Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment

PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National L...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of sports marketing & sponsorship Vol. 25; no. 2; pp. 382 - 395
Main Authors Park, Juho, Cho, Junghwan, Gang, Alex C., Lee, Hyun-Woo, Pedersen, Paul M.
Format Journal Article
LanguageEnglish
Published London Emerald Publishing Limited 19.03.2024
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN1464-6668
2515-7841
DOI10.1108/IJSMS-06-2023-0129

Cover

Abstract PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance.
AbstractList PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors for predicting Major League Baseball (MLB) attendance. Furthermore, by predicting spectators for each league (American League and National League) and division in MLB, the authors will identify the specific factors that increase accuracy, discuss them and provide implications for marketing strategies for academics and practitioners in sport.Design/methodology/approachThis study used six years of daily MLB game data (2014–2019). All data were collected as predictors, such as game performance, weather and unemployment rate. Also, the attendance rate was obtained as an observation variable. The Random Forest, Lasso regression models and XGBoost were used to build the prediction model, and the analysis was conducted using Python 3.7.FindingsThe RMSE value was 0.14, and the R2 was 0.62 as a consequence of fine-tuning the tuning parameters of the XGBoost model, which had the best performance in forecasting the attendance rate. The most influential variables in the model are “Rank” of 0.247 and “Day of the week”, “Home team” and “Day/Night game” were shown as influential variables in order. The result was shown that the “Unemployment rate”, as a macroeconomic factor, has a value of 0.06 and weather factors were a total value of 0.147.Originality/valueThis research highlights unemployment rate as a determinant affecting MLB game attendance rates. Beyond contextual elements such as climate, the findings of this study underscore the significance of economic factors, particularly unemployment rates, necessitating further investigation into these factors to gain a more comprehensive understanding of game attendance.
Author Cho, Junghwan
Gang, Alex C.
Lee, Hyun-Woo
Park, Juho
Pedersen, Paul M.
Author_xml – sequence: 1
  givenname: Juho
  orcidid: 0000-0002-7973-7122
  surname: Park
  fullname: Park, Juho
  email: jjuhopark@gmail.com
– sequence: 2
  givenname: Junghwan
  surname: Cho
  fullname: Cho, Junghwan
  email: cjh8526@naver.com
– sequence: 3
  givenname: Alex C.
  surname: Gang
  fullname: Gang, Alex C.
  email: joeunalexgang@gmail.com
– sequence: 4
  givenname: Hyun-Woo
  orcidid: 0000-0002-1022-0264
  surname: Lee
  fullname: Lee, Hyun-Woo
  email: hwlee@tamu.edu
– sequence: 5
  givenname: Paul M.
  orcidid: 0000-0002-9814-252X
  surname: Pedersen
  fullname: Pedersen, Paul M.
  email: ppederse@indiana.edu
BookMark eNp9kcGOFCEURYkZE3tGf8AViRtd1AhUQdHunImOY7rjYnRNXsGrHjoFlBS9mI8x8Vv8Mmnbjca4IpB73gXOOTmLKSIhzzm75Jzp17cf77Z3DVONYKJtGBfrR2QlJJdNrzt-Rla8U12jlNJPyPmy7BnjvRD9inzbgr33EemEkKOPOzpndN4WnyJN44_vI9iS8kJhHLGe1sAW9inTDcLugPQKFhxgmujL7ebqFd1BQAqlYHQQLb6hMO1S9uU-UJvCDNkvKdZh0dEANie0KabgLT3V1EZ6iBjmKT0EjOUpeTzCtOCz3-sF-fL-3efrD83m083t9dtNY9u-K003WGedw65Fxdwglagbxq2UUsMwgJVKc2B21Aii71V9upZs6MXQSXDt2F6QF6e5c05fD7gUs0-HHGulEWupuRBKr2tKn1L14suScTTWFzj-VMngJ8OZOcowv2QYpsxRhjnKqKj4C52zD5Af_g_xE4QBM0zu38wf1tufZBiicg
CitedBy_id crossref_primary_10_1108_IJSMS_06_2024_0118
Cites_doi 10.32731/smq.301.032021.03
10.1145/2939672.2939785
10.1123/SMEJ.2015-0007
10.1177/1527002512450260
10.1093/oxrep/19.4.478
10.2202/1559-0410.1192
10.1123/jsm.2020-0274
10.1007/s11293-011-9274-2
10.1371/journal.pone.0247761
10.1016/j.jbusres.2018.03.003
10.1177/1527002519885
10.1080/00036846.2021.2003747
10.1123/jsm.2021-0067
10.1111/j.2517-6161.1996.tb02080.x
10.1108/IJSMS-11-01-2009-B002
10.1177/1527002518784120
10.1023/A:1010933404324
10.1103/RevModPhys.91.045002
10.1080/00036846.2020.1736502
10.1080/01490400.2012.633849
10.1016/j.joep.2019.03.002
10.1016/j.techfore.2015.12.019
10.1177/1527002504273392
10.15640/jcsit.v6n2a2
10.1177/1754337120983135
10.5465/amj.2016.4003
10.1177/152700252110004
10.1016/j.jbusres.2020.09.033
10.1080/16184742.2018.1481446
10.1177/08944393083215920
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7TS
7WY
7WZ
7XB
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
F~G
K6~
L.-
M0C
M0F
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1108/IJSMS-06-2023-0129
DatabaseName CrossRef
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
PROQUEST
Business Premium Collection
ProQuest One
ProQuest Central
ABI/INFORM Global (Corporate)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ABI/INFORM Trade & Industry
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
Business Premium Collection
ABI/INFORM Global (Corporate)
ProQuest One Business
ABI/INFORM Global
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest One Community College
ABI/INFORM China
ProQuest Business Collection
ABI/INFORM Complete
Physical Education Index
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Academic UKI Edition
ProQuest Central Korea
ABI/INFORM Trade & Industry
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList Business Premium Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Recreation & Sports
EISSN 2515-7841
EndPage 395
ExternalDocumentID 10_1108_IJSMS_06_2023_0129
10.1108/IJSMS-06-2023-0129
GroupedDBID .WV
0R~
1WG
29J
36B
5GY
7WY
9F-
AAGBP
AAIKC
AAMCF
AAMNW
AAUDR
ABIJV
ABIVO
ABMYL
ABSDC
ACGFS
ACHQT
ADOMW
AEUCW
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ASMFL
AUCOK
BCDNB
BENPR
BUONS
EBS
FNNZZ
GEI
GMX
GQ.
IAO
IEA
IGG
IOF
IPO
ITC
M0F
N95
O9-
P2P
SJN
UPT
ZYZAG
AAKOT
AAXBI
AAYXX
ABJNI
ABYQI
ACBFK
ACTSA
ADQHX
ADWNT
AFKRA
AGTVX
AHMHQ
AILOG
AJPYP
AODMV
AZQEC
BEZIV
BPHCQ
CCPQU
CITATION
DWQXO
H13
K6~
M0C
M42
PHGZM
PHGZT
PQBIZ
PQQKQ
PROAC
PUEGO
7TS
7XB
AFNTC
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c374t-4bcdcdde43e60db562dde01c5558abbac5681a0cf8ea2776722850b72b45ad3f3
IEDL.DBID ZYZAG
ISSN 1464-6668
IngestDate Mon Jun 30 12:05:07 EDT 2025
Wed Oct 01 05:45:37 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Thu Mar 21 06:41:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Attendance
Major league baseball
Unemployment
XGBoost
Machine learning
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-4bcdcdde43e60db562dde01c5558abbac5681a0cf8ea2776722850b72b45ad3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7973-7122
0000-0002-9814-252X
0000-0002-1022-0264
PQID 2958122689
PQPubID 2042719
PageCount 14
ParticipantIDs crossref_citationtrail_10_1108_IJSMS_06_2023_0129
emerald_primary_10_1108_IJSMS-06-2023-0129
proquest_journals_2958122689
crossref_primary_10_1108_IJSMS_06_2023_0129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of sports marketing & sponsorship
PublicationYear 2024
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2024031806262245900_ref032) 2009; 27
(key2024031806262245900_ref028) 2018; 126
(key2024031806262245900_ref027) 2021; 16
(key2024031806262245900_ref025) 2010; 6
(key2024031806262245900_ref008) 2016
(key2024031806262245900_ref029) 2021; 35
(key2024031806262245900_ref005) 2001; 45
(key2024031806262245900_ref011) 2011; 2
(key2024031806262245900_ref012) 2006; 7
(key2024031806262245900_ref030) 2016; 10
(key2024031806262245900_ref016) 2021; 30
(key2024031806262245900_ref013) 2016
(key2024031806262245900_ref002) 2019; 94
(key2024031806262245900_ref001) 2021; 123
(key2024031806262245900_ref024) 2022; 23
(key2024031806262245900_ref035) 2012; 34
(key2024031806262245900_ref007) 2019; 91
(key2024031806262245900_ref009) 2012; 13
(key2024031806262245900_ref006) 2002
(key2024031806262245900_ref022) 2022; 54
(key2024031806262245900_ref010) 2016; 59
(key2024031806262245900_ref023) 2022; 236
(key2024031806262245900_ref021) 2020; 52
(key2024031806262245900_ref019) 2003
(key2024031806262245900_ref004) 2003; 19
(key2024031806262245900_ref037) 2018; 18
(key2024031806262245900_ref014) 2020; 21
key2024031806262245900_ref031
(key2024031806262245900_ref801) 2019; 20
key2024031806262245900_ref033
(key2024031806262245900_ref003) 2019; 72
(key2024031806262245900_ref015) 2021; 35
(key2024031806262245900_ref017) 2018; 6
(key2024031806262245900_ref018) 2009; 11
(key2024031806262245900_ref026) 1996; 58
(key2024031806262245900_ref020) 2014; 6
key2024031806262245900_ref034
key2024031806262245900_ref036
References_xml – volume: 30
  start-page: 30
  issue: 1
  year: 2021
  ident: key2024031806262245900_ref016
  article-title: The effect of ownership marketing expertise on MLB attendance and digital consumption
  publication-title: Sport Marketing Quarterly
  doi: 10.32731/smq.301.032021.03
– ident: key2024031806262245900_ref033
– start-page: 785
  year: 2016
  ident: key2024031806262245900_ref008
  article-title: Xgboost: a scalable tree boosting system
  doi: 10.1145/2939672.2939785
– volume: 10
  start-page: 13
  issue: 1
  year: 2016
  ident: key2024031806262245900_ref030
  article-title: US sport management programs in business schools: trends and key issues
  publication-title: Sport Management Education Journal
  doi: 10.1123/SMEJ.2015-0007
– volume: 13
  start-page: 364
  issue: 4
  year: 2012
  ident: key2024031806262245900_ref009
  article-title: Game attendance and outcome uncertainty in the national hockey league
  publication-title: Journal of Sports Economics
  doi: 10.1177/1527002512450260
– volume: 19
  start-page: 478
  issue: 4
  year: 2003
  ident: key2024031806262245900_ref004
  article-title: Demand for sport
  publication-title: Oxford Review of Economic Policy
  doi: 10.1093/oxrep/19.4.478
– volume: 6
  issue: 1
  year: 2010
  ident: key2024031806262245900_ref025
  article-title: Do fans matter? The effect of attendance on the outcomes of Major League Baseball games
  publication-title: Journal of Quantitative Analysis in Sports
  doi: 10.2202/1559-0410.1192
– volume: 35
  start-page: 254
  issue: 3
  year: 2021
  ident: key2024031806262245900_ref015
  article-title: Do consumer perceptions of tanking impact attendance at National Basketball Association games? A sentiment analysis approach
  publication-title: Journal of Sport Management
  doi: 10.1123/jsm.2020-0274
– volume: 2
  start-page: 117
  year: 2011
  ident: key2024031806262245900_ref011
  article-title: Factors affecting attendance of major league baseball: revisited
  publication-title: Atlantic Economic Journal
  doi: 10.1007/s11293-011-9274-2
– volume: 16
  start-page: e0247761
  issue: 3
  year: 2021
  ident: key2024031806262245900_ref027
  article-title: Common international trends in football stadium attendance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0247761
– volume: 94
  start-page: 290
  year: 2019
  ident: key2024031806262245900_ref002
  article-title: Customer churn prediction in telecommunication industry using data certainty
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2018.03.003
– volume: 21
  start-page: 304
  issue: 3
  year: 2020
  ident: key2024031806262245900_ref014
  article-title: Are fair weather fans affected by weather? Rainfall, habit formation, and live game attendance
  publication-title: Journal of Sports Economics
  doi: 10.1177/1527002519885
– volume: 54
  start-page: 3138
  issue: 27
  year: 2022
  ident: key2024031806262245900_ref022
  article-title: Predicting individual event attendance with machine learning: a ‘step-forward’ approach
  publication-title: Applied Economics
  doi: 10.1080/00036846.2021.2003747
– volume: 35
  start-page: 197
  issue: 3
  year: 2021
  ident: key2024031806262245900_ref029
  article-title: Big data and analytics in sport management
  publication-title: Journal of Sport Management
  doi: 10.1123/jsm.2021-0067
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: key2024031806262245900_ref026
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 11
  start-page: 2
  issue: 1
  year: 2009
  ident: key2024031806262245900_ref018
  article-title: The value of competition: competitive balance as a predictor of attendance in spectator sports
  publication-title: International Journal of Sports Marketing and Sponsorship
  doi: 10.1108/IJSMS-11-01-2009-B002
– volume: 20
  start-page: 580
  issue: 4
  year: 2019
  ident: key2024031806262245900_ref801
  article-title: Football spectator no-show behavior
  publication-title: Journal of Sports Economics
  doi: 10.1177/1527002518784120
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: key2024031806262245900_ref005
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 91
  issue: 4
  year: 2019
  ident: key2024031806262245900_ref007
  article-title: Machine learning and the physical sciences
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.91.045002
– volume-title: Sport Analytics: A Data-Driven Approach to Sport Business and Management
  year: 2016
  ident: key2024031806262245900_ref013
– volume-title: Moneyball: the Art of Winning an Unfair Game
  year: 2003
  ident: key2024031806262245900_ref019
– ident: key2024031806262245900_ref036
– volume: 52
  start-page: 4512
  issue: 41
  year: 2020
  ident: key2024031806262245900_ref021
  article-title: Pre-and within-season attendance forecasting in Major League Baseball: a random forest approach
  publication-title: Applied Economics
  doi: 10.1080/00036846.2020.1736502
– ident: key2024031806262245900_ref034
– volume: 34
  start-page: 19
  issue: 1
  year: 2012
  ident: key2024031806262245900_ref035
  article-title: Activity engagement as escape from self: the role of self-suppression and self-expansion
  publication-title: Leisure Sciences
  doi: 10.1080/01490400.2012.633849
– volume: 72
  start-page: 117
  year: 2019
  ident: key2024031806262245900_ref003
  article-title: How outcome uncertainty, loss aversion and team quality affect stadium attendance in Dutch professional football
  publication-title: Journal of Economic Psychology
  doi: 10.1016/j.joep.2019.03.002
– volume: 126
  start-page: 3
  year: 2018
  ident: key2024031806262245900_ref028
  article-title: Big data analytics: understanding its capabilities and potential benefits for healthcare organizations
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2015.12.019
– volume: 7
  start-page: 247
  issue: 3
  year: 2006
  ident: key2024031806262245900_ref012
  article-title: New issues in attendance demand: the case of the English football league
  publication-title: Journal of Sports Economics
  doi: 10.1177/1527002504273392
– volume: 6
  start-page: 15
  issue: 2
  year: 2018
  ident: key2024031806262245900_ref017
  article-title: Predicting attendance at major league soccer matches: a comparison of four techniques
  publication-title: Journal of Computer Science and Information Technology
  doi: 10.15640/jcsit.v6n2a2
– volume: 6
  issue: 2
  year: 2014
  ident: key2024031806262245900_ref020
  article-title: The introduction and application of sports analytics in professional sport organizations
  publication-title: Journal of Applied Sport Management
– volume: 236
  start-page: 106
  issue: 2
  year: 2022
  ident: key2024031806262245900_ref023
  article-title: Prediction of sports attendance: a comparative analysis
  publication-title: Journal of Sports Engineering and Technology
  doi: 10.1177/1754337120983135
– ident: key2024031806262245900_ref031
– volume: 59
  start-page: 731
  issue: 3
  year: 2016
  ident: key2024031806262245900_ref010
  article-title: The digital workforce and the workplace of the future
  publication-title: Academy of Management
  doi: 10.5465/amj.2016.4003
– volume: 23
  start-page: 749
  issue: 6
  year: 2022
  ident: key2024031806262245900_ref024
  article-title: Stadium attendance demand research: a scoping review
  publication-title: Journal of Sports Economics
  doi: 10.1177/152700252110004
– volume: 123
  start-page: 267
  year: 2021
  ident: key2024031806262245900_ref001
  article-title: Call me maybe: methods and practical implementation of artificial intelligence in call center arrivals' forecasting
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2020.09.033
– volume-title: Introduction to Time Series and Forecasting
  year: 2002
  ident: key2024031806262245900_ref006
– volume: 18
  start-page: 671
  issue: 5
  year: 2018
  ident: key2024031806262245900_ref037
  article-title: Attendance demand in a developing football market: the case of the Peruvian first division
  publication-title: European Sport Management Quarterly
  doi: 10.1080/16184742.2018.1481446
– volume: 27
  start-page: 96
  issue: 1
  year: 2009
  ident: key2024031806262245900_ref032
  article-title: Marketing segmentation through machine learning models: an approach based on customer relationship management and customer profitability accounting
  publication-title: Social Science Computer Review
  doi: 10.1177/08944393083215920
SSID ssj0017227
Score 2.2971156
Snippet PurposeThis study aims to identify an automated machine learning algorithm with high accuracy that sport practitioners can use to identify the specific factors...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 382
SubjectTerms Algorithms
Artificial intelligence
Automation
Big Data
Data analysis
Economic conditions
Feature selection
Forecasting
Machine learning
Macroeconomics
Methods
Precipitation
Professional baseball
Regression analysis
Time series
Unemployment
Variables
SummonAdditionalLinks – databaseName: PROQUEST
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdd-rKX0Y-NpV_oYZR9ICrLsmMPSmlGS1vqMNYV-mYk-ZwxEidNk_-mf-zuVDmho_TR6Avrzndn6e73Y-yTziNQlZRCQ2aFtikI20tAoK_MDejcga-FKQbpxa2-ukvu1tigrYWhtMrWJnpDXU0cnZEfqTxBX6TSLD-Z3gtijaLb1ZZCwwRqherYQ4y9YeuKkLE6bL1_Nvj5a3mv0FOexBXNgxYYuGdtGY3Mji6vboobSgIiQnFB5zPPXNV_9borm-0d0fkGexciSH76JPJNtgbNFttahX_8kHvq8odt9lj4VEnggRtiyKczupjx3SY1D2Q73PikDmovzN_JjF-DGS6A99HDWTMa8c_Fdf8LH5oxcILjxL94VJXv3IyGuEPzP2PulmyGOFlT8bHBV4JQ8xyWoQUXDXiGYTqSfM9uz89-_7gQgY5BuLin5yhIVzm0hjqGVFYWAyd8kJEjxDBjrXGEZWakqzMwikCClMoSaXvK6sRUcR1_YJ1m0sBHxpXDsNM6HJXXWoPKFYGE13FmYlVXUdJlUbvzpQtY5USZMSr9P4vMSi-tUqYlSaskaXXZt-WY6RNSx6u9vwaBvtz5mSJ02V4r8zJ84g_lSiF3Xm_eZW9xJk2Ja1G-xzrz2QL2MZKZ24Ognv8AqLHyHA
  priority: 102
  providerName: ProQuest
Title Machine learning prediction of factors affecting Major League Baseball (MLB) game attendance: algorithm comparisons and macroeconomic factor of unemployment
URI https://www.emerald.com/insight/content/doi/10.1108/IJSMS-06-2023-0129/full/html
https://www.proquest.com/docview/2958122689
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management eJournals Collection
  customDbUrl:
  eissn: 2515-7841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017227
  issn: 1464-6668
  databaseCode: ZYZAG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2515-7841
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017227
  issn: 1464-6668
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7oULjwJiS6l8QIiH0k0cJ5tw66KWUjVVRalUeolsx9kWstmym73wX5D4LfwyZhxnq1YVEhK3RPJDydgz4_HM9wG8EGlgeOH7njCJ8oSKjaeGkfHQVqbSiFQbWwuTHcZ7J2L_NDpdgaOuFsamVbbhGKunL-o5HVIHlLiNWngJOEDsNR_3j7NjStshCnCPIioDilkPzptJdQd6aMxC3Kq9sy9n2x-WNwtDbmlcUUEID133pCukuXW8a8bqRsXulda2pmj3PnzvPqLNQPm2tWjUlv5xA9_xf37lA7jn_Fa23S60h7Bi6jVYu3I62UtmCdPnj-BnZhM0DXOMFGN2OaPrINtsWv7-5Th-mLS5JNQgk1-nM3Zg5Hhh2AgNq5JVxV5lB6PXbCwnhhEKaF3QCn3HZDWezi6a8wnTSxJFHKwu2ETifzSu1Jq10-CMbFEbS2xMkdDHcLK78_n9nudYIDwdDkWD60cXGpWwCE3sFwr9NXzxA01AZVIpqQlCTfq6TIzkhE3EeRL5asiViGQRluETWK2ntXkKjGv0dpXGXmkphOEpJ2zyMkxkyMsiiPoQdOLOtYNIJ6aOKrdHJT_JrTByP85JGDkJow9vl30uW4CQv7Z-4-R-e-Nrcu7DRrfQcqdZ5jlPI_TJeJyk6_808zO4i8-C0ueCdANWm9nCPEd_qlGb0BvtHB592nRb5Q_TCR5r
linkProvider Emerald
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfG9gAvCAaIwgA_AOKPojmOkyZIE6Kwqd2aCrFN2luwnUsRatPSP0J8Fz4Ln40712k1hPa2x8hnO8mdfXf23f0Ye66yEGQpRKAgNYEyCQSmHUOAujLToDILLhcmHyTdc3V8EV9ssT9NLgyFVTZ7otuoy4mlM_J9mcWoi2SSZu-nPwJCjaLb1QZCQ3tohfLAlRjziR0n8OsnunDzg94n5PcLKY8Ozz52A48yENiorRb4fra0uMhVBIkoDdoD-CBCS4WwtDHaUokuLWyVgpZU-0bKNBamLY2KdRlVEY57g-2oSGXo_O10Dgefv6zvMZC4vcpvUgE6CmmTtiPS_d7xaX5KQUcEYB7QedAl1fhPfvBGRzjFd3SH3fYWK_-wErG7bAvqXba7MTf5S-6g0uf32O_chWYC91gUQz6d0UWQI5tU3IP7cO2CSKg9198nM94HPVwC76BGNXo04q_yfuc1H-oxcCr_WZckmu-4Hg2RI4tvY27X6Ik4WF3yscZPAp9j7aehCZc1OERjOgK9z86vhTEP2HY9qeEh49KimWss9soqpUBmkoqSV1GqI1mVYdxiYfPnC-troxNEx6hwPpJIC8etQiQFcasgbrXY23Wf6aoyyJXUbzxD_098SRBabK_heeG3lHmxWQCPrm5-xm52z_J-0e8NTh6zWziqoqC5MNtj24vZEp6gFbUwT72ocvb1ulfHXwXLMKU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiFeEBsgCgP8AIgPRU0cJ02QJkTZqnVrqokxaW-Z7VyKUJuWfgjxv-wv2l-1O9dpNYT2tsfIZzvJ2Xdn38ePsTcyDUAUvu9JSLQndQyebkXgoa5MFcjUgM2Fyfrx4Zk8Oo_ON9hVnQtDYZW1TLSCuhgbuiNvijRCXSTiJG2WLiziZL_zZfLbIwQp8rTWcBrKwSwUe7bcmEvyOIa_f_A4N9vr7iPv3wrROfjx7dBziAOeCVtyju9qCoMbXoYQ-4VG2wAf_MBQUSyltTJUrkv5pkxACaqDI0QS-boltIxUEZYhjnuPbZHzC4XEVvugf_J95dNA4tYy10l6eGhI6hQeP2l2j06zUwpAIjBzj-6GbqjJf3KF1_rCKsHOI_bQWa_863K5bbMNqHbYztr05O-4hU2fPWaXmQ3TBO5wKQZ8MiWnkCUbl9wB_XBlA0qoPVO_xlPeAzVYAG-jdtVqOOTvs177Ax-oEXAqBVoVtEw_czUcIEfmP0fcrJAUcbCq4COFnwQu39pNQxMuKrDoxnQd-oSd3QljnrLNalzBM8aFQZNXG-yVllKCSAUVKC_DRIWiLIKowYL6z-fG1UknuI5hbs9LfpJbbuV-nBO3cuJWg31a9Zksq4TcSv3RMfT_xDcWQoPt1jzPnXiZ5evN8Pz25tfsPu6SvNftH79gD3BQSfFzQbrLNufTBbxEg2quX7mVytnFXW-Oa_kPNNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+prediction+of%C2%A0factors+affecting+Major+League+Baseball+%28MLB%29+game+attendance%3A+algorithm+comparisons+and+macroeconomic+factor+of+unemployment&rft.jtitle=International+journal+of+sports+marketing+%26+sponsorship&rft.au=Park%2C+Juho&rft.au=Cho%2C+Junghwan&rft.au=Gang%2C+Alex+C.&rft.au=Lee%2C+Hyun-Woo&rft.date=2024-03-19&rft.issn=1464-6668&rft.volume=25&rft.issue=2&rft.spage=382&rft.epage=395&rft_id=info:doi/10.1108%2FIJSMS-06-2023-0129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_IJSMS_06_2023_0129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6668&client=summon