AI-Assisted Network-Slicing Based Next-Generation Wireless Networks
The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous dri...
Saved in:
Published in | IEEE open journal of vehicular technology Vol. 1; pp. 45 - 66 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2644-1330 2644-1330 |
DOI | 10.1109/OJVT.2020.2965100 |
Cover
Abstract | The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and so on. Such requirements pose new challenges to architecture design, network management, and resource orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good understanding of the overall architecture of NGWNs and three specific research problems under this architecture. First, we introduce a network-slicing based architecture and explain why and where artificial intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges, existing works, and potential future directions related to applying AI-based approaches in three research problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and potentials of AI-based approaches in the research of NGWNs. |
---|---|
AbstractList | The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless networks (NGWNs) highly heterogeneous and dynamic. Emerging use cases and applications, such as machine to machine communications, autonomous driving, and factory automation, have stringent requirements in terms of reliability, latency, throughput, and so on. Such requirements pose new challenges to architecture design, network management, and resource orchestration in NGWNs. Starting from illustrating these challenges, this paper aims at providing a good understanding of the overall architecture of NGWNs and three specific research problems under this architecture. First, we introduce a network-slicing based architecture and explain why and where artificial intelligence (AI) should be incorporated into this architecture. Second, the motivation, research challenges, existing works, and potential future directions related to applying AI-based approaches in three research problems are described in detail, i.e., flexible radio access network slicing, automated radio access technology selection, and mobile edge caching and content delivery. In summary, this paper highlights the benefits and potentials of AI-based approaches in the research of NGWNs. |
Author | Lyu, Kangjia Li, Xu Shen, Xuemin Zhuang, Weihua Gao, Jie Li, Mushu Wu, Wen Rao, Jaya |
Author_xml | – sequence: 1 givenname: Xuemin surname: Shen fullname: Shen, Xuemin email: sshen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Jie orcidid: 0000-0001-6095-2968 surname: Gao fullname: Gao, Jie email: jie.gao@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Wen orcidid: 0000-0002-0458-1282 surname: Wu fullname: Wu, Wen email: wen.wu@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Kangjia surname: Lyu fullname: Lyu, Kangjia email: kangjia.lyu@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 5 givenname: Mushu orcidid: 0000-0002-9694-3294 surname: Li fullname: Li, Mushu email: mushu.li@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 6 givenname: Weihua orcidid: 0000-0003-0488-511X surname: Zhuang fullname: Zhuang, Weihua email: wzhuang@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 7 givenname: Xu surname: Li fullname: Li, Xu email: xu.lica@huawei.com organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada – sequence: 8 givenname: Jaya surname: Rao fullname: Rao, Jaya email: jaya.rao@huawei.com organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada |
BookMark | eNp9kM1KAzEUhYNUUGsfQNz0BabmP5llLVorxS6sugyZ5KZExxlJBtS3t3-KuHB1L5dzDvd8J6jXtA0gdEbwiBBcXixuH5cjiike0VIKgvEBOqaS84Iwhnu_9iM0yPkZY0wFIYSpYzQZz4pxzjF34Id30L236aW4r6OLzWp4afP2-tEVU2gg2S62zfApJqgh5295PkWHwdYZBvvZRw_XV8vJTTFfTGeT8bxwTPGuEEo7rrzS3kPlCPE0lF4EyogPHivhZUWdqJRVlS55cEpjBxaC1ZWrnOSsj2a7XN_aZ_OW4qtNn6a10WwPbVoZm7roajChFICFpVSuq0vGy6AddZ5yV0khPFtnqV2WS23OCYJxsdv265KNtSHYbNCaDVqzQWv2aNdO8sf5_cl_nvOdJwLAj16XgkvN2BfJeIa4 |
CODEN | IOJVAO |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_02_031 crossref_primary_10_1109_JSAC_2021_3118352 crossref_primary_10_1109_OJCOMS_2022_3162116 crossref_primary_10_3390_electronics9122186 crossref_primary_10_1109_OJVT_2020_2990072 crossref_primary_10_1109_JIOT_2021_3101447 crossref_primary_10_2174_0126662558285372240109113226 crossref_primary_10_1109_JIOT_2023_3300696 crossref_primary_10_1016_j_peva_2021_102237 crossref_primary_10_1142_S2424862220500165 crossref_primary_10_1007_s10776_021_00546_3 crossref_primary_10_1016_j_trip_2024_101075 crossref_primary_10_1109_TVT_2020_2999617 crossref_primary_10_1109_TITS_2023_3314929 crossref_primary_10_1109_OJCOMS_2020_3010270 crossref_primary_10_1109_ACCESS_2022_3176348 crossref_primary_10_1016_j_eng_2021_10_002 crossref_primary_10_1109_TMC_2023_3303017 crossref_primary_10_1109_JSAC_2020_3036962 crossref_primary_10_1109_MNET_008_2100484 crossref_primary_10_1016_j_icte_2022_06_006 crossref_primary_10_1049_cje_2021_00_275 crossref_primary_10_1109_OJVT_2021_3089083 crossref_primary_10_1109_MNET_011_2000666 crossref_primary_10_1109_COMST_2024_3372083 crossref_primary_10_3390_electronics11233933 crossref_primary_10_1109_TNSM_2022_3205415 crossref_primary_10_1109_ACCESS_2020_3037717 crossref_primary_10_1109_MWC_001_2100338 crossref_primary_10_1109_TVT_2020_3000757 crossref_primary_10_1109_MCOM_004_2200532 crossref_primary_10_1109_MCOMSTD_0001_2200017 crossref_primary_10_1109_TITS_2021_3109878 crossref_primary_10_1109_ACCESS_2021_3103041 crossref_primary_10_1109_TVT_2021_3138898 crossref_primary_10_1109_TWC_2023_3287885 crossref_primary_10_1109_TWC_2021_3122941 crossref_primary_10_1007_s11277_023_10450_z crossref_primary_10_1109_TNSE_2022_3218313 crossref_primary_10_1109_COMST_2021_3135829 crossref_primary_10_1109_TVT_2024_3415740 crossref_primary_10_1016_j_comnet_2023_109943 crossref_primary_10_1109_MVT_2021_3114655 crossref_primary_10_1109_TVT_2023_3286428 crossref_primary_10_3390_fi16110401 crossref_primary_10_1109_TMC_2023_3273425 crossref_primary_10_1109_TCCN_2023_3307929 crossref_primary_10_1109_TWC_2020_3029143 crossref_primary_10_3390_electronics13245045 crossref_primary_10_1007_s10922_022_09694_0 crossref_primary_10_1109_JSAC_2020_3041405 crossref_primary_10_2174_0122103279270825231023095946 crossref_primary_10_3390_telecom2010009 crossref_primary_10_3390_electronics9101710 crossref_primary_10_1109_TVT_2021_3068255 crossref_primary_10_1109_TMLCN_2024_3385355 crossref_primary_10_1109_MCOM_001_2200348 crossref_primary_10_1109_TVT_2023_3301676 crossref_primary_10_3390_sym15071372 crossref_primary_10_1109_JIOT_2021_3133110 crossref_primary_10_1007_s11432_022_3697_x crossref_primary_10_1109_ACCESS_2022_3210254 crossref_primary_10_1016_j_jnca_2022_103558 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1109_TITS_2020_3024000 crossref_primary_10_1109_TMC_2023_3288085 crossref_primary_10_1109_JIOT_2024_3492532 crossref_primary_10_1109_JSAC_2023_3242704 crossref_primary_10_1109_TWC_2021_3108666 crossref_primary_10_1109_TVT_2020_2982178 crossref_primary_10_1007_s11227_024_06238_y crossref_primary_10_1109_JSAC_2022_3145909 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1109_JIOT_2022_3166110 crossref_primary_10_1002_dac_5471 crossref_primary_10_3389_fcomp_2022_1068478 crossref_primary_10_1145_3657284 crossref_primary_10_3390_computers14010015 crossref_primary_10_1109_TVT_2022_3182335 crossref_primary_10_1109_JIOT_2021_3126825 crossref_primary_10_1109_JIOT_2021_3051181 crossref_primary_10_1109_TWC_2023_3239531 crossref_primary_10_1109_TNSE_2021_3061537 crossref_primary_10_1109_TNSE_2024_3486038 crossref_primary_10_3389_fcomp_2023_1191853 crossref_primary_10_3390_fi14040116 crossref_primary_10_1109_MWC_001_2000130 crossref_primary_10_1109_COMST_2023_3312349 crossref_primary_10_1109_TWC_2024_3491359 crossref_primary_10_1007_s10922_023_09788_3 crossref_primary_10_1155_2022_8805416 crossref_primary_10_1109_ACCESS_2024_3351600 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1109_TMC_2023_3282689 crossref_primary_10_1016_j_futures_2024_103328 crossref_primary_10_1109_TITS_2022_3204585 crossref_primary_10_23919_ICN_2024_0005 crossref_primary_10_1109_TWC_2022_3204915 crossref_primary_10_1109_JIOT_2021_3097053 crossref_primary_10_3390_drones7080534 crossref_primary_10_1007_s12243_021_00889_1 crossref_primary_10_1109_ACCESS_2024_3383324 crossref_primary_10_1109_ACCESS_2024_3507359 crossref_primary_10_1109_OJCOMS_2024_3414622 crossref_primary_10_1109_TWC_2022_3175711 crossref_primary_10_1109_TII_2023_3318311 crossref_primary_10_1109_TVT_2023_3277712 crossref_primary_10_1631_FITEE_2400240 crossref_primary_10_3390_app11188559 crossref_primary_10_3390_s22010100 crossref_primary_10_1109_TVT_2023_3280242 crossref_primary_10_1109_ACCESS_2023_3243985 crossref_primary_10_1109_COMST_2020_2982118 crossref_primary_10_1109_ACCESS_2024_3515832 crossref_primary_10_1109_TWC_2021_3067002 crossref_primary_10_1109_TMC_2022_3222848 crossref_primary_10_1109_TWC_2022_3143949 crossref_primary_10_1109_ACCESS_2021_3084834 crossref_primary_10_1109_TNET_2020_3037231 crossref_primary_10_1109_LNET_2024_3416555 crossref_primary_10_1109_MNET_2024_3354308 crossref_primary_10_1109_TII_2020_3017573 crossref_primary_10_1109_JIOT_2023_3264618 crossref_primary_10_1109_TVT_2021_3083255 crossref_primary_10_1109_ACCESS_2021_3133139 crossref_primary_10_1016_j_cja_2021_12_013 crossref_primary_10_1109_ACCESS_2021_3118539 crossref_primary_10_1109_TCCN_2023_3266379 crossref_primary_10_1109_TNSM_2022_3187251 crossref_primary_10_24003_emitter_v11i2_772 crossref_primary_10_1016_j_csi_2021_103518 crossref_primary_10_1109_OJCOMS_2024_3372426 crossref_primary_10_1109_JIOT_2022_3147897 crossref_primary_10_1109_TCOMM_2021_3090423 crossref_primary_10_1109_JPROC_2024_3520707 crossref_primary_10_1007_s12083_022_01321_8 crossref_primary_10_1016_j_jer_2024_01_018 crossref_primary_10_1109_ACCESS_2020_3040949 crossref_primary_10_1109_JIOT_2023_3333826 crossref_primary_10_1109_MNET_011_2000644 crossref_primary_10_1080_23270012_2020_1802622 crossref_primary_10_1109_ACCESS_2023_3292788 crossref_primary_10_1109_TWC_2023_3296218 crossref_primary_10_1109_TVT_2024_3454438 crossref_primary_10_1109_COMST_2022_3158270 crossref_primary_10_1109_JIOT_2023_3278282 crossref_primary_10_1109_ACCESS_2023_3314732 crossref_primary_10_1007_s11432_020_2955_6 crossref_primary_10_1109_JIOT_2020_3020067 crossref_primary_10_1016_j_rineng_2024_102200 crossref_primary_10_1109_TNET_2023_3264583 crossref_primary_10_1109_JIOT_2023_3265655 crossref_primary_10_1109_ACCESS_2024_3381967 crossref_primary_10_1109_COMST_2022_3217613 |
Cites_doi | 10.1109/ACCESS.2018.2817288 10.1109/COMST.2017.2707140 10.1109/JSAC.2017.2760160 10.1109/TIT.2013.2281606 10.1109/INFCOM.2010.5462204 10.1109/MCOM.2017.1600951 10.1109/TVT.2018.2805190 10.1109/ICC.2012.6364568 10.1109/MCOM.2016.7537180 10.1109/TITS.2019.2922656 10.1109/TWC.2017.2769644 10.1109/CLOUD.2013.100 10.1109/TMC.2019.2922602 10.1109/ISWCS.2017.8108090 10.1109/WIOPT.2014.6850276 10.1109/ACCESS.2017.2747560 10.1109/TNET.2016.2599780 10.1145/3117811.3117831 10.1109/TITS.2017.2709462 10.1109/TVT.2007.907072 10.1109/TWC.2013.040413.120676 10.1109/JSAC.2018.2815378 10.1109/COMST.2015.2439636 10.1109/TWC.2013.022213.112260 10.1109/ICCW.2018.8403587 10.1109/JSAC.2019.2927067 10.1109/JIOT.2018.2886964 10.1109/TWC.2019.2927312 10.1109/TVT.2019.2896906 10.1109/TWC.2015.2443044 10.1109/JSAC.2012.120222 10.1109/TNET.2015.2478476 10.1016/j.comnet.2016.12.008 10.1109/TVT.2017.2760281 10.1109/WCNC.2018.8377419 10.1109/JSAC.2017.2760418 10.1109/MCOM.2017.1601089 10.1109/SPAWC.2013.6612005 10.1109/49.709453 10.1109/GLOCOM.2017.8254636 10.1109/TMC.2018.2869756 10.1109/COMST.2017.2745201 10.1109/INFOCOM.2019.8737488 10.1109/CCNC.2017.7983239 10.1109/MNET.2016.7513863 10.1109/TVT.2019.2894695 10.1109/MCOM.2018.1701031 10.1109/JSAC.2019.2906789 10.1109/TWC.2006.1576541 10.1109/COMST.2016.2516538 10.1109/JPROC.2019.2951169 10.1109/JSAC.2019.2904329 10.1109/TVT.2017.2768574 10.1109/MVT.2018.2809473 10.1109/JSAC.2019.2916486 10.1109/JIOT.2018.2818680 10.1109/JSAC.2019.2933893 10.1109/JIOT.2018.2876279 10.1109/INFOCOM.2017.8057090 10.1109/TWC.2014.040214.131201 10.1109/TCOMM.2017.2788012 10.1109/MCOM.2017.1600935 10.1109/MVT.2019.2921398 10.1109/MCOM.2010.5402670 10.1109/MCOM.2015.7355568 10.1109/ACCESS.2016.2633488 10.1109/TMC.2018.2797166 10.1109/MMUL.2016.21 10.1109/JSAC.2017.2720898 10.1109/TNSM.2016.2597295 10.1109/TCOMM.2016.2536728 10.1109/JIOT.2018.2878435 10.1109/ICC.2016.7510950 10.1109/COMST.2018.2815638 10.1109/TIT.2010.2043769 10.5626/JCSE.2015.9.3.155 10.1109/TMM.2018.2870521 10.1109/TSP.2018.2866382 10.1109/TVT.2018.2825278 10.1109/TNET.2019.2924471 10.1109/ICC.2018.8422210 10.1109/JSAC.2014.2328172 10.1109/JSAC.2018.2864425 10.1109/TMC.2013.157 10.1109/TMC.2017.2742949 10.1109/MVT.2019.2921208 10.1109/JSAC.2018.2832780 10.1109/TVT.2018.2859740 10.1109/TWC.2014.2320726 10.1109/GLOCOM.2012.6503908 10.1109/MCOM.2015.7355588 10.1109/MNET.2015.7064899 10.1109/LCOMM.2014.012314.140090 10.1145/3041658 10.1109/TVT.2019.2925629 10.1109/MNET.2018.1800109 10.1109/JIOT.2019.2903245 10.1109/JSAC.2019.2916280 10.1109/JSAC.2018.2844939 10.1109/MCOM.2019.1800608 10.1109/JSAC.2018.2844681 10.1109/COMST.2019.2904897 10.1109/MCOM.2016.7514161 10.1007/s11042-016-4008-8 10.1109/TMC.2008.50 10.1109/TWC.2016.2633522 10.1109/TETCI.2019.2892733 10.1109/JIOT.2018.2814063 10.1109/TVT.2014.2366559 10.1109/JSAC.2018.2844985 10.1109/TMC.2017.2780834 10.1109/ICC.2015.7249189 10.1109/TVT.2016.2633525 10.1016/j.sysconle.2004.08.007 10.1109/MVT.2019.2936087 10.1109/VTCFall.2013.6692125 10.1109/MCOM.2018.1701319 10.1109/MNET.2015.7166186 10.1109/JSAC.2019.2898745 10.1109/MWC.2003.1182111 10.1109/TVT.2016.2530716 10.1109/SPAWC.2016.7536857 10.1145/3323679.3326521 10.1109/TWC.2019.2940454 10.1109/TSP.2013.2252169 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJVT.2020.2965100 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2644-1330 |
EndPage | 66 |
ExternalDocumentID | oai_doaj_org_article_f95e05a2266446349f8c2cd24cb655d3 10_1109_OJVT_2020_2965100 8954683 |
Genre | orig-research |
GrantInformation_xml | – fundername: Huawei Technologies Canada and from the Natural Sciences and Engineering Research Council (NSERC) of Canada |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c374t-578c47d78ddebc11d2f9d5f231dfd075d6b2c5b7a7b894fc780ceaefa8bcbc643 |
IEDL.DBID | RIE |
ISSN | 2644-1330 |
IngestDate | Wed Aug 27 01:30:48 EDT 2025 Tue Jul 01 01:47:50 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 Wed Aug 27 02:29:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-578c47d78ddebc11d2f9d5f231dfd075d6b2c5b7a7b894fc780ceaefa8bcbc643 |
ORCID | 0000-0002-0458-1282 0000-0003-0488-511X 0000-0001-6095-2968 0000-0002-9694-3294 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8954683 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1109_OJVT_2020_2965100 crossref_primary_10_1109_OJVT_2020_2965100 ieee_primary_8954683 doaj_primary_oai_doaj_org_article_f95e05a2266446349f8c2cd24cb655d3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of vehicular technology |
PublicationTitleAbbrev | OJVT |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref56 ref59 ref58 ref52 ref51 ref50 ref46 (ref53) 2018 ref45 ref48 ref47 ref42 ref44 ref43 (ref1) 2017 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 (ref54) 2014 ref39 ref38 ref24 ref26 ref25 ref22 ref21 ref27 (ref20) 2016 ref29 (ref55) 2018 zhang (ref41) 2016 ref13 ref12 ref128 ref15 ref129 ref14 ref126 ref97 ref127 ref96 ref124 ref99 ref11 ref125 ref98 ref10 ref17 ref16 ref19 ref18 ref133 ref93 ref134 ref92 ref131 ref95 ref132 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref135 ref88 ref136 ref87 chen (ref28) 0 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 boljanovic (ref69) 2019 ref102 ref76 ref103 ref2 marquez (ref57) 0 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref118 ref64 ref115 ref63 ref116 ref66 ref113 (ref23) 2017 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref98 doi: 10.1109/ACCESS.2018.2817288 – ident: ref135 doi: 10.1109/COMST.2017.2707140 – ident: ref61 doi: 10.1109/JSAC.2017.2760160 – ident: ref118 doi: 10.1109/TIT.2013.2281606 – ident: ref92 doi: 10.1109/INFCOM.2010.5462204 – ident: ref16 doi: 10.1109/MCOM.2017.1600951 – ident: ref87 doi: 10.1109/TVT.2018.2805190 – ident: ref78 doi: 10.1109/ICC.2012.6364568 – ident: ref106 doi: 10.1109/MCOM.2016.7537180 – ident: ref44 doi: 10.1109/TITS.2019.2922656 – ident: ref36 doi: 10.1109/TWC.2017.2769644 – ident: ref105 doi: 10.1109/CLOUD.2013.100 – ident: ref74 doi: 10.1109/TMC.2019.2922602 – ident: ref29 doi: 10.1109/ISWCS.2017.8108090 – ident: ref107 doi: 10.1109/WIOPT.2014.6850276 – ident: ref133 doi: 10.1109/ACCESS.2017.2747560 – ident: ref5 doi: 10.1109/TNET.2016.2599780 – ident: ref56 doi: 10.1145/3117811.3117831 – year: 2017 ident: ref23 article-title: Network Functions Virtualisation (NFV) Release 3; Evolution and Ecosystem; Report on Network Slicing Support with ETSI NFV Architecture Framework – ident: ref60 doi: 10.1109/TITS.2017.2709462 – ident: ref89 doi: 10.1109/TVT.2007.907072 – year: 2018 ident: ref55 article-title: Telecommunication management; network sharing; concepts and requirements – ident: ref79 doi: 10.1109/TWC.2013.040413.120676 – year: 2017 ident: ref1 article-title: Minimum requirements related to technical performance for IMT2020 radio interface(s) – ident: ref42 doi: 10.1109/JSAC.2018.2815378 – ident: ref6 doi: 10.1109/COMST.2015.2439636 – ident: ref33 doi: 10.1109/TWC.2013.022213.112260 – ident: ref31 doi: 10.1109/ICCW.2018.8403587 – ident: ref46 doi: 10.1109/JSAC.2019.2927067 – year: 2016 ident: ref20 article-title: Applying SDN architecture to 5G slicing – ident: ref125 doi: 10.1109/JIOT.2018.2886964 – ident: ref72 doi: 10.1109/TWC.2019.2927312 – ident: ref131 doi: 10.1109/TVT.2019.2896906 – start-page: 191 year: 0 ident: ref57 article-title: How should I slice my network? A multi-service empirical evaluation of resource sharing efficiency publication-title: Proc ACM MobiCom – ident: ref70 doi: 10.1109/TWC.2015.2443044 – ident: ref108 doi: 10.1109/JSAC.2012.120222 – ident: ref128 doi: 10.1109/TNET.2015.2478476 – ident: ref88 doi: 10.1016/j.comnet.2016.12.008 – ident: ref39 doi: 10.1109/TVT.2017.2760281 – ident: ref68 doi: 10.1109/WCNC.2018.8377419 – ident: ref19 doi: 10.1109/JSAC.2017.2760418 – ident: ref96 doi: 10.1109/MCOM.2017.1601089 – ident: ref100 doi: 10.1109/SPAWC.2013.6612005 – ident: ref104 doi: 10.1109/49.709453 – ident: ref121 doi: 10.1109/GLOCOM.2017.8254636 – ident: ref124 doi: 10.1109/TMC.2018.2869756 – ident: ref97 doi: 10.1109/COMST.2017.2745201 – ident: ref51 doi: 10.1109/INFOCOM.2019.8737488 – ident: ref102 doi: 10.1109/CCNC.2017.7983239 – year: 2014 ident: ref54 article-title: Study on radio access network (RAN) sharing enhancements – ident: ref8 doi: 10.1109/MNET.2016.7513863 – ident: ref18 doi: 10.1109/TVT.2019.2894695 – ident: ref27 doi: 10.1109/MCOM.2018.1701031 – ident: ref77 doi: 10.1109/JSAC.2019.2906789 – ident: ref90 doi: 10.1109/TWC.2006.1576541 – ident: ref84 doi: 10.1109/COMST.2016.2516538 – ident: ref22 doi: 10.1109/JPROC.2019.2951169 – ident: ref35 doi: 10.1109/JSAC.2019.2904329 – ident: ref66 doi: 10.1109/TVT.2017.2768574 – ident: ref14 doi: 10.1109/MVT.2018.2809473 – ident: ref99 doi: 10.1109/JSAC.2019.2916486 – ident: ref11 doi: 10.1109/JIOT.2018.2818680 – ident: ref49 doi: 10.1109/JSAC.2019.2933893 – ident: ref47 doi: 10.1109/JIOT.2018.2876279 – ident: ref134 doi: 10.1109/INFOCOM.2017.8057090 – ident: ref81 doi: 10.1109/TWC.2014.040214.131201 – ident: ref130 doi: 10.1109/TCOMM.2017.2788012 – ident: ref24 doi: 10.1109/MCOM.2017.1600935 – year: 2018 ident: ref53 article-title: Framework of the IMT-2020 network – ident: ref12 doi: 10.1109/MVT.2019.2921398 – ident: ref82 doi: 10.1109/MCOM.2010.5402670 – ident: ref3 doi: 10.1109/MCOM.2015.7355568 – ident: ref95 doi: 10.1109/ACCESS.2016.2633488 – ident: ref76 doi: 10.1109/TMC.2018.2797166 – year: 2016 ident: ref41 article-title: Future wireless network: MyNET platform and end-to-end network slicing – ident: ref37 doi: 10.1109/MMUL.2016.21 – ident: ref67 doi: 10.1109/JSAC.2017.2720898 – ident: ref93 doi: 10.1109/TNSM.2016.2597295 – ident: ref120 doi: 10.1109/TCOMM.2016.2536728 – ident: ref64 doi: 10.1109/JIOT.2018.2878435 – ident: ref71 doi: 10.1109/ICC.2016.7510950 – ident: ref58 doi: 10.1109/COMST.2018.2815638 – ident: ref73 doi: 10.1109/TIT.2010.2043769 – ident: ref103 doi: 10.5626/JCSE.2015.9.3.155 – ident: ref117 doi: 10.1109/TMM.2018.2870521 – ident: ref75 doi: 10.1109/TSP.2018.2866382 – ident: ref13 doi: 10.1109/TVT.2018.2825278 – year: 2019 ident: ref69 article-title: User association in dense mmWave networks based on rate requirements publication-title: arXiv 1905 04395 – ident: ref45 doi: 10.1109/TNET.2019.2924471 – ident: ref126 doi: 10.1109/TVT.2017.2760281 – ident: ref111 doi: 10.1109/ICC.2018.8422210 – ident: ref86 doi: 10.1109/JSAC.2014.2328172 – ident: ref119 doi: 10.1109/JSAC.2018.2864425 – ident: ref9 doi: 10.1109/TMC.2013.157 – ident: ref48 doi: 10.1109/TMC.2017.2742949 – ident: ref2 doi: 10.1109/MVT.2019.2921208 – ident: ref7 doi: 10.1109/JSAC.2018.2832780 – ident: ref21 doi: 10.1109/TVT.2018.2859740 – ident: ref109 doi: 10.1109/TWC.2014.2320726 – ident: ref112 doi: 10.1109/GLOCOM.2012.6503908 – ident: ref43 doi: 10.1109/MCOM.2015.7355588 – ident: ref132 doi: 10.1109/MNET.2015.7064899 – ident: ref91 doi: 10.1109/LCOMM.2014.012314.140090 – ident: ref38 doi: 10.1145/3041658 – ident: ref59 doi: 10.1109/TVT.2019.2925629 – ident: ref115 doi: 10.1109/MNET.2018.1800109 – ident: ref123 doi: 10.1109/JIOT.2019.2903245 – ident: ref65 doi: 10.1109/JSAC.2019.2916280 – ident: ref116 doi: 10.1109/JSAC.2018.2844939 – ident: ref30 doi: 10.1109/MCOM.2019.1800608 – ident: ref122 doi: 10.1109/JSAC.2018.2844681 – ident: ref34 doi: 10.1109/COMST.2019.2904897 – ident: ref17 doi: 10.1109/MCOM.2016.7514161 – ident: ref127 doi: 10.1007/s11042-016-4008-8 – ident: ref85 doi: 10.1109/TMC.2008.50 – ident: ref101 doi: 10.1109/TWC.2016.2633522 – ident: ref63 doi: 10.1109/TETCI.2019.2892733 – ident: ref4 doi: 10.1109/JIOT.2018.2814063 – ident: ref10 doi: 10.1109/TVT.2014.2366559 – ident: ref40 doi: 10.1109/JSAC.2018.2844985 – ident: ref129 doi: 10.1109/TMC.2017.2780834 – ident: ref83 doi: 10.1109/ICC.2015.7249189 – ident: ref114 doi: 10.1109/TVT.2016.2633525 – start-page: 1 year: 0 ident: ref28 article-title: Predicting future traffic using hidden Markov models publication-title: Proc IEEE 24th Int Conf Netw Protocols '16 – ident: ref136 doi: 10.1016/j.sysconle.2004.08.007 – ident: ref15 doi: 10.1109/MVT.2019.2936087 – ident: ref113 doi: 10.1109/VTCFall.2013.6692125 – ident: ref25 doi: 10.1109/MCOM.2018.1701319 – ident: ref52 doi: 10.1109/MNET.2015.7166186 – ident: ref26 doi: 10.1109/JSAC.2019.2898745 – ident: ref94 doi: 10.1109/MWC.2003.1182111 – ident: ref62 doi: 10.1109/TVT.2016.2530716 – ident: ref110 doi: 10.1109/SPAWC.2016.7536857 – ident: ref50 doi: 10.1145/3323679.3326521 – ident: ref32 doi: 10.1109/TWC.2019.2940454 – ident: ref80 doi: 10.1109/TSP.2013.2252169 |
SSID | ssj0002511137 |
Score | 2.566097 |
Snippet | The integration of communications with different scales, diverse radio access technologies, and various network resources renders next-generation wireless... |
SourceID | doaj crossref ieee |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | Artificial intelligence Computer architecture content placement and delivery heterogeneous networks machine learning Network slicing Next generation networking Next-generation wireless networks radio access network slicing radio access technology selection Resource management Vehicle dynamics Wireless networks |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4MJz0YFY34yh48mVS63T6PQCRIIh4Ew23TpxeCRvH_O91dCFz04rWZbZpv2nlsp98gdMu5NUo7gpmB08QM09h4rbDw0gZimLUVHcPTRIxmbDzn861WX6kmrKYHroHrRs0D4QaiBPDcomA6Kkedp8xZwbmveD6JJlvJVLLBKXDOC9lcY-ZEd5_Hr1NIBym5p1rARiQ7jqji699psFL5l-EROmwCw6xXL-gY7YXlCTrYogtso0HvEQOcSTE-m9T12_hlke7G37I-uKM0ColsTSWdEM9ScesCjNla_OsUzYYP08EIN00QsCskW2E4UY5JLxXYIevy3NOoPY8Qlvnowd97YanjVhpplWbRSUVcMCEaZZ11EG-codbyfRnOUUZ5EdOTECsYpHWWWuOiyIP0InjqCOsgskakdA1DeGpUsSirTIHoMoFYJhDLBsQOutt88lHTY_wm3E8wbwQTs3U1APouG32Xf-m7g9pJSZtJlOZMqOLiP-a-RPtpvfUflivUWn1-h2uIOVb2ptpePxP40Nw priority: 102 providerName: Directory of Open Access Journals |
Title | AI-Assisted Network-Slicing Based Next-Generation Wireless Networks |
URI | https://ieeexplore.ieee.org/document/8954683 https://doaj.org/article/f95e05a2266446349f8c2cd24cb655d3 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3ooLbTq9gPlwKlqFsfx5xEQiCItHAoVt8ge2z10tVTt7oUDv52xk41KVVW9RJE1iSy_sf3GHj8DHEjpnbHIauGoNwknbO2CNbUK2kfmhPdFjmF2qc5vxMWtvN2AT-NZmBhjST6L0_xa9vLDHa7yUtmhsVIo027CJrlZf1ZrXE_JVLlp9bBx2TB7eHXx9ZoCQM6m3CpyPfZk6ikK_U-uVCkzytkOzNZ16RNJvk9XSz_F-z9kGv-3si_g-UAtq6PeF17CRlzswrPfBAf34OToc02AZGhDddlngNdf5nl3_Vt1TBNaLqVQuBejzphVOT12TsPh2vzXK7g5O70-Oa-HaxRqbLVY1tQnUeigDY1kHpsm8GSDTETsQgrEGILyHKXXTntjRUJtGEYXkzMePRJjeQ1bi7tFfAMVl23Kh0q8EhQYeu4dJtVEHVQMHJmYAFu3cIeDxni-6mLelViD2S6D0mVQugGUCXwcP_nRC2z8y_g4wzYaZm3sUkAt3w1drUtWRiYd8UrieqoVNhnkGLhAr6QM7QT2MlrjTwag3v69-B1s5xr0qy7vYWv5cxU_EA9Z-v0Sv9Nz9nC6X5zxESp73Tw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgs5cEJk6zj-PLZVq23pLge2qLfIHts9sNpWZffCr2ecZKMWIcQtsuzI8vPYb-zxG4CPUnpnLLJSOLIm4YQtXbCmVEH7yJzwvpVjmM7U5EKcXcrLLfg8vIWJMbbBZ3GcP9u7_HCN63xUtm-sFMrUD-ChJK_CdK-1hhOVTJarWvdXlxWz-1_Pvs_JBeRszK2iycfubT6tRv-9pCrtnnLyDKab3nShJD_G65Uf468_hBr_t7vP4WlPLouDbja8gK24fAlP7kgO7sDRwWlJkGRwQzHrYsDLb4t8v35VHNKWlkvJGe7kqDNqRQ6QXdCCuKn-8xVcnBzPjyZln0ihxFqLVUlWiUIHbWgt81hVgScbZCJqF1IgzhCU5yi9dtobKxJqwzC6mJzx6JE4y2vYXl4v4xsouKxTflbilSDX0HPvMKkq6qBi4MjECNhmhBvsVcZzsotF03obzDYZlCaD0vSgjODT0OSmk9j4V-XDDNtQMatjtwU08k1vbE2yMjLpiFkS21O1sMkgx8AFeiVlqEewk9EaftID9fbvxR_g0WQ-PW_OT2df3sHj3JvuDGYXtle367hHrGTl37eT8TeIhd5p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-Assisted+Network-Slicing+Based+Next-Generation+Wireless+Networks&rft.jtitle=IEEE+open+journal+of+vehicular+technology&rft.au=Shen%2C+Xuemin&rft.au=Gao%2C+Jie&rft.au=Wu%2C+Wen&rft.au=Lyu%2C+Kangjia&rft.date=2020&rft.pub=IEEE&rft.eissn=2644-1330&rft.volume=1&rft.spage=45&rft.epage=66&rft_id=info:doi/10.1109%2FOJVT.2020.2965100&rft.externalDocID=8954683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1330&client=summon |