Classification under uncertainty: data analysis for diagnostic antibody testing
Abstract Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that lever...
Saved in:
| Published in | Mathematical medicine and biology Vol. 38; no. 3; pp. 396 - 416 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford University Press
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1477-8599 1477-8602 1477-8602 |
| DOI | 10.1093/imammb/dqab007 |
Cover
| Abstract | Abstract
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization. |
|---|---|
| AbstractList | Abstract
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization. Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization. Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization. |
| Author | Patrone, Paul N Kearsley, Anthony J |
| Author_xml | – sequence: 1 givenname: Paul N surname: Patrone fullname: Patrone, Paul N organization: Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA – sequence: 2 givenname: Anthony J surname: Kearsley fullname: Kearsley, Anthony J email: anthony.kearsley@nist.gov organization: Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA |
| BookMark | eNqFkLtPwzAQxi1UJNrCypwRhrZ-JHHMhipeUqUuMEcX26mMEju1HaH89wQCCxLqci99393pt0Az66xG6JrgNcGCbUwLbVtt1BEqjPkZmpOU81WRYzr7rTMhLtAihHeMKSN5MUf7bQMhmNpIiMbZpLdK-zFK7SMYG4e7REGEBCw0QzAhqZ1PlIGDdSEaOc6jqZwakqjH3h4u0XkNTdBXP3mJ3h4fXrfPq93-6WV7v1tJxtO4IqBwDqwSkILkXKk0rQVUFDgRrOaFziquRM2AUVBZQQDrQldUUpoqiknFlmgz7e1tB8MHNE3Z-ZGAH0qCyy8e5cSj_OExOm4mR-fdsR-_LVsTpG4asNr1oaRZTtKCZVyM0nSSSu9C8LoupYnffKIH0_x_Yf3HdvKl28ng-u6U9hPZj5js |
| CitedBy_id | crossref_primary_10_1016_j_jtbi_2022_111375 crossref_primary_10_1007_s11538_024_01402_0 crossref_primary_10_1016_j_mbs_2022_108858 crossref_primary_10_1016_j_spl_2023_109946 crossref_primary_10_1371_journal_pcbi_1012749 crossref_primary_10_1098_rsta_2021_0121 crossref_primary_10_1371_journal_pone_0280823 crossref_primary_10_1016_j_mbs_2023_108982 |
| Cites_doi | 10.1038/nrneph.2013.281 10.1038/s41598-020-73491-5 10.7861/clinmed.2020-0170 10.1063/1.4977516 10.1016/j.cell.2020.02.058 10.1056/NEJMc2025179 10.1007/978-1-4757-4286-2 10.1038/s41421-020-00224-3 10.20506/rst.17.2.1119 10.1016/j.immuni.2020.06.012 10.1001/jama.2020.18796 10.1093/infdis/jiaa467 10.1038/s41551-020-00642-4 10.1017/S0962492900002804 10.1038/s41590-020-0773-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. |
| DBID | TOX AAYXX CITATION 7X8 ADTOC UNPAY |
| DOI | 10.1093/imammb/dqab007 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-8602 |
| EndPage | 416 |
| ExternalDocumentID | 10.1093/imammb/dqab007 10_1093_imammb_dqab007 |
| GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 18M 29M 4.4 48X 5GY 5VS 5WA 5WD 70D AABZA AACZT AAIJN AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDFA ABDTM ABEJV ABEUO ABGNP ABIME ABIXL ABKDP ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUKT ACUTJ ACUTO ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA AJEUX AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG ANFBD APIBT APWMN AQDSO ATGXG ATTQO AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BTRTY BVRKM CAG CDBKE COF CS3 CZ4 DAKXR DILTD D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FLIZI FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MK0 N9A NGC NMDNZ NOMLY NOYVH NVLIB O0~ O9- OAWHX OCL OCZFY ODMLO OJQWA OJZSN OPAEJ OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX RUSNO RW1 RXO RZF RZO SV3 TJP TJX TOX X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABVLG ADYJX AHGBF AJBYB AMVHM CITATION 7X8 ADTOC AGORE AGQPQ UNPAY |
| ID | FETCH-LOGICAL-c374t-1ad06a3b9a4ac77dd44f9ab2a7193f78e5b7d9f3a32ad581a0e8eb2c224d201b3 |
| IEDL.DBID | UNPAY |
| ISSN | 1477-8599 1477-8602 |
| IngestDate | Tue Aug 19 23:32:43 EDT 2025 Thu Oct 02 09:38:48 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Oct 01 02:59:06 EDT 2025 Wed Apr 02 07:14:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | SARS-CoV-2 antibody classification optimal decision theory serology |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-1ad06a3b9a4ac77dd44f9ab2a7193f78e5b7d9f3a32ad581a0e8eb2c224d201b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/imammb/article-pdf/38/3/396/40077171/dqab007.pdf |
| PQID | 2561483579 |
| PQPubID | 23479 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1093_imammb_dqab007 proquest_miscellaneous_2561483579 crossref_citationtrail_10_1093_imammb_dqab007 crossref_primary_10_1093_imammb_dqab007 oup_primary_10_1093_imammb_dqab007 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical medicine and biology |
| PublicationYear | 2021 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Liu (2021083006512491500_ref15) 2020; 4 Hachim (2021083006512491500_ref9) 2020; 21 Lerner (2021083006512491500_ref14) 2020; 53 Tchebichef (2021083006512491500_ref20) 1867; 12 Jacobson (2021083006512491500_ref11) 1998; 17 NCI (2021083006512491500_ref17) 2021 Algaissi (2021083006512491500_ref1) 2020; 10 Bond (2021083006512491500_ref4) 2020; 222 Caflisch (2021083006512491500_ref5) 1998; 7 Ibarrondo (2021083006512491500_ref10) 2020; 383 Lo (2021083006512491500_ref16) 2014; 10 Patrone (2021083006512491500_ref19) 2017; 146 Tian (2021083006512491500_ref21) 2020; 6 Walls (2021083006512491500_ref22) 2020; 181 Patel (2021083006512491500_ref18) 2020; 324 Berger (2021083006512491500_ref2) 1985 Bermingham (2021083006512491500_ref3) 2020; 20 Florkowski (2021083006512491500_ref7) 2008; 29 FDA (2021083006512491500_ref6) 2020 Grzelak (2021083006512491500_ref8) 2020 Klumpp-Thomas (2021083006512491500_ref13) 2021 JCGM (2021083006512491500_ref12) 2008 |
| References_xml | – volume: 10 start-page: 215 year: 2014 ident: 2021083006512491500_ref16 article-title: Biomarkers for kidney transplant rejection publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2013.281 – volume: 10 start-page: 16561 year: 2020 ident: 2021083006512491500_ref1 article-title: Sars-cov-2 s1 and n-based serological assays reveal rapid seroconversion and induction of specific antibody response in covid-19 patients publication-title: Sci. Rep. doi: 10.1038/s41598-020-73491-5 – volume: 20 start-page: 365 year: 2020 ident: 2021083006512491500_ref3 article-title: Sars-cov-2 serology: test, test, test, but interpret with caution! publication-title: Clin. Med. doi: 10.7861/clinmed.2020-0170 – volume: 146 start-page: 094107 year: 2017 ident: 2021083006512491500_ref19 article-title: Beyond histograms: efficiently estimating radial distribution functions via spectral Monte Carlo publication-title: J. Chem. Phys. doi: 10.1063/1.4977516 – volume: 12 start-page: 177 year: 1867 ident: 2021083006512491500_ref20 article-title: Des valeurs moyennes publication-title: J. Math. Pures Appl. – volume: 181 start-page: 281 year: 2020 ident: 2021083006512491500_ref22 article-title: Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 383 start-page: 1085 year: 2020 ident: 2021083006512491500_ref10 article-title: Rapid decay of anti-sars-cov-2 antibodies in persons with mild covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2025179 – start-page: eabc3103 year: 2020 ident: 2021083006512491500_ref8 article-title: A comparison of four serological assays for detecting anti-sars-cov-2 antibodies in human serum samples from different populations – year: 2008 ident: 2021083006512491500_ref12 article-title: Jcgm 100:2008, evaluation of measurement data—guide to the expression of uncertainty in measurement – volume-title: Statistical Decision Theory and Bayesian Analysis year: 1985 ident: 2021083006512491500_ref2 doi: 10.1007/978-1-4757-4286-2 – volume: 6 start-page: 75 year: 2020 ident: 2021083006512491500_ref21 article-title: Sensitivity and specificity of sars-cov-2 s1 subunit in covid-19 serology assays publication-title: Cell Discov. doi: 10.1038/s41421-020-00224-3 – volume: 17 start-page: 469 year: 1998 ident: 2021083006512491500_ref11 article-title: Validation of serological assays for diagnosis of infectious diseases publication-title: Rev. Sci. Tech. doi: 10.20506/rst.17.2.1119 – year: 2020 ident: 2021083006512491500_ref6 article-title: Eua authorized serology test performance – volume: 53 start-page: 1 year: 2020 ident: 2021083006512491500_ref14 article-title: The covid-19 serology studies workshop: recommendations and challenges publication-title: Immunity doi: 10.1016/j.immuni.2020.06.012 – volume: 324 start-page: 1781 year: 2020 ident: 2021083006512491500_ref18 article-title: Change in antibodies to SARS-CoV-2 over 60 days among health care personnel in Nashville, Tennessee publication-title: JAMA doi: 10.1001/jama.2020.18796 – year: 2021 ident: 2021083006512491500_ref17 article-title: Nci serological sciences network for covid-19 (seronet) – volume: 222 start-page: 1280 year: 2020 ident: 2021083006512491500_ref4 article-title: Evaluation of serological tests for SARS-CoV-2: implications for serology testing in a low-prevalence setting publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiaa467 – volume: 4 start-page: 1188 year: 2020 ident: 2021083006512491500_ref15 article-title: Quantification of antibody avidities and accurate detection of sars-cov-2 antibodies in serum and saliva on plasmonic substrates publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00642-4 – volume: 7 start-page: 1 year: 1998 ident: 2021083006512491500_ref5 article-title: Monte Carlo and quasi-Monte Carlo methods publication-title: Acta Numer. doi: 10.1017/S0962492900002804 – volume: 29 start-page: S83 year: 2008 ident: 2021083006512491500_ref7 article-title: Sensitivity, specificity, receiver-operating characteristic (roc) curves and likelihood ratios: communicating the performance of diagnostic tests publication-title: Clin. Biochem. – start-page: 113 volume-title: Nat. Commun. year: 2021 ident: 2021083006512491500_ref13 article-title: Standardization of enzyme-linked immunosorbent assays for serosurveys of the sars-cov-2 pandemic using clinical and at-home blood sampling – volume: 21 start-page: 1293 year: 2020 ident: 2021083006512491500_ref9 article-title: Orf8 and orf3b antibodies are accurate serological markers of early and late sars-cov-2 infection publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0773-7 |
| SSID | ssj0023168 |
| Score | 2.3767886 |
| Snippet | Abstract
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not... Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly... |
| SourceID | unpaywall proquest crossref oup |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 396 |
| Title | Classification under uncertainty: data analysis for diagnostic antibody testing |
| URI | https://www.proquest.com/docview/2561483579 https://academic.oup.com/imammb/article-pdf/38/3/396/40077171/dqab007.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1477-8602 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0023168 issn: 1477-8599 databaseCode: AMVHM dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RRIheeKOGR2QQElwcO971rs0tQlQRUloODQona3bXRm0TJxRHVfrrmfWuK4qEyoGLZdnjtfb9jfabbwDeMiFyHnMT2kASclDSKsxUYskONPN0mpXa2ADn2ZGYzvnnRbrwkkI2FgY9K3zUhTScrnC1UpFvx3BjqohlEYtYLiKb05vckXFkfqCyYoT0dg_6IiVY3oP-_OjL5FsbXSRpJU7bXJLuXlhWjxdwZN0vfCE3NqgbQW8We97b1hvcXeJy-ds2dPgAzroKOPbJ-WjbqJG--kPb8b_U8CHc92A1mLhvHsGdsn4Md136yt0TOG4zalquUdu9gY1Hu6CrdjSDZvchsATUAL3wSUAAOTCO20cl0vPmVK3NLmis1Ef9_SnMDz-dfJyGPkFDqJnkTThGEwtkKkeOWkpjOK9yVAlKgoWVzMpUSZNXDFmCJs3GGJcZefKaYIMh4KHYM-jV67o8gECTp8Y1rQfKMJ5TiSgrncUq1kKRSykGEHa9UmivXm6TaCwLd4rOCteMhW-oAby7tt843Y6_Wr6hnrjV6HU3Bgqaf_ZQBetyvf1ZJK2UKktlPoD314PjluKe_7vpC9hPLI2mpbW9hF5zsS1fEQ5q1BD6k9nX6WwIeyfHi6Ef778APqsMeA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH60K1Iv2tqKq1XSIrSXbLKZyUzSm4giQm0PXbCn8GYmKdbd7KpZZP3rfZOZSBWKHryEkLxMmN_fY773PYA9JkTOY25CG0hCDkpahZlKLNmBZp5Os1IbG-D8_VQcj_jJWXrmJYVsLAx6VvigC2k4n-BkoiLfjuHMVBHLIhaxXEQ2pze5I8PIXKKyYoT09jUsiZRgeQ-WRqc_93-30UWSVuK0zSXp7oVl9XgBR9b9whfyYIN6EPRmseebeT3DxQ2Ox_9sQ0dr8LergGOfXAzmjRro20faji9Sw7ew6sFqsO--eQevynodll36ysV7-NFm1LRco7Z7AxuPdkVX7WgGzeJbYAmoAXrhk4AAcmAct49KpOfNuZqaRdBYqY_6zwcYHR3-OjgOfYKGUDPJm3CIJhbIVI4ctZTGcF7lqBKUBAsrmZWpkiavGLIETZoNMS4z8uQ1wQZDwEOxDejV07rchECTp8Y1rQfKMJ5TiSgrncUq1kKRSyn6EHa9UmivXm6TaIwLd4rOCteMhW-oPny5t5853Y7_Wn6mnnjS6FM3Bgqaf_ZQBetyOr8uklZKlaUy78PX-8HxRHFbzzfdhpXE0mhaWttH6DVX83KHcFCjdv0IvwOmPAnA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+under+uncertainty%3A+data+analysis+for+diagnostic+antibody+testing&rft.jtitle=Mathematical+medicine+and+biology&rft.au=Patrone%2C+Paul+N&rft.au=Kearsley%2C+Anthony+J&rft.date=2021-09-01&rft.issn=1477-8602&rft.eissn=1477-8602&rft.volume=38&rft.issue=3&rft.spage=396&rft_id=info:doi/10.1093%2Fimammb%2Fdqab007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-8599&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-8599&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-8599&client=summon |