Classification under uncertainty: data analysis for diagnostic antibody testing

Abstract Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that lever...

Full description

Saved in:
Bibliographic Details
Published inMathematical medicine and biology Vol. 38; no. 3; pp. 396 - 416
Main Authors Patrone, Paul N, Kearsley, Anthony J
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.09.2021
Subjects
Online AccessGet full text
ISSN1477-8599
1477-8602
1477-8602
DOI10.1093/imammb/dqab007

Cover

Abstract Abstract Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.
AbstractList Abstract Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly account for disease prevalence and uncertainty therein can lead to significant classification errors. We present a novel method that leverages optimal decision theory to address this problem. As a preliminary step, we develop an analysis that uses an assumed prevalence and conditional probability models of diagnostic measurement outcomes to define optimal (in the sense of minimizing rates of false positives and false negatives) classification domains. Critically, we demonstrate how this strategy can be generalized to a setting in which the prevalence is unknown by either (i) defining a third class of hold-out samples that require further testing or (ii) using an adaptive algorithm to estimate prevalence prior to defining classification domains. We also provide examples for a recently published SARS-CoV-2 serology test and discuss how measurement uncertainty (e.g. associated with instrumentation) can be incorporated into the analysis. We find that our new strategy decreases classification error by up to a decade relative to more traditional methods based on confidence intervals. Moreover, it establishes a theoretical foundation for generalizing techniques such as receiver operating characteristics by connecting them to the broader field of optimization.
Author Patrone, Paul N
Kearsley, Anthony J
Author_xml – sequence: 1
  givenname: Paul N
  surname: Patrone
  fullname: Patrone, Paul N
  organization: Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
– sequence: 2
  givenname: Anthony J
  surname: Kearsley
  fullname: Kearsley, Anthony J
  email: anthony.kearsley@nist.gov
  organization: Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
BookMark eNqFkLtPwzAQxi1UJNrCypwRhrZ-JHHMhipeUqUuMEcX26mMEju1HaH89wQCCxLqci99393pt0Az66xG6JrgNcGCbUwLbVtt1BEqjPkZmpOU81WRYzr7rTMhLtAihHeMKSN5MUf7bQMhmNpIiMbZpLdK-zFK7SMYG4e7REGEBCw0QzAhqZ1PlIGDdSEaOc6jqZwakqjH3h4u0XkNTdBXP3mJ3h4fXrfPq93-6WV7v1tJxtO4IqBwDqwSkILkXKk0rQVUFDgRrOaFziquRM2AUVBZQQDrQldUUpoqiknFlmgz7e1tB8MHNE3Z-ZGAH0qCyy8e5cSj_OExOm4mR-fdsR-_LVsTpG4asNr1oaRZTtKCZVyM0nSSSu9C8LoupYnffKIH0_x_Yf3HdvKl28ng-u6U9hPZj5js
CitedBy_id crossref_primary_10_1016_j_jtbi_2022_111375
crossref_primary_10_1007_s11538_024_01402_0
crossref_primary_10_1016_j_mbs_2022_108858
crossref_primary_10_1016_j_spl_2023_109946
crossref_primary_10_1371_journal_pcbi_1012749
crossref_primary_10_1098_rsta_2021_0121
crossref_primary_10_1371_journal_pone_0280823
crossref_primary_10_1016_j_mbs_2023_108982
Cites_doi 10.1038/nrneph.2013.281
10.1038/s41598-020-73491-5
10.7861/clinmed.2020-0170
10.1063/1.4977516
10.1016/j.cell.2020.02.058
10.1056/NEJMc2025179
10.1007/978-1-4757-4286-2
10.1038/s41421-020-00224-3
10.20506/rst.17.2.1119
10.1016/j.immuni.2020.06.012
10.1001/jama.2020.18796
10.1093/infdis/jiaa467
10.1038/s41551-020-00642-4
10.1017/S0962492900002804
10.1038/s41590-020-0773-7
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
DBID TOX
AAYXX
CITATION
7X8
ADTOC
UNPAY
DOI 10.1093/imammb/dqab007
DatabaseName Oxford Journals Open Access Collection
CrossRef
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-8602
EndPage 416
ExternalDocumentID 10.1093/imammb/dqab007
10_1093_imammb_dqab007
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
18M
29M
4.4
48X
5GY
5VS
5WA
5WD
70D
AABZA
AACZT
AAIJN
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABAZT
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABKDP
ABNGD
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
ANFBD
APIBT
APWMN
AQDSO
ATGXG
ATTQO
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BTRTY
BVRKM
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DILTD
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
MK0
N9A
NGC
NMDNZ
NOMLY
NOYVH
NVLIB
O0~
O9-
OAWHX
OCL
OCZFY
ODMLO
OJQWA
OJZSN
OPAEJ
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
RUSNO
RW1
RXO
RZF
RZO
SV3
TJP
TJX
TOX
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABVLG
ADYJX
AHGBF
AJBYB
AMVHM
CITATION
7X8
ADTOC
AGORE
AGQPQ
UNPAY
ID FETCH-LOGICAL-c374t-1ad06a3b9a4ac77dd44f9ab2a7193f78e5b7d9f3a32ad581a0e8eb2c224d201b3
IEDL.DBID UNPAY
ISSN 1477-8599
1477-8602
IngestDate Tue Aug 19 23:32:43 EDT 2025
Thu Oct 02 09:38:48 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Oct 01 02:59:06 EDT 2025
Wed Apr 02 07:14:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SARS-CoV-2
antibody
classification
optimal decision theory
serology
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-1ad06a3b9a4ac77dd44f9ab2a7193f78e5b7d9f3a32ad581a0e8eb2c224d201b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/imammb/article-pdf/38/3/396/40077171/dqab007.pdf
PQID 2561483579
PQPubID 23479
PageCount 21
ParticipantIDs unpaywall_primary_10_1093_imammb_dqab007
proquest_miscellaneous_2561483579
crossref_citationtrail_10_1093_imammb_dqab007
crossref_primary_10_1093_imammb_dqab007
oup_primary_10_1093_imammb_dqab007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematical medicine and biology
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liu (2021083006512491500_ref15) 2020; 4
Hachim (2021083006512491500_ref9) 2020; 21
Lerner (2021083006512491500_ref14) 2020; 53
Tchebichef (2021083006512491500_ref20) 1867; 12
Jacobson (2021083006512491500_ref11) 1998; 17
NCI (2021083006512491500_ref17) 2021
Algaissi (2021083006512491500_ref1) 2020; 10
Bond (2021083006512491500_ref4) 2020; 222
Caflisch (2021083006512491500_ref5) 1998; 7
Ibarrondo (2021083006512491500_ref10) 2020; 383
Lo (2021083006512491500_ref16) 2014; 10
Patrone (2021083006512491500_ref19) 2017; 146
Tian (2021083006512491500_ref21) 2020; 6
Walls (2021083006512491500_ref22) 2020; 181
Patel (2021083006512491500_ref18) 2020; 324
Berger (2021083006512491500_ref2) 1985
Bermingham (2021083006512491500_ref3) 2020; 20
Florkowski (2021083006512491500_ref7) 2008; 29
FDA (2021083006512491500_ref6) 2020
Grzelak (2021083006512491500_ref8) 2020
Klumpp-Thomas (2021083006512491500_ref13) 2021
JCGM (2021083006512491500_ref12) 2008
References_xml – volume: 10
  start-page: 215
  year: 2014
  ident: 2021083006512491500_ref16
  article-title: Biomarkers for kidney transplant rejection
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2013.281
– volume: 10
  start-page: 16561
  year: 2020
  ident: 2021083006512491500_ref1
  article-title: Sars-cov-2 s1 and n-based serological assays reveal rapid seroconversion and induction of specific antibody response in covid-19 patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73491-5
– volume: 20
  start-page: 365
  year: 2020
  ident: 2021083006512491500_ref3
  article-title: Sars-cov-2 serology: test, test, test, but interpret with caution!
  publication-title: Clin. Med.
  doi: 10.7861/clinmed.2020-0170
– volume: 146
  start-page: 094107
  year: 2017
  ident: 2021083006512491500_ref19
  article-title: Beyond histograms: efficiently estimating radial distribution functions via spectral Monte Carlo
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4977516
– volume: 12
  start-page: 177
  year: 1867
  ident: 2021083006512491500_ref20
  article-title: Des valeurs moyennes
  publication-title: J. Math. Pures Appl.
– volume: 181
  start-page: 281
  year: 2020
  ident: 2021083006512491500_ref22
  article-title: Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 383
  start-page: 1085
  year: 2020
  ident: 2021083006512491500_ref10
  article-title: Rapid decay of anti-sars-cov-2 antibodies in persons with mild covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2025179
– start-page: eabc3103
  year: 2020
  ident: 2021083006512491500_ref8
  article-title: A comparison of four serological assays for detecting anti-sars-cov-2 antibodies in human serum samples from different populations
– year: 2008
  ident: 2021083006512491500_ref12
  article-title: Jcgm 100:2008, evaluation of measurement data—guide to the expression of uncertainty in measurement
– volume-title: Statistical Decision Theory and Bayesian Analysis
  year: 1985
  ident: 2021083006512491500_ref2
  doi: 10.1007/978-1-4757-4286-2
– volume: 6
  start-page: 75
  year: 2020
  ident: 2021083006512491500_ref21
  article-title: Sensitivity and specificity of sars-cov-2 s1 subunit in covid-19 serology assays
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-00224-3
– volume: 17
  start-page: 469
  year: 1998
  ident: 2021083006512491500_ref11
  article-title: Validation of serological assays for diagnosis of infectious diseases
  publication-title: Rev. Sci. Tech.
  doi: 10.20506/rst.17.2.1119
– year: 2020
  ident: 2021083006512491500_ref6
  article-title: Eua authorized serology test performance
– volume: 53
  start-page: 1
  year: 2020
  ident: 2021083006512491500_ref14
  article-title: The covid-19 serology studies workshop: recommendations and challenges
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.012
– volume: 324
  start-page: 1781
  year: 2020
  ident: 2021083006512491500_ref18
  article-title: Change in antibodies to SARS-CoV-2 over 60 days among health care personnel in Nashville, Tennessee
  publication-title: JAMA
  doi: 10.1001/jama.2020.18796
– year: 2021
  ident: 2021083006512491500_ref17
  article-title: Nci serological sciences network for covid-19 (seronet)
– volume: 222
  start-page: 1280
  year: 2020
  ident: 2021083006512491500_ref4
  article-title: Evaluation of serological tests for SARS-CoV-2: implications for serology testing in a low-prevalence setting
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiaa467
– volume: 4
  start-page: 1188
  year: 2020
  ident: 2021083006512491500_ref15
  article-title: Quantification of antibody avidities and accurate detection of sars-cov-2 antibodies in serum and saliva on plasmonic substrates
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00642-4
– volume: 7
  start-page: 1
  year: 1998
  ident: 2021083006512491500_ref5
  article-title: Monte Carlo and quasi-Monte Carlo methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002804
– volume: 29
  start-page: S83
  year: 2008
  ident: 2021083006512491500_ref7
  article-title: Sensitivity, specificity, receiver-operating characteristic (roc) curves and likelihood ratios: communicating the performance of diagnostic tests
  publication-title: Clin. Biochem.
– start-page: 113
  volume-title: Nat. Commun.
  year: 2021
  ident: 2021083006512491500_ref13
  article-title: Standardization of enzyme-linked immunosorbent assays for serosurveys of the sars-cov-2 pandemic using clinical and at-home blood sampling
– volume: 21
  start-page: 1293
  year: 2020
  ident: 2021083006512491500_ref9
  article-title: Orf8 and orf3b antibodies are accurate serological markers of early and late sars-cov-2 infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0773-7
SSID ssj0023168
Score 2.3767886
Snippet Abstract Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not...
Formulating accurate and robust classification strategies is a key challenge of developing diagnostic and antibody tests. Methods that do not explicitly...
SourceID unpaywall
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 396
Title Classification under uncertainty: data analysis for diagnostic antibody testing
URI https://www.proquest.com/docview/2561483579
https://academic.oup.com/imammb/article-pdf/38/3/396/40077171/dqab007.pdf
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1477-8602
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0023168
  issn: 1477-8599
  databaseCode: AMVHM
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RRIheeKOGR2QQElwcO971rs0tQlQRUloODQona3bXRm0TJxRHVfrrmfWuK4qEyoGLZdnjtfb9jfabbwDeMiFyHnMT2kASclDSKsxUYskONPN0mpXa2ADn2ZGYzvnnRbrwkkI2FgY9K3zUhTScrnC1UpFvx3BjqohlEYtYLiKb05vckXFkfqCyYoT0dg_6IiVY3oP-_OjL5FsbXSRpJU7bXJLuXlhWjxdwZN0vfCE3NqgbQW8We97b1hvcXeJy-ds2dPgAzroKOPbJ-WjbqJG--kPb8b_U8CHc92A1mLhvHsGdsn4Md136yt0TOG4zalquUdu9gY1Hu6CrdjSDZvchsATUAL3wSUAAOTCO20cl0vPmVK3NLmis1Ef9_SnMDz-dfJyGPkFDqJnkTThGEwtkKkeOWkpjOK9yVAlKgoWVzMpUSZNXDFmCJs3GGJcZefKaYIMh4KHYM-jV67o8gECTp8Y1rQfKMJ5TiSgrncUq1kKRSykGEHa9UmivXm6TaCwLd4rOCteMhW-oAby7tt843Y6_Wr6hnrjV6HU3Bgqaf_ZQBetyvf1ZJK2UKktlPoD314PjluKe_7vpC9hPLI2mpbW9hF5zsS1fEQ5q1BD6k9nX6WwIeyfHi6Ef778APqsMeA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS9xAFH60K1Iv2tqKq1XSIrSXbLKZyUzSm4giQm0PXbCn8GYmKdbd7KpZZP3rfZOZSBWKHryEkLxMmN_fY773PYA9JkTOY25CG0hCDkpahZlKLNmBZp5Os1IbG-D8_VQcj_jJWXrmJYVsLAx6VvigC2k4n-BkoiLfjuHMVBHLIhaxXEQ2pze5I8PIXKKyYoT09jUsiZRgeQ-WRqc_93-30UWSVuK0zSXp7oVl9XgBR9b9whfyYIN6EPRmseebeT3DxQ2Ox_9sQ0dr8LergGOfXAzmjRro20faji9Sw7ew6sFqsO--eQevynodll36ysV7-NFm1LRco7Z7AxuPdkVX7WgGzeJbYAmoAXrhk4AAcmAct49KpOfNuZqaRdBYqY_6zwcYHR3-OjgOfYKGUDPJm3CIJhbIVI4ctZTGcF7lqBKUBAsrmZWpkiavGLIETZoNMS4z8uQ1wQZDwEOxDejV07rchECTp8Y1rQfKMJ5TiSgrncUq1kKRSyn6EHa9UmivXm6TaIwLd4rOCteMhW-oPny5t5853Y7_Wn6mnnjS6FM3Bgqaf_ZQBetyOr8uklZKlaUy78PX-8HxRHFbzzfdhpXE0mhaWttH6DVX83KHcFCjdv0IvwOmPAnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+under+uncertainty%3A+data+analysis+for+diagnostic+antibody+testing&rft.jtitle=Mathematical+medicine+and+biology&rft.au=Patrone%2C+Paul+N&rft.au=Kearsley%2C+Anthony+J&rft.date=2021-09-01&rft.issn=1477-8602&rft.eissn=1477-8602&rft.volume=38&rft.issue=3&rft.spage=396&rft_id=info:doi/10.1093%2Fimammb%2Fdqab007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-8599&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-8599&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-8599&client=summon