AI-Assisted Network-Slicing Based Next-Generation Wireless Networks

The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous dri...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of vehicular technology Vol. 1; pp. 45 - 66
Main Authors Shen, Xuemin, Gao, Jie, Wu, Wen, Lyu, Kangjia, Li, Mushu, Zhuang, Weihua, Li, Xu, Rao, Jaya
Format Journal Article
LanguageEnglish
Published IEEE 2020
Subjects
Online AccessGet full text
ISSN2644-1330
2644-1330
DOI10.1109/OJVT.2020.2965100

Cover

Abstract The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and so on. Such requirements pose new challenges to architecture design, network management, and resource orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good understanding of the overall architecture of NGWNs and three specific research problems under this architecture. First, we introduce a network-slicing based architecture and explain why and where artificial intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges, existing works, and potential future directions related to applying AI-based approaches in three research problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and potentials of AI-based approaches in the research of NGWNs.
AbstractList The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and so on. Such requirements pose new challenges to architecture design, network management, and resource orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good understanding of the overall architecture of NGWNs and three specific research problems under this architecture. First, we introduce a network-slicing based architecture and explain why and where artificial intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges, existing works, and potential future directions related to applying AI-based approaches in three research problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and potentials of AI-based approaches in the research of NGWNs.
Author Lyu, Kangjia
Li, Xu
Shen, Xuemin
Zhuang, Weihua
Gao, Jie
Li, Mushu
Wu, Wen
Rao, Jaya
Author_xml – sequence: 1
  givenname: Xuemin
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-6095-2968
  surname: Gao
  fullname: Gao, Jie
  email: jie.gao@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 3
  givenname: Wen
  orcidid: 0000-0002-0458-1282
  surname: Wu
  fullname: Wu, Wen
  email: wen.wu@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 4
  givenname: Kangjia
  surname: Lyu
  fullname: Lyu, Kangjia
  email: kangjia.lyu@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 5
  givenname: Mushu
  orcidid: 0000-0002-9694-3294
  surname: Li
  fullname: Li, Mushu
  email: mushu.li@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 6
  givenname: Weihua
  orcidid: 0000-0003-0488-511X
  surname: Zhuang
  fullname: Zhuang, Weihua
  email: wzhuang@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 7
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  email: xu.lica@huawei.com
  organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada
– sequence: 8
  givenname: Jaya
  surname: Rao
  fullname: Rao, Jaya
  email: jaya.rao@huawei.com
  organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada
BookMark eNp9kM1KAzEUhYNUUGsfQNz0BabmP5llLVorxS6sugyZ5KZExxlJBtS3t3-KuHB1L5dzDvd8J6jXtA0gdEbwiBBcXixuH5cjiike0VIKgvEBOqaS84Iwhnu_9iM0yPkZY0wFIYSpYzQZz4pxzjF34Id30L236aW4r6OLzWp4afP2-tEVU2gg2S62zfApJqgh5295PkWHwdYZBvvZRw_XV8vJTTFfTGeT8bxwTPGuEEo7rrzS3kPlCPE0lF4EyogPHivhZUWdqJRVlS55cEpjBxaC1ZWrnOSsj2a7XN_aZ_OW4qtNn6a10WwPbVoZm7roajChFICFpVSuq0vGy6AddZ5yV0khPFtnqV2WS23OCYJxsdv265KNtSHYbNCaDVqzQWv2aNdO8sf5_cl_nvOdJwLAj16XgkvN2BfJeIa4
CODEN IOJVAO
CitedBy_id crossref_primary_10_1016_j_aej_2024_02_031
crossref_primary_10_1109_JSAC_2021_3118352
crossref_primary_10_1109_OJCOMS_2022_3162116
crossref_primary_10_3390_electronics9122186
crossref_primary_10_1109_OJVT_2020_2990072
crossref_primary_10_1109_JIOT_2021_3101447
crossref_primary_10_2174_0126662558285372240109113226
crossref_primary_10_1109_JIOT_2023_3300696
crossref_primary_10_1016_j_peva_2021_102237
crossref_primary_10_1142_S2424862220500165
crossref_primary_10_1007_s10776_021_00546_3
crossref_primary_10_1016_j_trip_2024_101075
crossref_primary_10_1109_TVT_2020_2999617
crossref_primary_10_1109_TITS_2023_3314929
crossref_primary_10_1109_OJCOMS_2020_3010270
crossref_primary_10_1109_ACCESS_2022_3176348
crossref_primary_10_1016_j_eng_2021_10_002
crossref_primary_10_1109_TMC_2023_3303017
crossref_primary_10_1109_JSAC_2020_3036962
crossref_primary_10_1109_MNET_008_2100484
crossref_primary_10_1016_j_icte_2022_06_006
crossref_primary_10_1049_cje_2021_00_275
crossref_primary_10_1109_OJVT_2021_3089083
crossref_primary_10_1109_MNET_011_2000666
crossref_primary_10_1109_COMST_2024_3372083
crossref_primary_10_3390_electronics11233933
crossref_primary_10_1109_TNSM_2022_3205415
crossref_primary_10_1109_ACCESS_2020_3037717
crossref_primary_10_1109_MWC_001_2100338
crossref_primary_10_1109_TVT_2020_3000757
crossref_primary_10_1109_MCOM_004_2200532
crossref_primary_10_1109_MCOMSTD_0001_2200017
crossref_primary_10_1109_TITS_2021_3109878
crossref_primary_10_1109_ACCESS_2021_3103041
crossref_primary_10_1109_TVT_2021_3138898
crossref_primary_10_1109_TWC_2023_3287885
crossref_primary_10_1109_TWC_2021_3122941
crossref_primary_10_1007_s11277_023_10450_z
crossref_primary_10_1109_TNSE_2022_3218313
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TVT_2024_3415740
crossref_primary_10_1016_j_comnet_2023_109943
crossref_primary_10_1109_MVT_2021_3114655
crossref_primary_10_1109_TVT_2023_3286428
crossref_primary_10_3390_fi16110401
crossref_primary_10_1109_TMC_2023_3273425
crossref_primary_10_1109_TCCN_2023_3307929
crossref_primary_10_1109_TWC_2020_3029143
crossref_primary_10_3390_electronics13245045
crossref_primary_10_1007_s10922_022_09694_0
crossref_primary_10_1109_JSAC_2020_3041405
crossref_primary_10_2174_0122103279270825231023095946
crossref_primary_10_3390_telecom2010009
crossref_primary_10_3390_electronics9101710
crossref_primary_10_1109_TVT_2021_3068255
crossref_primary_10_1109_TMLCN_2024_3385355
crossref_primary_10_1109_MCOM_001_2200348
crossref_primary_10_1109_TVT_2023_3301676
crossref_primary_10_3390_sym15071372
crossref_primary_10_1109_JIOT_2021_3133110
crossref_primary_10_1007_s11432_022_3697_x
crossref_primary_10_1109_ACCESS_2022_3210254
crossref_primary_10_1016_j_jnca_2022_103558
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1109_TITS_2020_3024000
crossref_primary_10_1109_TMC_2023_3288085
crossref_primary_10_1109_JIOT_2024_3492532
crossref_primary_10_1109_JSAC_2023_3242704
crossref_primary_10_1109_TWC_2021_3108666
crossref_primary_10_1109_TVT_2020_2982178
crossref_primary_10_1007_s11227_024_06238_y
crossref_primary_10_1109_JSAC_2022_3145909
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1109_JIOT_2022_3166110
crossref_primary_10_1002_dac_5471
crossref_primary_10_3389_fcomp_2022_1068478
crossref_primary_10_1145_3657284
crossref_primary_10_3390_computers14010015
crossref_primary_10_1109_TVT_2022_3182335
crossref_primary_10_1109_JIOT_2021_3126825
crossref_primary_10_1109_JIOT_2021_3051181
crossref_primary_10_1109_TWC_2023_3239531
crossref_primary_10_1109_TNSE_2021_3061537
crossref_primary_10_1109_TNSE_2024_3486038
crossref_primary_10_3389_fcomp_2023_1191853
crossref_primary_10_3390_fi14040116
crossref_primary_10_1109_MWC_001_2000130
crossref_primary_10_1109_COMST_2023_3312349
crossref_primary_10_1109_TWC_2024_3491359
crossref_primary_10_1007_s10922_023_09788_3
crossref_primary_10_1155_2022_8805416
crossref_primary_10_1109_ACCESS_2024_3351600
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1109_TMC_2023_3282689
crossref_primary_10_1016_j_futures_2024_103328
crossref_primary_10_1109_TITS_2022_3204585
crossref_primary_10_23919_ICN_2024_0005
crossref_primary_10_1109_TWC_2022_3204915
crossref_primary_10_1109_JIOT_2021_3097053
crossref_primary_10_3390_drones7080534
crossref_primary_10_1007_s12243_021_00889_1
crossref_primary_10_1109_ACCESS_2024_3383324
crossref_primary_10_1109_ACCESS_2024_3507359
crossref_primary_10_1109_OJCOMS_2024_3414622
crossref_primary_10_1109_TWC_2022_3175711
crossref_primary_10_1109_TII_2023_3318311
crossref_primary_10_1109_TVT_2023_3277712
crossref_primary_10_1631_FITEE_2400240
crossref_primary_10_3390_app11188559
crossref_primary_10_3390_s22010100
crossref_primary_10_1109_TVT_2023_3280242
crossref_primary_10_1109_ACCESS_2023_3243985
crossref_primary_10_1109_COMST_2020_2982118
crossref_primary_10_1109_ACCESS_2024_3515832
crossref_primary_10_1109_TWC_2021_3067002
crossref_primary_10_1109_TMC_2022_3222848
crossref_primary_10_1109_TWC_2022_3143949
crossref_primary_10_1109_ACCESS_2021_3084834
crossref_primary_10_1109_TNET_2020_3037231
crossref_primary_10_1109_LNET_2024_3416555
crossref_primary_10_1109_MNET_2024_3354308
crossref_primary_10_1109_TII_2020_3017573
crossref_primary_10_1109_JIOT_2023_3264618
crossref_primary_10_1109_TVT_2021_3083255
crossref_primary_10_1109_ACCESS_2021_3133139
crossref_primary_10_1016_j_cja_2021_12_013
crossref_primary_10_1109_ACCESS_2021_3118539
crossref_primary_10_1109_TCCN_2023_3266379
crossref_primary_10_1109_TNSM_2022_3187251
crossref_primary_10_24003_emitter_v11i2_772
crossref_primary_10_1016_j_csi_2021_103518
crossref_primary_10_1109_OJCOMS_2024_3372426
crossref_primary_10_1109_JIOT_2022_3147897
crossref_primary_10_1109_TCOMM_2021_3090423
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1007_s12083_022_01321_8
crossref_primary_10_1016_j_jer_2024_01_018
crossref_primary_10_1109_ACCESS_2020_3040949
crossref_primary_10_1109_JIOT_2023_3333826
crossref_primary_10_1109_MNET_011_2000644
crossref_primary_10_1080_23270012_2020_1802622
crossref_primary_10_1109_ACCESS_2023_3292788
crossref_primary_10_1109_TWC_2023_3296218
crossref_primary_10_1109_TVT_2024_3454438
crossref_primary_10_1109_COMST_2022_3158270
crossref_primary_10_1109_JIOT_2023_3278282
crossref_primary_10_1109_ACCESS_2023_3314732
crossref_primary_10_1007_s11432_020_2955_6
crossref_primary_10_1109_JIOT_2020_3020067
crossref_primary_10_1016_j_rineng_2024_102200
crossref_primary_10_1109_TNET_2023_3264583
crossref_primary_10_1109_JIOT_2023_3265655
crossref_primary_10_1109_ACCESS_2024_3381967
crossref_primary_10_1109_COMST_2022_3217613
Cites_doi 10.1109/ACCESS.2018.2817288
10.1109/COMST.2017.2707140
10.1109/JSAC.2017.2760160
10.1109/TIT.2013.2281606
10.1109/INFCOM.2010.5462204
10.1109/MCOM.2017.1600951
10.1109/TVT.2018.2805190
10.1109/ICC.2012.6364568
10.1109/MCOM.2016.7537180
10.1109/TITS.2019.2922656
10.1109/TWC.2017.2769644
10.1109/CLOUD.2013.100
10.1109/TMC.2019.2922602
10.1109/ISWCS.2017.8108090
10.1109/WIOPT.2014.6850276
10.1109/ACCESS.2017.2747560
10.1109/TNET.2016.2599780
10.1145/3117811.3117831
10.1109/TITS.2017.2709462
10.1109/TVT.2007.907072
10.1109/TWC.2013.040413.120676
10.1109/JSAC.2018.2815378
10.1109/COMST.2015.2439636
10.1109/TWC.2013.022213.112260
10.1109/ICCW.2018.8403587
10.1109/JSAC.2019.2927067
10.1109/JIOT.2018.2886964
10.1109/TWC.2019.2927312
10.1109/TVT.2019.2896906
10.1109/TWC.2015.2443044
10.1109/JSAC.2012.120222
10.1109/TNET.2015.2478476
10.1016/j.comnet.2016.12.008
10.1109/TVT.2017.2760281
10.1109/WCNC.2018.8377419
10.1109/JSAC.2017.2760418
10.1109/MCOM.2017.1601089
10.1109/SPAWC.2013.6612005
10.1109/49.709453
10.1109/GLOCOM.2017.8254636
10.1109/TMC.2018.2869756
10.1109/COMST.2017.2745201
10.1109/INFOCOM.2019.8737488
10.1109/CCNC.2017.7983239
10.1109/MNET.2016.7513863
10.1109/TVT.2019.2894695
10.1109/MCOM.2018.1701031
10.1109/JSAC.2019.2906789
10.1109/TWC.2006.1576541
10.1109/COMST.2016.2516538
10.1109/JPROC.2019.2951169
10.1109/JSAC.2019.2904329
10.1109/TVT.2017.2768574
10.1109/MVT.2018.2809473
10.1109/JSAC.2019.2916486
10.1109/JIOT.2018.2818680
10.1109/JSAC.2019.2933893
10.1109/JIOT.2018.2876279
10.1109/INFOCOM.2017.8057090
10.1109/TWC.2014.040214.131201
10.1109/TCOMM.2017.2788012
10.1109/MCOM.2017.1600935
10.1109/MVT.2019.2921398
10.1109/MCOM.2010.5402670
10.1109/MCOM.2015.7355568
10.1109/ACCESS.2016.2633488
10.1109/TMC.2018.2797166
10.1109/MMUL.2016.21
10.1109/JSAC.2017.2720898
10.1109/TNSM.2016.2597295
10.1109/TCOMM.2016.2536728
10.1109/JIOT.2018.2878435
10.1109/ICC.2016.7510950
10.1109/COMST.2018.2815638
10.1109/TIT.2010.2043769
10.5626/JCSE.2015.9.3.155
10.1109/TMM.2018.2870521
10.1109/TSP.2018.2866382
10.1109/TVT.2018.2825278
10.1109/TNET.2019.2924471
10.1109/ICC.2018.8422210
10.1109/JSAC.2014.2328172
10.1109/JSAC.2018.2864425
10.1109/TMC.2013.157
10.1109/TMC.2017.2742949
10.1109/MVT.2019.2921208
10.1109/JSAC.2018.2832780
10.1109/TVT.2018.2859740
10.1109/TWC.2014.2320726
10.1109/GLOCOM.2012.6503908
10.1109/MCOM.2015.7355588
10.1109/MNET.2015.7064899
10.1109/LCOMM.2014.012314.140090
10.1145/3041658
10.1109/TVT.2019.2925629
10.1109/MNET.2018.1800109
10.1109/JIOT.2019.2903245
10.1109/JSAC.2019.2916280
10.1109/JSAC.2018.2844939
10.1109/MCOM.2019.1800608
10.1109/JSAC.2018.2844681
10.1109/COMST.2019.2904897
10.1109/MCOM.2016.7514161
10.1007/s11042-016-4008-8
10.1109/TMC.2008.50
10.1109/TWC.2016.2633522
10.1109/TETCI.2019.2892733
10.1109/JIOT.2018.2814063
10.1109/TVT.2014.2366559
10.1109/JSAC.2018.2844985
10.1109/TMC.2017.2780834
10.1109/ICC.2015.7249189
10.1109/TVT.2016.2633525
10.1016/j.sysconle.2004.08.007
10.1109/MVT.2019.2936087
10.1109/VTCFall.2013.6692125
10.1109/MCOM.2018.1701319
10.1109/MNET.2015.7166186
10.1109/JSAC.2019.2898745
10.1109/MWC.2003.1182111
10.1109/TVT.2016.2530716
10.1109/SPAWC.2016.7536857
10.1145/3323679.3326521
10.1109/TWC.2019.2940454
10.1109/TSP.2013.2252169
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJVT.2020.2965100
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1330
EndPage 66
ExternalDocumentID oai_doaj_org_article_f95e05a2266446349f8c2cd24cb655d3
10_1109_OJVT_2020_2965100
8954683
Genre orig-research
GrantInformation_xml – fundername: Huawei Technologies Canada and from the Natural Sciences and Engineering Research Council (NSERC) of Canada
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c374t-578c47d78ddebc11d2f9d5f231dfd075d6b2c5b7a7b894fc780ceaefa8bcbc643
IEDL.DBID RIE
ISSN 2644-1330
IngestDate Wed Aug 27 01:30:48 EDT 2025
Tue Jul 01 01:47:50 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Wed Aug 27 02:29:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-578c47d78ddebc11d2f9d5f231dfd075d6b2c5b7a7b894fc780ceaefa8bcbc643
ORCID 0000-0002-0458-1282
0000-0003-0488-511X
0000-0001-6095-2968
0000-0002-9694-3294
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8954683
PageCount 22
ParticipantIDs crossref_citationtrail_10_1109_OJVT_2020_2965100
crossref_primary_10_1109_OJVT_2020_2965100
ieee_primary_8954683
doaj_primary_oai_doaj_org_article_f95e05a2266446349f8c2cd24cb655d3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationTitle IEEE open journal of vehicular technology
PublicationTitleAbbrev OJVT
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
References ref56
ref59
ref58
ref52
ref51
ref50
ref46
(ref53) 2018
ref45
ref48
ref47
ref42
ref44
ref43
(ref1) 2017
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
(ref54) 2014
ref39
ref38
ref24
ref26
ref25
ref22
ref21
ref27
(ref20) 2016
ref29
(ref55) 2018
zhang (ref41) 2016
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ref125
ref98
ref10
ref17
ref16
ref19
ref18
ref133
ref93
ref134
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
ref89
ref86
ref85
ref135
ref88
ref136
ref87
chen (ref28) 0
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
boljanovic (ref69) 2019
ref102
ref76
ref103
ref2
marquez (ref57) 0
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref118
ref64
ref115
ref63
ref116
ref66
ref113
(ref23) 2017
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref98
  doi: 10.1109/ACCESS.2018.2817288
– ident: ref135
  doi: 10.1109/COMST.2017.2707140
– ident: ref61
  doi: 10.1109/JSAC.2017.2760160
– ident: ref118
  doi: 10.1109/TIT.2013.2281606
– ident: ref92
  doi: 10.1109/INFCOM.2010.5462204
– ident: ref16
  doi: 10.1109/MCOM.2017.1600951
– ident: ref87
  doi: 10.1109/TVT.2018.2805190
– ident: ref78
  doi: 10.1109/ICC.2012.6364568
– ident: ref106
  doi: 10.1109/MCOM.2016.7537180
– ident: ref44
  doi: 10.1109/TITS.2019.2922656
– ident: ref36
  doi: 10.1109/TWC.2017.2769644
– ident: ref105
  doi: 10.1109/CLOUD.2013.100
– ident: ref74
  doi: 10.1109/TMC.2019.2922602
– ident: ref29
  doi: 10.1109/ISWCS.2017.8108090
– ident: ref107
  doi: 10.1109/WIOPT.2014.6850276
– ident: ref133
  doi: 10.1109/ACCESS.2017.2747560
– ident: ref5
  doi: 10.1109/TNET.2016.2599780
– ident: ref56
  doi: 10.1145/3117811.3117831
– year: 2017
  ident: ref23
  article-title: Network Functions Virtualisation (NFV) Release 3; Evolution and Ecosystem; Report on Network Slicing Support with ETSI NFV Architecture Framework
– ident: ref60
  doi: 10.1109/TITS.2017.2709462
– ident: ref89
  doi: 10.1109/TVT.2007.907072
– year: 2018
  ident: ref55
  article-title: Telecommunication management; network sharing; concepts and requirements
– ident: ref79
  doi: 10.1109/TWC.2013.040413.120676
– year: 2017
  ident: ref1
  article-title: Minimum requirements related to technical performance for IMT2020 radio interface(s)
– ident: ref42
  doi: 10.1109/JSAC.2018.2815378
– ident: ref6
  doi: 10.1109/COMST.2015.2439636
– ident: ref33
  doi: 10.1109/TWC.2013.022213.112260
– ident: ref31
  doi: 10.1109/ICCW.2018.8403587
– ident: ref46
  doi: 10.1109/JSAC.2019.2927067
– year: 2016
  ident: ref20
  article-title: Applying SDN architecture to 5G slicing
– ident: ref125
  doi: 10.1109/JIOT.2018.2886964
– ident: ref72
  doi: 10.1109/TWC.2019.2927312
– ident: ref131
  doi: 10.1109/TVT.2019.2896906
– start-page: 191
  year: 0
  ident: ref57
  article-title: How should I slice my network? A multi-service empirical evaluation of resource sharing efficiency
  publication-title: Proc ACM MobiCom
– ident: ref70
  doi: 10.1109/TWC.2015.2443044
– ident: ref108
  doi: 10.1109/JSAC.2012.120222
– ident: ref128
  doi: 10.1109/TNET.2015.2478476
– ident: ref88
  doi: 10.1016/j.comnet.2016.12.008
– ident: ref39
  doi: 10.1109/TVT.2017.2760281
– ident: ref68
  doi: 10.1109/WCNC.2018.8377419
– ident: ref19
  doi: 10.1109/JSAC.2017.2760418
– ident: ref96
  doi: 10.1109/MCOM.2017.1601089
– ident: ref100
  doi: 10.1109/SPAWC.2013.6612005
– ident: ref104
  doi: 10.1109/49.709453
– ident: ref121
  doi: 10.1109/GLOCOM.2017.8254636
– ident: ref124
  doi: 10.1109/TMC.2018.2869756
– ident: ref97
  doi: 10.1109/COMST.2017.2745201
– ident: ref51
  doi: 10.1109/INFOCOM.2019.8737488
– ident: ref102
  doi: 10.1109/CCNC.2017.7983239
– year: 2014
  ident: ref54
  article-title: Study on radio access network (RAN) sharing enhancements
– ident: ref8
  doi: 10.1109/MNET.2016.7513863
– ident: ref18
  doi: 10.1109/TVT.2019.2894695
– ident: ref27
  doi: 10.1109/MCOM.2018.1701031
– ident: ref77
  doi: 10.1109/JSAC.2019.2906789
– ident: ref90
  doi: 10.1109/TWC.2006.1576541
– ident: ref84
  doi: 10.1109/COMST.2016.2516538
– ident: ref22
  doi: 10.1109/JPROC.2019.2951169
– ident: ref35
  doi: 10.1109/JSAC.2019.2904329
– ident: ref66
  doi: 10.1109/TVT.2017.2768574
– ident: ref14
  doi: 10.1109/MVT.2018.2809473
– ident: ref99
  doi: 10.1109/JSAC.2019.2916486
– ident: ref11
  doi: 10.1109/JIOT.2018.2818680
– ident: ref49
  doi: 10.1109/JSAC.2019.2933893
– ident: ref47
  doi: 10.1109/JIOT.2018.2876279
– ident: ref134
  doi: 10.1109/INFOCOM.2017.8057090
– ident: ref81
  doi: 10.1109/TWC.2014.040214.131201
– ident: ref130
  doi: 10.1109/TCOMM.2017.2788012
– ident: ref24
  doi: 10.1109/MCOM.2017.1600935
– year: 2018
  ident: ref53
  article-title: Framework of the IMT-2020 network
– ident: ref12
  doi: 10.1109/MVT.2019.2921398
– ident: ref82
  doi: 10.1109/MCOM.2010.5402670
– ident: ref3
  doi: 10.1109/MCOM.2015.7355568
– ident: ref95
  doi: 10.1109/ACCESS.2016.2633488
– ident: ref76
  doi: 10.1109/TMC.2018.2797166
– year: 2016
  ident: ref41
  article-title: Future wireless network: MyNET platform and end-to-end network slicing
– ident: ref37
  doi: 10.1109/MMUL.2016.21
– ident: ref67
  doi: 10.1109/JSAC.2017.2720898
– ident: ref93
  doi: 10.1109/TNSM.2016.2597295
– ident: ref120
  doi: 10.1109/TCOMM.2016.2536728
– ident: ref64
  doi: 10.1109/JIOT.2018.2878435
– ident: ref71
  doi: 10.1109/ICC.2016.7510950
– ident: ref58
  doi: 10.1109/COMST.2018.2815638
– ident: ref73
  doi: 10.1109/TIT.2010.2043769
– ident: ref103
  doi: 10.5626/JCSE.2015.9.3.155
– ident: ref117
  doi: 10.1109/TMM.2018.2870521
– ident: ref75
  doi: 10.1109/TSP.2018.2866382
– ident: ref13
  doi: 10.1109/TVT.2018.2825278
– year: 2019
  ident: ref69
  article-title: User association in dense mmWave networks based on rate requirements
  publication-title: arXiv 1905 04395
– ident: ref45
  doi: 10.1109/TNET.2019.2924471
– ident: ref126
  doi: 10.1109/TVT.2017.2760281
– ident: ref111
  doi: 10.1109/ICC.2018.8422210
– ident: ref86
  doi: 10.1109/JSAC.2014.2328172
– ident: ref119
  doi: 10.1109/JSAC.2018.2864425
– ident: ref9
  doi: 10.1109/TMC.2013.157
– ident: ref48
  doi: 10.1109/TMC.2017.2742949
– ident: ref2
  doi: 10.1109/MVT.2019.2921208
– ident: ref7
  doi: 10.1109/JSAC.2018.2832780
– ident: ref21
  doi: 10.1109/TVT.2018.2859740
– ident: ref109
  doi: 10.1109/TWC.2014.2320726
– ident: ref112
  doi: 10.1109/GLOCOM.2012.6503908
– ident: ref43
  doi: 10.1109/MCOM.2015.7355588
– ident: ref132
  doi: 10.1109/MNET.2015.7064899
– ident: ref91
  doi: 10.1109/LCOMM.2014.012314.140090
– ident: ref38
  doi: 10.1145/3041658
– ident: ref59
  doi: 10.1109/TVT.2019.2925629
– ident: ref115
  doi: 10.1109/MNET.2018.1800109
– ident: ref123
  doi: 10.1109/JIOT.2019.2903245
– ident: ref65
  doi: 10.1109/JSAC.2019.2916280
– ident: ref116
  doi: 10.1109/JSAC.2018.2844939
– ident: ref30
  doi: 10.1109/MCOM.2019.1800608
– ident: ref122
  doi: 10.1109/JSAC.2018.2844681
– ident: ref34
  doi: 10.1109/COMST.2019.2904897
– ident: ref17
  doi: 10.1109/MCOM.2016.7514161
– ident: ref127
  doi: 10.1007/s11042-016-4008-8
– ident: ref85
  doi: 10.1109/TMC.2008.50
– ident: ref101
  doi: 10.1109/TWC.2016.2633522
– ident: ref63
  doi: 10.1109/TETCI.2019.2892733
– ident: ref4
  doi: 10.1109/JIOT.2018.2814063
– ident: ref10
  doi: 10.1109/TVT.2014.2366559
– ident: ref40
  doi: 10.1109/JSAC.2018.2844985
– ident: ref129
  doi: 10.1109/TMC.2017.2780834
– ident: ref83
  doi: 10.1109/ICC.2015.7249189
– ident: ref114
  doi: 10.1109/TVT.2016.2633525
– start-page: 1
  year: 0
  ident: ref28
  article-title: Predicting future traffic using hidden Markov models
  publication-title: Proc IEEE 24th Int Conf Netw Protocols '16
– ident: ref136
  doi: 10.1016/j.sysconle.2004.08.007
– ident: ref15
  doi: 10.1109/MVT.2019.2936087
– ident: ref113
  doi: 10.1109/VTCFall.2013.6692125
– ident: ref25
  doi: 10.1109/MCOM.2018.1701319
– ident: ref52
  doi: 10.1109/MNET.2015.7166186
– ident: ref26
  doi: 10.1109/JSAC.2019.2898745
– ident: ref94
  doi: 10.1109/MWC.2003.1182111
– ident: ref62
  doi: 10.1109/TVT.2016.2530716
– ident: ref110
  doi: 10.1109/SPAWC.2016.7536857
– ident: ref50
  doi: 10.1145/3323679.3326521
– ident: ref32
  doi: 10.1109/TWC.2019.2940454
– ident: ref80
  doi: 10.1109/TSP.2013.2252169
SSID ssj0002511137
Score 2.566097
Snippet The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Artificial intelligence
Computer architecture
content placement and delivery
heterogeneous networks
machine learning
Network slicing
Next generation networking
Next-generation wireless networks
radio access network slicing
radio access technology selection
Resource management
Vehicle dynamics
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4MJz0YFY34yh48mVS63T6PQCRIIh4Ew23TpxeCRvH_O91dCFz04rWZbZpv2nlsp98gdMu5NUo7gpmB08QM09h4rbDw0gZimLUVHcPTRIxmbDzn861WX6kmrKYHroHrRs0D4QaiBPDcomA6Kkedp8xZwbmveD6JJlvJVLLBKXDOC9lcY-ZEd5_Hr1NIBym5p1rARiQ7jqji699psFL5l-EROmwCw6xXL-gY7YXlCTrYogtso0HvEQOcSTE-m9T12_hlke7G37I-uKM0ColsTSWdEM9ScesCjNla_OsUzYYP08EIN00QsCskW2E4UY5JLxXYIevy3NOoPY8Qlvnowd97YanjVhpplWbRSUVcMCEaZZ11EG-codbyfRnOUUZ5EdOTECsYpHWWWuOiyIP0InjqCOsgskakdA1DeGpUsSirTIHoMoFYJhDLBsQOutt88lHTY_wm3E8wbwQTs3U1APouG32Xf-m7g9pJSZtJlOZMqOLiP-a-RPtpvfUflivUWn1-h2uIOVb2ptpePxP40Nw
  priority: 102
  providerName: Directory of Open Access Journals
Title AI-Assisted Network-Slicing Based Next-Generation Wireless Networks
URI https://ieeexplore.ieee.org/document/8954683
https://doaj.org/article/f95e05a2266446349f8c2cd24cb655d3
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooLbTq9gPlwKlqFsfx5xEQiCItHAoVt8ge2z10tVTt7oUDv52xk41KVVW9RJE1iSy_sf3GHj8DHEjpnbHIauGoNwknbO2CNbUK2kfmhPdFjmF2qc5vxMWtvN2AT-NZmBhjST6L0_xa9vLDHa7yUtmhsVIo027CJrlZf1ZrXE_JVLlp9bBx2TB7eHXx9ZoCQM6m3CpyPfZk6ikK_U-uVCkzytkOzNZ16RNJvk9XSz_F-z9kGv-3si_g-UAtq6PeF17CRlzswrPfBAf34OToc02AZGhDddlngNdf5nl3_Vt1TBNaLqVQuBejzphVOT12TsPh2vzXK7g5O70-Oa-HaxRqbLVY1tQnUeigDY1kHpsm8GSDTETsQgrEGILyHKXXTntjRUJtGEYXkzMePRJjeQ1bi7tFfAMVl23Kh0q8EhQYeu4dJtVEHVQMHJmYAFu3cIeDxni-6mLelViD2S6D0mVQugGUCXwcP_nRC2z8y_g4wzYaZm3sUkAt3w1drUtWRiYd8UrieqoVNhnkGLhAr6QM7QT2MlrjTwag3v69-B1s5xr0qy7vYWv5cxU_EA9Z-v0Sv9Nz9nC6X5zxESp73Tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgs5cEJk6zj-PLZVq23pLge2qLfIHts9sNpWZffCr2ecZKMWIcQtsuzI8vPYb-zxG4CPUnpnLLJSOLIm4YQtXbCmVEH7yJzwvpVjmM7U5EKcXcrLLfg8vIWJMbbBZ3GcP9u7_HCN63xUtm-sFMrUD-ChJK_CdK-1hhOVTJarWvdXlxWz-1_Pvs_JBeRszK2iycfubT6tRv-9pCrtnnLyDKab3nShJD_G65Uf468_hBr_t7vP4WlPLouDbja8gK24fAlP7kgO7sDRwWlJkGRwQzHrYsDLb4t8v35VHNKWlkvJGe7kqDNqRQ6QXdCCuKn-8xVcnBzPjyZln0ihxFqLVUlWiUIHbWgt81hVgScbZCJqF1IgzhCU5yi9dtobKxJqwzC6mJzx6JE4y2vYXl4v4xsouKxTflbilSDX0HPvMKkq6qBi4MjECNhmhBvsVcZzsotF03obzDYZlCaD0vSgjODT0OSmk9j4V-XDDNtQMatjtwU08k1vbE2yMjLpiFkS21O1sMkgx8AFeiVlqEewk9EaftID9fbvxR_g0WQ-PW_OT2df3sHj3JvuDGYXtle367hHrGTl37eT8TeIhd5p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Assisted+Network-Slicing+Based+Next-Generation+Wireless+Networks&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Shen%2C+Xuemin&rft.au=Gao%2C+Jie&rft.au=Wu%2C+Wen&rft.au=Lyu%2C+Kangjia&rft.date=2020&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=1&rft.spage=45&rft.epage=66&rft_id=info:doi/10.1109%2FOJVT.2020.2965100&rft.externalDocID=8954683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon