Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment
PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National L...
Saved in:
| Published in | International journal of sports marketing & sponsorship Vol. 25; no. 2; pp. 382 - 395 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Emerald Publishing Limited
19.03.2024
Emerald Group Publishing Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1464-6668 2515-7841 |
| DOI | 10.1108/IJSMS-06-2023-0129 |
Cover
| Abstract | PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance. |
|---|---|
| AbstractList | PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance. |
| Author | Cho, Junghwan Gang, Alex C. Lee, Hyun-Woo Park, Juho Pedersen, Paul M. |
| Author_xml | – sequence: 1 givenname: Juho orcidid: 0000-0002-7973-7122 surname: Park fullname: Park, Juho email: jjuhopark@gmail.com – sequence: 2 givenname: Junghwan surname: Cho fullname: Cho, Junghwan email: cjh8526@naver.com – sequence: 3 givenname: Alex C. surname: Gang fullname: Gang, Alex C. email: joeunalexgang@gmail.com – sequence: 4 givenname: Hyun-Woo orcidid: 0000-0002-1022-0264 surname: Lee fullname: Lee, Hyun-Woo email: hwlee@tamu.edu – sequence: 5 givenname: Paul M. orcidid: 0000-0002-9814-252X surname: Pedersen fullname: Pedersen, Paul M. email: ppederse@indiana.edu |
| BookMark | eNp9kcGOFCEURYkZE3tGf8AViRtd1AhUQdHunImOY7rjYnRNXsGrHjoFlBS9mI8x8Vv8Mmnbjca4IpB73gXOOTmLKSIhzzm75Jzp17cf77Z3DVONYKJtGBfrR2QlJJdNrzt-Rla8U12jlNJPyPmy7BnjvRD9inzbgr33EemEkKOPOzpndN4WnyJN44_vI9iS8kJhHLGe1sAW9inTDcLugPQKFhxgmujL7ebqFd1BQAqlYHQQLb6hMO1S9uU-UJvCDNkvKdZh0dEANie0KabgLT3V1EZ6iBjmKT0EjOUpeTzCtOCz3-sF-fL-3efrD83m083t9dtNY9u-K003WGedw65Fxdwglagbxq2UUsMwgJVKc2B21Aii71V9upZs6MXQSXDt2F6QF6e5c05fD7gUs0-HHGulEWupuRBKr2tKn1L14suScTTWFzj-VMngJ8OZOcowv2QYpsxRhjnKqKj4C52zD5Af_g_xE4QBM0zu38wf1tufZBiicg |
| CitedBy_id | crossref_primary_10_1108_IJSMS_06_2024_0118 |
| Cites_doi | 10.32731/smq.301.032021.03 10.1145/2939672.2939785 10.1123/SMEJ.2015-0007 10.1177/1527002512450260 10.1093/oxrep/19.4.478 10.2202/1559-0410.1192 10.1123/jsm.2020-0274 10.1007/s11293-011-9274-2 10.1371/journal.pone.0247761 10.1016/j.jbusres.2018.03.003 10.1177/1527002519885 10.1080/00036846.2021.2003747 10.1123/jsm.2021-0067 10.1111/j.2517-6161.1996.tb02080.x 10.1108/IJSMS-11-01-2009-B002 10.1177/1527002518784120 10.1023/A:1010933404324 10.1103/RevModPhys.91.045002 10.1080/00036846.2020.1736502 10.1080/01490400.2012.633849 10.1016/j.joep.2019.03.002 10.1016/j.techfore.2015.12.019 10.1177/1527002504273392 10.15640/jcsit.v6n2a2 10.1177/1754337120983135 10.5465/amj.2016.4003 10.1177/152700252110004 10.1016/j.jbusres.2020.09.033 10.1080/16184742.2018.1481446 10.1177/08944393083215920 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 7TS 7WY 7WZ 7XB AFKRA AZQEC BENPR BEZIV CCPQU DWQXO F~G K6~ L.- M0C M0F PHGZM PHGZT PKEHL PQBIZ PQEST PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1108/IJSMS-06-2023-0129 |
| DatabaseName | CrossRef Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Central UK/Ireland ProQuest Central Essentials - QC PROQUEST Business Premium Collection ProQuest One ProQuest Central ABI/INFORM Global (Corporate) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ABI/INFORM Trade & Industry ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef Business Premium Collection ABI/INFORM Global (Corporate) ProQuest One Business ABI/INFORM Global ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest One Community College ABI/INFORM China ProQuest Business Collection ABI/INFORM Complete Physical Education Index ProQuest Central ABI/INFORM Professional Advanced ProQuest One Academic UKI Edition ProQuest Central Korea ABI/INFORM Trade & Industry ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | Business Premium Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Recreation & Sports |
| EISSN | 2515-7841 |
| EndPage | 395 |
| ExternalDocumentID | 10_1108_IJSMS_06_2023_0129 10.1108/IJSMS-06-2023-0129 |
| GroupedDBID | .WV 0R~ 1WG 29J 36B 5GY 7WY 9F- AAGBP AAIKC AAMCF AAMNW AAUDR ABIJV ABIVO ABMYL ABSDC ACGFS ACHQT ADOMW AEUCW AJEBP ALMA_UNASSIGNED_HOLDINGS ASMFL AUCOK BCDNB BENPR BUONS EBS FNNZZ GEI GMX GQ. IAO IEA IGG IOF IPO ITC M0F N95 O9- P2P SJN UPT ZYZAG AAKOT AAXBI AAYXX ABJNI ABYQI ACBFK ACTSA ADQHX ADWNT AFKRA AGTVX AHMHQ AILOG AJPYP AODMV AZQEC BEZIV BPHCQ CCPQU CITATION DWQXO H13 K6~ M0C M42 PHGZM PHGZT PQBIZ PQQKQ PROAC PUEGO 7TS 7XB AFNTC L.- PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c374t-4bcdcdde43e60db562dde01c5558abbac5681a0cf8ea2776722850b72b45ad3f3 |
| IEDL.DBID | ZYZAG |
| ISSN | 1464-6668 |
| IngestDate | Mon Jun 30 12:05:07 EDT 2025 Wed Oct 01 05:45:37 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Thu Mar 21 06:41:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Attendance Major league baseball Unemployment XGBoost Machine learning |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-4bcdcdde43e60db562dde01c5558abbac5681a0cf8ea2776722850b72b45ad3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7973-7122 0000-0002-9814-252X 0000-0002-1022-0264 |
| PQID | 2958122689 |
| PQPubID | 2042719 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1108_IJSMS_06_2023_0129 emerald_primary_10_1108_IJSMS-06-2023-0129 proquest_journals_2958122689 crossref_primary_10_1108_IJSMS_06_2023_0129 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-19 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of sports marketing & sponsorship |
| PublicationYear | 2024 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2024031806262245900_ref032) 2009; 27 (key2024031806262245900_ref028) 2018; 126 (key2024031806262245900_ref027) 2021; 16 (key2024031806262245900_ref025) 2010; 6 (key2024031806262245900_ref008) 2016 (key2024031806262245900_ref029) 2021; 35 (key2024031806262245900_ref005) 2001; 45 (key2024031806262245900_ref011) 2011; 2 (key2024031806262245900_ref012) 2006; 7 (key2024031806262245900_ref030) 2016; 10 (key2024031806262245900_ref016) 2021; 30 (key2024031806262245900_ref013) 2016 (key2024031806262245900_ref002) 2019; 94 (key2024031806262245900_ref001) 2021; 123 (key2024031806262245900_ref024) 2022; 23 (key2024031806262245900_ref035) 2012; 34 (key2024031806262245900_ref007) 2019; 91 (key2024031806262245900_ref009) 2012; 13 (key2024031806262245900_ref006) 2002 (key2024031806262245900_ref022) 2022; 54 (key2024031806262245900_ref010) 2016; 59 (key2024031806262245900_ref023) 2022; 236 (key2024031806262245900_ref021) 2020; 52 (key2024031806262245900_ref019) 2003 (key2024031806262245900_ref004) 2003; 19 (key2024031806262245900_ref037) 2018; 18 (key2024031806262245900_ref014) 2020; 21 key2024031806262245900_ref031 (key2024031806262245900_ref801) 2019; 20 key2024031806262245900_ref033 (key2024031806262245900_ref003) 2019; 72 (key2024031806262245900_ref015) 2021; 35 (key2024031806262245900_ref017) 2018; 6 (key2024031806262245900_ref018) 2009; 11 (key2024031806262245900_ref026) 1996; 58 (key2024031806262245900_ref020) 2014; 6 key2024031806262245900_ref034 key2024031806262245900_ref036 |
| References_xml | – volume: 30 start-page: 30 issue: 1 year: 2021 ident: key2024031806262245900_ref016 article-title: The effect of ownership marketing expertise on MLB attendance and digital consumption publication-title: Sport Marketing Quarterly doi: 10.32731/smq.301.032021.03 – ident: key2024031806262245900_ref033 – start-page: 785 year: 2016 ident: key2024031806262245900_ref008 article-title: Xgboost: a scalable tree boosting system doi: 10.1145/2939672.2939785 – volume: 10 start-page: 13 issue: 1 year: 2016 ident: key2024031806262245900_ref030 article-title: US sport management programs in business schools: trends and key issues publication-title: Sport Management Education Journal doi: 10.1123/SMEJ.2015-0007 – volume: 13 start-page: 364 issue: 4 year: 2012 ident: key2024031806262245900_ref009 article-title: Game attendance and outcome uncertainty in the national hockey league publication-title: Journal of Sports Economics doi: 10.1177/1527002512450260 – volume: 19 start-page: 478 issue: 4 year: 2003 ident: key2024031806262245900_ref004 article-title: Demand for sport publication-title: Oxford Review of Economic Policy doi: 10.1093/oxrep/19.4.478 – volume: 6 issue: 1 year: 2010 ident: key2024031806262245900_ref025 article-title: Do fans matter? The effect of attendance on the outcomes of Major League Baseball games publication-title: Journal of Quantitative Analysis in Sports doi: 10.2202/1559-0410.1192 – volume: 35 start-page: 254 issue: 3 year: 2021 ident: key2024031806262245900_ref015 article-title: Do consumer perceptions of tanking impact attendance at National Basketball Association games? A sentiment analysis approach publication-title: Journal of Sport Management doi: 10.1123/jsm.2020-0274 – volume: 2 start-page: 117 year: 2011 ident: key2024031806262245900_ref011 article-title: Factors affecting attendance of major league baseball: revisited publication-title: Atlantic Economic Journal doi: 10.1007/s11293-011-9274-2 – volume: 16 start-page: e0247761 issue: 3 year: 2021 ident: key2024031806262245900_ref027 article-title: Common international trends in football stadium attendance publication-title: PLoS One doi: 10.1371/journal.pone.0247761 – volume: 94 start-page: 290 year: 2019 ident: key2024031806262245900_ref002 article-title: Customer churn prediction in telecommunication industry using data certainty publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2018.03.003 – volume: 21 start-page: 304 issue: 3 year: 2020 ident: key2024031806262245900_ref014 article-title: Are fair weather fans affected by weather? Rainfall, habit formation, and live game attendance publication-title: Journal of Sports Economics doi: 10.1177/1527002519885 – volume: 54 start-page: 3138 issue: 27 year: 2022 ident: key2024031806262245900_ref022 article-title: Predicting individual event attendance with machine learning: a ‘step-forward’ approach publication-title: Applied Economics doi: 10.1080/00036846.2021.2003747 – volume: 35 start-page: 197 issue: 3 year: 2021 ident: key2024031806262245900_ref029 article-title: Big data and analytics in sport management publication-title: Journal of Sport Management doi: 10.1123/jsm.2021-0067 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: key2024031806262245900_ref026 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 11 start-page: 2 issue: 1 year: 2009 ident: key2024031806262245900_ref018 article-title: The value of competition: competitive balance as a predictor of attendance in spectator sports publication-title: International Journal of Sports Marketing and Sponsorship doi: 10.1108/IJSMS-11-01-2009-B002 – volume: 20 start-page: 580 issue: 4 year: 2019 ident: key2024031806262245900_ref801 article-title: Football spectator no-show behavior publication-title: Journal of Sports Economics doi: 10.1177/1527002518784120 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: key2024031806262245900_ref005 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 91 issue: 4 year: 2019 ident: key2024031806262245900_ref007 article-title: Machine learning and the physical sciences publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.91.045002 – volume-title: Sport Analytics: A Data-Driven Approach to Sport Business and Management year: 2016 ident: key2024031806262245900_ref013 – volume-title: Moneyball: the Art of Winning an Unfair Game year: 2003 ident: key2024031806262245900_ref019 – ident: key2024031806262245900_ref036 – volume: 52 start-page: 4512 issue: 41 year: 2020 ident: key2024031806262245900_ref021 article-title: Pre-and within-season attendance forecasting in Major League Baseball: a random forest approach publication-title: Applied Economics doi: 10.1080/00036846.2020.1736502 – ident: key2024031806262245900_ref034 – volume: 34 start-page: 19 issue: 1 year: 2012 ident: key2024031806262245900_ref035 article-title: Activity engagement as escape from self: the role of self-suppression and self-expansion publication-title: Leisure Sciences doi: 10.1080/01490400.2012.633849 – volume: 72 start-page: 117 year: 2019 ident: key2024031806262245900_ref003 article-title: How outcome uncertainty, loss aversion and team quality affect stadium attendance in Dutch professional football publication-title: Journal of Economic Psychology doi: 10.1016/j.joep.2019.03.002 – volume: 126 start-page: 3 year: 2018 ident: key2024031806262245900_ref028 article-title: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2015.12.019 – volume: 7 start-page: 247 issue: 3 year: 2006 ident: key2024031806262245900_ref012 article-title: New issues in attendance demand: the case of the English football league publication-title: Journal of Sports Economics doi: 10.1177/1527002504273392 – volume: 6 start-page: 15 issue: 2 year: 2018 ident: key2024031806262245900_ref017 article-title: Predicting attendance at major league soccer matches: a comparison of four techniques publication-title: Journal of Computer Science and Information Technology doi: 10.15640/jcsit.v6n2a2 – volume: 6 issue: 2 year: 2014 ident: key2024031806262245900_ref020 article-title: The introduction and application of sports analytics in professional sport organizations publication-title: Journal of Applied Sport Management – volume: 236 start-page: 106 issue: 2 year: 2022 ident: key2024031806262245900_ref023 article-title: Prediction of sports attendance: a comparative analysis publication-title: Journal of Sports Engineering and Technology doi: 10.1177/1754337120983135 – ident: key2024031806262245900_ref031 – volume: 59 start-page: 731 issue: 3 year: 2016 ident: key2024031806262245900_ref010 article-title: The digital workforce and the workplace of the future publication-title: Academy of Management doi: 10.5465/amj.2016.4003 – volume: 23 start-page: 749 issue: 6 year: 2022 ident: key2024031806262245900_ref024 article-title: Stadium attendance demand research: a scoping review publication-title: Journal of Sports Economics doi: 10.1177/152700252110004 – volume: 123 start-page: 267 year: 2021 ident: key2024031806262245900_ref001 article-title: Call me maybe: methods and practical implementation of artificial intelligence in call center arrivals' forecasting publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2020.09.033 – volume-title: Introduction to Time Series and Forecasting year: 2002 ident: key2024031806262245900_ref006 – volume: 18 start-page: 671 issue: 5 year: 2018 ident: key2024031806262245900_ref037 article-title: Attendance demand in a developing football market: the case of the Peruvian first division publication-title: European Sport Management Quarterly doi: 10.1080/16184742.2018.1481446 – volume: 27 start-page: 96 issue: 1 year: 2009 ident: key2024031806262245900_ref032 article-title: Marketing segmentation through machine learning models: an approach based on customer relationship management and customer profitability accounting publication-title: Social Science Computer Review doi: 10.1177/08944393083215920 |
| SSID | ssj0017227 |
| Score | 2.2971156 |
| Snippet | PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 382 |
| SubjectTerms | Algorithms Artificial intelligence Automation Big Data Data analysis Economic conditions Feature selection Forecasting Machine learning Macroeconomics Methods Precipitation Professional baseball Regression analysis Time series Unemployment Variables |
| SummonAdditionalLinks | – databaseName: PROQUEST dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdd-rKX0Y-NpV_oYZR9ICrLsmMPSmlGS1vqMNYV-mYk-ZwxEidNk_-mf-zuVDmho_TR6Avrzndn6e73Y-yTziNQlZRCQ2aFtikI20tAoK_MDejcga-FKQbpxa2-ukvu1tigrYWhtMrWJnpDXU0cnZEfqTxBX6TSLD-Z3gtijaLb1ZZCwwRqherYQ4y9YeuKkLE6bL1_Nvj5a3mv0FOexBXNgxYYuGdtGY3Mji6vboobSgIiQnFB5zPPXNV_9borm-0d0fkGexciSH76JPJNtgbNFttahX_8kHvq8odt9lj4VEnggRtiyKczupjx3SY1D2Q73PikDmovzN_JjF-DGS6A99HDWTMa8c_Fdf8LH5oxcILjxL94VJXv3IyGuEPzP2PulmyGOFlT8bHBV4JQ8xyWoQUXDXiGYTqSfM9uz89-_7gQgY5BuLin5yhIVzm0hjqGVFYWAyd8kJEjxDBjrXGEZWakqzMwikCClMoSaXvK6sRUcR1_YJ1m0sBHxpXDsNM6HJXXWoPKFYGE13FmYlVXUdJlUbvzpQtY5USZMSr9P4vMSi-tUqYlSaskaXXZt-WY6RNSx6u9vwaBvtz5mSJ02V4r8zJ84g_lSiF3Xm_eZW9xJk2Ja1G-xzrz2QL2MZKZ24Ognv8AqLHyHA priority: 102 providerName: ProQuest |
| Title | Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment |
| URI | https://www.emerald.com/insight/content/doi/10.1108/IJSMS-06-2023-0129/full/html https://www.proquest.com/docview/2958122689 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management eJournals Collection customDbUrl: eissn: 2515-7841 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017227 issn: 1464-6668 databaseCode: ZYZAG dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2515-7841 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017227 issn: 1464-6668 databaseCode: BENPR dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7oULjwJiS6l8QIiH0k0cJ5tw66KWUjVVRalUeolsx9kWstmym73wX5D4LfwyZhxnq1YVEhK3RPJDydgz4_HM9wG8EGlgeOH7njCJ8oSKjaeGkfHQVqbSiFQbWwuTHcZ7J2L_NDpdgaOuFsamVbbhGKunL-o5HVIHlLiNWngJOEDsNR_3j7NjStshCnCPIioDilkPzptJdQd6aMxC3Kq9sy9n2x-WNwtDbmlcUUEID133pCukuXW8a8bqRsXulda2pmj3PnzvPqLNQPm2tWjUlv5xA9_xf37lA7jn_Fa23S60h7Bi6jVYu3I62UtmCdPnj-BnZhM0DXOMFGN2OaPrINtsWv7-5Th-mLS5JNQgk1-nM3Zg5Hhh2AgNq5JVxV5lB6PXbCwnhhEKaF3QCn3HZDWezi6a8wnTSxJFHKwu2ETifzSu1Jq10-CMbFEbS2xMkdDHcLK78_n9nudYIDwdDkWD60cXGpWwCE3sFwr9NXzxA01AZVIpqQlCTfq6TIzkhE3EeRL5asiViGQRluETWK2ntXkKjGv0dpXGXmkphOEpJ2zyMkxkyMsiiPoQdOLOtYNIJ6aOKrdHJT_JrTByP85JGDkJow9vl30uW4CQv7Z-4-R-e-Nrcu7DRrfQcqdZ5jlPI_TJeJyk6_808zO4i8-C0ueCdANWm9nCPEd_qlGb0BvtHB592nRb5Q_TCR5r |
| linkProvider | Emerald |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gAvCAaIwgA_AOKPojmOkyZIE6Kwqd2aCrFN2luwnUsRatPSP0J8Fz4Ln40712k1hPa2x8hnO8mdfXf23f0Ye66yEGQpRKAgNYEyCQSmHUOAujLToDILLhcmHyTdc3V8EV9ssT9NLgyFVTZ7otuoy4mlM_J9mcWoi2SSZu-nPwJCjaLb1QZCQ3tohfLAlRjziR0n8OsnunDzg94n5PcLKY8Ozz52A48yENiorRb4fra0uMhVBIkoDdoD-CBCS4WwtDHaUokuLWyVgpZU-0bKNBamLY2KdRlVEY57g-2oSGXo_O10Dgefv6zvMZC4vcpvUgE6CmmTtiPS_d7xaX5KQUcEYB7QedAl1fhPfvBGRzjFd3SH3fYWK_-wErG7bAvqXba7MTf5S-6g0uf32O_chWYC91gUQz6d0UWQI5tU3IP7cO2CSKg9198nM94HPVwC76BGNXo04q_yfuc1H-oxcCr_WZckmu-4Hg2RI4tvY27X6Ik4WF3yscZPAp9j7aehCZc1OERjOgK9z86vhTEP2HY9qeEh49KimWss9soqpUBmkoqSV1GqI1mVYdxiYfPnC-troxNEx6hwPpJIC8etQiQFcasgbrXY23Wf6aoyyJXUbzxD_098SRBabK_heeG3lHmxWQCPrm5-xm52z_J-0e8NTh6zWziqoqC5MNtj24vZEp6gFbUwT72ocvb1ulfHXwXLMKU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiFeEBsgCgP8AIgPRU0cJ02QJkTZqnVrqokxaW-Z7VyKUJuWfgjxv-wv2l-1O9dpNYT2tsfIZzvJ2Xdn38ePsTcyDUAUvu9JSLQndQyebkXgoa5MFcjUgM2Fyfrx4Zk8Oo_ON9hVnQtDYZW1TLSCuhgbuiNvijRCXSTiJG2WLiziZL_zZfLbIwQp8rTWcBrKwSwUe7bcmEvyOIa_f_A4N9vr7iPv3wrROfjx7dBziAOeCVtyju9qCoMbXoYQ-4VG2wAf_MBQUSyltTJUrkv5pkxACaqDI0QS-boltIxUEZYhjnuPbZHzC4XEVvugf_J95dNA4tYy10l6eGhI6hQeP2l2j06zUwpAIjBzj-6GbqjJf3KF1_rCKsHOI_bQWa_863K5bbMNqHbYztr05O-4hU2fPWaXmQ3TBO5wKQZ8MiWnkCUbl9wB_XBlA0qoPVO_xlPeAzVYAG-jdtVqOOTvs177Ax-oEXAqBVoVtEw_czUcIEfmP0fcrJAUcbCq4COFnwQu39pNQxMuKrDoxnQd-oSd3QljnrLNalzBM8aFQZNXG-yVllKCSAUVKC_DRIWiLIKowYL6z-fG1UknuI5hbs9LfpJbbuV-nBO3cuJWg31a9Zksq4TcSv3RMfT_xDcWQoPt1jzPnXiZ5evN8Pz25tfsPu6SvNftH79gD3BQSfFzQbrLNufTBbxEg2quX7mVytnFXW-Oa_kPNNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+of%C2%A0factors+affecting+Major+League+Baseball+%28MLB%29+game+attendance%3A+algorithm+comparisons+and+macroeconomic+factor+of+unemployment&rft.jtitle=International+journal+of+sports+marketing+%26+sponsorship&rft.au=Park%2C+Juho&rft.au=Cho%2C+Junghwan&rft.au=Gang%2C+Alex+C.&rft.au=Lee%2C+Hyun-Woo&rft.date=2024-03-19&rft.issn=1464-6668&rft.volume=25&rft.issue=2&rft.spage=382&rft.epage=395&rft_id=info:doi/10.1108%2FIJSMS-06-2023-0129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IJSMS_06_2023_0129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6668&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6668&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6668&client=summon |