2011.02.065 10.1016/j.measurement.2011.10.010 10.1016/j.physleta.2007.10.092 10.1016/j.jsv.2014.05.029 10.1016/j.ymssp.2007.02.004 10.1007/s11431-011-4612-9 10.1016/j.jsv.2009.11.010 10.1016/j.ymssp.2008.07.019 10.1016/j.jsv.2015.01.014 10.1016/j.ymssp.2012.06.021 10.1016/j.jmsy.2013.05.009 10.1177/1077546313499391 10.1007/s11431-013-5246-x 10.1016/j.measurement.2014.08.017 10.1016/j.ymssp.2013.12.004 10.1016/j.ijnonlinmec.2014.07.008 10.1016/j.measurement.2012.01.001 10.1016/j.ymssp.2012.12.004 10.1109/TSP.2013.2288675 10.3402/tellusa.v33i3.10710 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2016.05.086 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 508 |
| ExternalDocumentID | 10_1016_j_measurement_2016_05_086 S026322411630255X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c374t-70bb11d0ec123c4ef108f185983cda0383bea6e279efea2e94350da57bab7b8a3 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Thu Apr 24 23:04:06 EDT 2025 Wed Oct 01 05:13:34 EDT 2025 Fri Feb 23 02:33:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cascaded stochastic resonance Gear fault diagnosis Adaptive Impact signal detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-70bb11d0ec123c4ef108f185983cda0383bea6e279efea2e94350da57bab7b8a3 |
| ORCID | 0000-0002-7570-6118 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_measurement_2016_05_086 crossref_primary_10_1016_j_measurement_2016_05_086 elsevier_sciencedirect_doi_10_1016_j_measurement_2016_05_086 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Duan, Chapeau-Blondeau, Abbott (b0105) 2008; 372 Cong, Zhong, Tong, Tang, Chen (b0010) 2015; 344 Wang, Markert, Xiang, Zheng (b0040) 2014; 60–61 Nicolis, Nicolis (b0075) 1981; 33 Li, Li, He (b0095) 2011; 54 Zhang, Hu, Hu, Cheng (b0065) 2013; 56 Benzi, Sutera, Vulpiani (b0070) 1981; 14 Li, Chen, He (b0130) 2013; 36 Cheng, Chen, Shan, Liu, Zhou (b0015) 2014 Zhao, Yan, Gao (b0120) 2013; 32 Guo, Tse, Djordjevich (b0030) 2012; 45 Hajnayeb, Ghasemloonia, Khadem, Moradi (b0135) 2011; 38 Wang, Makis, Yang (b0050) 2010; 329 Feng, Liang (b0020) 2014; 333 Yang, Cheng, Zhang (b0045) 2012; 45 Dragomiretskiy, Zosso (b0035) 2014; 62 Yang, Zhang, Xu, Xu (b0100) 2014; 67 Barszcz, Randall (b0025) 2009; 23 Chen, Cheng, Shan, Hu, Guo, Liu (b0085) 2015; 73 Tan, Chen, Wang, Chen, Cao, Zi, He (b0060) 2009; 23 Lu, He, Kong (b0090) 2014; 45 Shi, Ding, Han (b0080) 2014; 47 Yunusa-Kaltungo, Sinha, Elbhbah (b0005) 2015; 58 He, Wang, Leng, Zhang, Li (b0110) 2007; 21 Jiang, Liu, Tang, Liu (b0055) 2015; 21 Lei, Han, Lin, He (b0115) 2013; 38 Hu, Li (b0125) 2015; 2015 Jiang (10.1016/j.measurement.2016.05.086_b0055) 2015; 21 Cheng (10.1016/j.measurement.2016.05.086_b0015) 2014 Dragomiretskiy (10.1016/j.measurement.2016.05.086_b0035) 2014; 62 Hajnayeb (10.1016/j.measurement.2016.05.086_b0135) 2011; 38 Zhang (10.1016/j.measurement.2016.05.086_b0065) 2013; 56 Wang (10.1016/j.measurement.2016.05.086_b0040) 2014; 60–61 Zhao (10.1016/j.measurement.2016.05.086_b0120) 2013; 32 Guo (10.1016/j.measurement.2016.05.086_b0030) 2012; 45 Yang (10.1016/j.measurement.2016.05.086_b0100) 2014; 67 Benzi (10.1016/j.measurement.2016.05.086_b0070) 1981; 14 He (10.1016/j.measurement.2016.05.086_b0110) 2007; 21 Wang (10.1016/j.measurement.2016.05.086_b0050) 2010; 329 Feng (10.1016/j.measurement.2016.05.086_b0020) 2014; 333 Duan (10.1016/j.measurement.2016.05.086_b0105) 2008; 372 Lei (10.1016/j.measurement.2016.05.086_b0115) 2013; 38 Cong (10.1016/j.measurement.2016.05.086_b0010) 2015; 344 Li (10.1016/j.measurement.2016.05.086_b0095) 2011; 54 Barszcz (10.1016/j.measurement.2016.05.086_b0025) 2009; 23 Tan (10.1016/j.measurement.2016.05.086_b0060) 2009; 23 Li (10.1016/j.measurement.2016.05.086_b0130) 2013; 36 Yunusa-Kaltungo (10.1016/j.measurement.2016.05.086_b0005) 2015; 58 Yang (10.1016/j.measurement.2016.05.086_b0045) 2012; 45 Chen (10.1016/j.measurement.2016.05.086_b0085) 2015; 73 Shi (10.1016/j.measurement.2016.05.086_b0080) 2014; 47 Lu (10.1016/j.measurement.2016.05.086_b0090) 2014; 45 Nicolis (10.1016/j.measurement.2016.05.086_b0075) 1981; 33 Hu (10.1016/j.measurement.2016.05.086_b0125) 2015; 2015 |
| References_xml | – volume: 56 start-page: 2115 year: 2013 end-page: 2123 ident: b0065 article-title: Multi-scale bistable stochastic resonance array: a novel weak signal detection method and application in machine fault diagnosis publication-title: Sci. China-Technol. Sci. – volume: 2015 start-page: 1 year: 2015 end-page: 12 ident: b0125 article-title: Blade crack detection of centrifugal fan using adaptive stochastic resonance publication-title: Shock Vibration – volume: 23 start-page: 1352 year: 2009 end-page: 1365 ident: b0025 article-title: Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine publication-title: Mech. Syst. Signal Process. – volume: 58 start-page: 27 year: 2015 end-page: 32 ident: b0005 article-title: An improved data fusion technique for faults diagnosis in rotating machines publication-title: Measurement – volume: 329 start-page: 1570 year: 2010 end-page: 1585 ident: b0050 article-title: A wavelet approach to fault diagnosis of a gearbox under varying load conditions publication-title: J. Sound Vib. – volume: 45 start-page: 488 year: 2014 end-page: 503 ident: b0090 article-title: Stochastic resonance with Woods-Saxon potential for rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – start-page: 1 year: 2014 end-page: 12 ident: b0015 article-title: A new method of gear fault diagnosis in strong noise based on multi-sensor information fusion publication-title: J. Vib. Control – volume: 21 start-page: 1580 year: 2015 end-page: 1593 ident: b0055 article-title: A novel method of fault diagnosis for rolling element bearings based on the accumulated envelope spectrum of the wavelet packet publication-title: J. Vib. Control – volume: 23 start-page: 811 year: 2009 end-page: 822 ident: b0060 article-title: Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 73 start-page: 55 year: 2015 end-page: 67 ident: b0085 article-title: Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance publication-title: Measurement – volume: 333 start-page: 5196 year: 2014 end-page: 5211 ident: b0020 article-title: Complex signal analysis for wind turbine planetary gearbox fault diagnosis via iterative atomic decomposition thresholding publication-title: J. Sound Vib. – volume: 32 start-page: 529 year: 2013 end-page: 535 ident: b0120 article-title: Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring publication-title: J. Manuf. Syst. – volume: 67 start-page: 42 year: 2014 end-page: 47 ident: b0100 article-title: Stochastic resonance in coupled underdamped bistable systems driven by symmetric trichotomous noises publication-title: Int. J. Non-Linear Mech. – volume: 60–61 start-page: 243 year: 2014 end-page: 251 ident: b0040 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Process. – volume: 54 start-page: 3203 year: 2011 end-page: 3210 ident: b0095 article-title: Fault feature enhancement of gearbox in combined machining center by using adaptive cascade stochastic resonance publication-title: Sci. China-Technol. Sci. – volume: 38 start-page: 113 year: 2013 end-page: 124 ident: b0115 article-title: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method publication-title: Mech. Syst. Signal Process. – volume: 36 start-page: 240 year: 2013 end-page: 255 ident: b0130 article-title: Adaptive stochastic resonance method for impact signal detection based on sliding window publication-title: Mech. Syst. Signal Process. – volume: 344 start-page: 447 year: 2015 end-page: 463 ident: b0010 article-title: Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis publication-title: J. Sound Vib. – volume: 47 start-page: 540 year: 2014 end-page: 546 ident: b0080 article-title: Study on multi-frequency weak signal detection method based on stochastic resonance tuning by multi-scale noise publication-title: Measurement – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0035 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – volume: 45 start-page: 561 year: 2012 end-page: 570 ident: b0045 article-title: An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems publication-title: Measurement – volume: 21 start-page: 2740 year: 2007 end-page: 2749 ident: b0110 article-title: Study on non-linear filter characteristic and engineering application of cascaded bistable stochastic resonance system publication-title: Mech. Syst. Signal Process. – volume: 38 start-page: 10205 year: 2011 end-page: 10209 ident: b0135 article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis publication-title: Expert Syst. Appl. – volume: 14 start-page: 453 year: 1981 end-page: 457 ident: b0070 article-title: The mechanism of stochastic resonance publication-title: J. Phys. A: Math. Gen. – volume: 33 start-page: 225 year: 1981 end-page: 234 ident: b0075 article-title: Stochastic aspects of climatic transitions–Additive fluctuations publication-title: Tellus – volume: 45 start-page: 1308 year: 2012 end-page: 1322 ident: b0030 article-title: Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition publication-title: Measurement – volume: 372 start-page: 2159 year: 2008 end-page: 2166 ident: b0105 article-title: Stochastic resonance in a parallel array of nonlinear dynamical elements publication-title: Phys. Lett. A – volume: 14 start-page: 453 issue: 11 year: 1981 ident: 10.1016/j.measurement.2016.05.086_b0070 article-title: The mechanism of stochastic resonance publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/14/11/006 – volume: 73 start-page: 55 year: 2015 ident: 10.1016/j.measurement.2016.05.086_b0085 article-title: Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance publication-title: Measurement doi: 10.1016/j.measurement.2015.05.007 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.measurement.2016.05.086_b0125 article-title: Blade crack detection of centrifugal fan using adaptive stochastic resonance publication-title: Shock Vibration – volume: 23 start-page: 811 issue: 3 year: 2009 ident: 10.1016/j.measurement.2016.05.086_b0060 article-title: Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.07.011 – volume: 47 start-page: 540 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0080 article-title: Study on multi-frequency weak signal detection method based on stochastic resonance tuning by multi-scale noise publication-title: Measurement doi: 10.1016/j.measurement.2013.09.008 – volume: 38 start-page: 10205 issue: 8 year: 2011 ident: 10.1016/j.measurement.2016.05.086_b0135 article-title: Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.065 – volume: 45 start-page: 561 issue: 3 year: 2012 ident: 10.1016/j.measurement.2016.05.086_b0045 article-title: An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems publication-title: Measurement doi: 10.1016/j.measurement.2011.10.010 – volume: 372 start-page: 2159 year: 2008 ident: 10.1016/j.measurement.2016.05.086_b0105 article-title: Stochastic resonance in a parallel array of nonlinear dynamical elements publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.10.092 – volume: 333 start-page: 5196 issue: 20 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0020 article-title: Complex signal analysis for wind turbine planetary gearbox fault diagnosis via iterative atomic decomposition thresholding publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.05.029 – volume: 21 start-page: 2740 issue: 7 year: 2007 ident: 10.1016/j.measurement.2016.05.086_b0110 article-title: Study on non-linear filter characteristic and engineering application of cascaded bistable stochastic resonance system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.02.004 – volume: 54 start-page: 3203 year: 2011 ident: 10.1016/j.measurement.2016.05.086_b0095 article-title: Fault feature enhancement of gearbox in combined machining center by using adaptive cascade stochastic resonance publication-title: Sci. China-Technol. Sci. doi: 10.1007/s11431-011-4612-9 – volume: 329 start-page: 1570 issue: 9 year: 2010 ident: 10.1016/j.measurement.2016.05.086_b0050 article-title: A wavelet approach to fault diagnosis of a gearbox under varying load conditions publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.11.010 – start-page: 1 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0015 article-title: A new method of gear fault diagnosis in strong noise based on multi-sensor information fusion publication-title: J. Vib. Control – volume: 23 start-page: 1352 issue: 4 year: 2009 ident: 10.1016/j.measurement.2016.05.086_b0025 article-title: Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.07.019 – volume: 344 start-page: 447 year: 2015 ident: 10.1016/j.measurement.2016.05.086_b0010 article-title: Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.01.014 – volume: 38 start-page: 113 issue: 1 year: 2013 ident: 10.1016/j.measurement.2016.05.086_b0115 article-title: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.06.021 – volume: 32 start-page: 529 year: 2013 ident: 10.1016/j.measurement.2016.05.086_b0120 article-title: Dual-scale cascaded adaptive stochastic resonance for rotary machine health monitoring publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2013.05.009 – volume: 21 start-page: 1580 issue: 8 year: 2015 ident: 10.1016/j.measurement.2016.05.086_b0055 article-title: A novel method of fault diagnosis for rolling element bearings based on the accumulated envelope spectrum of the wavelet packet publication-title: J. Vib. Control doi: 10.1177/1077546313499391 – volume: 56 start-page: 2115 issue: 9 year: 2013 ident: 10.1016/j.measurement.2016.05.086_b0065 article-title: Multi-scale bistable stochastic resonance array: a novel weak signal detection method and application in machine fault diagnosis publication-title: Sci. China-Technol. Sci. doi: 10.1007/s11431-013-5246-x – volume: 58 start-page: 27 year: 2015 ident: 10.1016/j.measurement.2016.05.086_b0005 article-title: An improved data fusion technique for faults diagnosis in rotating machines publication-title: Measurement doi: 10.1016/j.measurement.2014.08.017 – volume: 45 start-page: 488 issue: 2 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0090 article-title: Stochastic resonance with Woods-Saxon potential for rolling element bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.12.004 – volume: 67 start-page: 42 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0100 article-title: Stochastic resonance in coupled underdamped bistable systems driven by symmetric trichotomous noises publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2014.07.008 – volume: 45 start-page: 1308 year: 2012 ident: 10.1016/j.measurement.2016.05.086_b0030 article-title: Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition publication-title: Measurement doi: 10.1016/j.measurement.2012.01.001 – volume: 36 start-page: 240 issue: 2 year: 2013 ident: 10.1016/j.measurement.2016.05.086_b0130 article-title: Adaptive stochastic resonance method for impact signal detection based on sliding window publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.12.004 – volume: 62 start-page: 531 issue: 3 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0035 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 33 start-page: 225 issue: 3 year: 1981 ident: 10.1016/j.measurement.2016.05.086_b0075 article-title: Stochastic aspects of climatic transitions–Additive fluctuations publication-title: Tellus doi: 10.3402/tellusa.v33i3.10710 – volume: 60–61 start-page: 243 year: 2014 ident: 10.1016/j.measurement.2016.05.086_b0040 article-title: Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system publication-title: Mech. Syst. Signal Process. |
| SSID | ssj0006396 |
| Score | 2.3408086 |
| Snippet | •An adaptive SR enhancement method for weak impact signal detection is proposed.•The performance features of cascaded SR for weak signal detection are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 499 |
| SubjectTerms | Adaptive Cascaded stochastic resonance Gear fault diagnosis Impact signal detection |
| Title | A new adaptive cascaded stochastic resonance method for impact features extraction in gear fault diagnosis |
| URI | https://dx.doi.org/10.1016/j.measurement.2016.05.086 |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7GRNEH0ak4f4wIvtb1R9Y24MsYjqm4Fx3srSRtohuzG2v36t_upWndBEHBx5ZeGy7p3Zfw3XcA1z4N7VApZvmuDC0qmLRCJoQlbYHjTlTgFSKuT0N_MKIP4864Br2qFkbTKsvYb2J6Ea3LO-3Sm-3FZNJ-trXUOCYgRBQaGI91BTsNdBeDm481zQMzsG_OWTxLP70DV2uO1_v6HE6zvPxCxFOXVf-UozbyTv8A9kvASLpmTIdQk2kD9jZkBBuwXdA44-wIpl2CMJnwhC90GCMxzzT_PSEI8eI3rjWZCe6v51plQxLTPZogbCWmWJIoWeh8ZgRD9tKUPJBJSl7xdyCKr2Y5SQw1b5Idw6h_99IbWGU3BSv2AppbgS2E4yS2jDFZxVQqBycJszULvTjhNu5UcXZ86QZM4sdcyRBI2QnvBIKLQITcO4F6Ok_lKRDP8RzuU-EkjFLFfKFYyHHjoVx8BUaFJoSV_6K4lBrXHS9mUcUpm0Ybro-06yO7E6Hrm-B-mS6M3sZfjG6rSYq-LZ4I88Lv5mf_Mz-HXX1liGcXUM-XK3mJSCUXrWIptmCre_84GH4CE5ntkA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gxtfB-Iz4XBOvlT6Wtpt4IUSCil7EhNtmt91VCAKBcvW3O9stgomJJl7bTruZ3c58s_nmW4CrkMZurDVzQl_FDpVMOTGT0lGuxHGnOgpyEdfHp7D1Qu-7tW4JGvNeGEOrLGK_jel5tC6uVAtvVse9XvXZNVLjmIAQURhg3F2BVVrzI1OBXX8seB6YgkO70RI45vF1uFyQvN4XG3GG5hXmKp6mr_qnJLWUeJo7sF0gRlK3g9qFkhruwdaSjuAerOU8zmS6D_06QZxMRCrGJo6RREwNAT4liPGSN2FEmQkW2CMjs6GIPT6aIG4ltluSaJULfU4JxuyJ7XkgvSF5xf-BaDEbZCS13Lze9ABemredRsspjlNwkiCimRO5Unpe6qoEs1VClfZwljBdszhIUuFiqYrTEyo_Ygo_5iuGSMpNRS2SQkYyFsEhlIejoToCEniBJ0IqvZRRqlkoNYsFVh7ax1dgWKhAPPcfTwqtcXPkxYDPSWV9vuR6blzP3RpH11fA_zIdW8GNvxjdzCeJf1s9HBPD7-bH_zO_gI1W57HN23dPDyewae5YFtoplLPJTJ0hbMnkeb4sPwGZB-8l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+adaptive+cascaded+stochastic+resonance+method+for+impact+features+extraction+in+gear+fault+diagnosis&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Jimeng&rft.au=Zhang%2C+Yungang&rft.au=Xie%2C+Ping&rft.date=2016-09-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=91&rft.spage=499&rft.epage=508&rft_id=info:doi/10.1016%2Fj.measurement.2016.05.086&rft.externalDocID=S026322411630255X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |