Budget-aware local influence iterative algorithm for efficient influence maximization in social networks

The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 21; p. e40031
Main Authors Li, Lingfei, Song, Yingxin, Yang, Wei, Yuan, Kun, Li, Yaguang, Kong, Min, Fathollahi-Fard, Amir M.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.11.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2405-8440
2405-8440
DOI10.1016/j.heliyon.2024.e40031

Cover

Abstract The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems. •Empirical data informs a realistic cost model for individual user activation in social networks.•A novel degree centrality-based algorithm swiftly selects seed nodes for the BIM problem, mitigating overlap.•Experimental validation demonstrates our algorithm's efficiency and superior influence spread compared to alternatives.
AbstractList The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.
The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems. •Empirical data informs a realistic cost model for individual user activation in social networks.•A novel degree centrality-based algorithm swiftly selects seed nodes for the BIM problem, mitigating overlap.•Experimental validation demonstrates our algorithm's efficiency and superior influence spread compared to alternatives.
The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.
The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.
ArticleNumber e40031
Author Li, Lingfei
Yuan, Kun
Song, Yingxin
Kong, Min
Li, Yaguang
Fathollahi-Fard, Amir M.
Yang, Wei
Author_xml – sequence: 1
  givenname: Lingfei
  surname: Li
  fullname: Li, Lingfei
  email: lilingfei@hdu.edu.cn
  organization: School of Management, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 2
  givenname: Yingxin
  surname: Song
  fullname: Song, Yingxin
  email: songyx@ahnu.edu.cn
  organization: School of Economics and Management, Anhui Normal University, Wuhu, 241000, China
– sequence: 3
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  email: yang_wei@hdu.edu.cn
  organization: School of Management, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 4
  givenname: Kun
  surname: Yuan
  fullname: Yuan, Kun
  email: yuankun@hfut.edu.cn
  organization: School of Management, Hefei University of Technology, Hefei, 230009, China
– sequence: 5
  givenname: Yaguang
  surname: Li
  fullname: Li, Yaguang
  email: yaguangli2009@126.com
  organization: School of Health Service Management and the Hospital Management Institute, Anhui Medical University, Hefei, 230032, China
– sequence: 6
  givenname: Min
  surname: Kong
  fullname: Kong, Min
  email: minkong@ahnu.edu.cn
  organization: School of Economics and Management, Anhui Normal University, Wuhu, 241000, China
– sequence: 7
  givenname: Amir M.
  orcidid: 0000-0002-5939-9795
  surname: Fathollahi-Fard
  fullname: Fathollahi-Fard, Amir M.
  email: amirfard.ie@gmail.com, fathollahifard.amirmohammad@courrier.uqam.ca
  organization: Département d’Analytique, Opérations et Technologies de l’Information, Université de Québec à Montreal, 315, Sainte-Catherine Street East, H2X 3X2, Montreal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39553681$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhleoiJbSnwDaI5cEe_0R-4Sg4qNSJS5wtmbtceLgXQd7t2n49WzYUPVWTrZG7_toNM_L6qxPPVbVa0qWlFD5brvcYAyH1C8b0vAlckIYfVZdNJyIheKcnD36n1dXpWwJIVQoqVfsRXXOtBBMKnpRbT6Obo3DAvaQsY7JQqxD7-OIvcU6DJhhCHdYQ1ynHIZNV_uUa_Q-2ID98CjbwX3owu8pnvppXJdkwwTrcdin_LO8qp57iAWvTu9l9ePzp-_XXxe3377cXH-4XVi24nTRgtScOS2RCaWAAFUtV43UTcO1bz0o7pHxtmXaOcmQICEtXbUAAmnbILusbmauS7A1uxw6yAeTIJi_g5TXBvIQbERjGfNOOAtcCY7Mau409a0mVjpqV0eWnFljv4PDHmJ8AFJijibM1pxMmKMJM5uYim_n4i6nXyOWwXShWIwRekxjMawhpFFCSvV0lDZaKr4SR-qbU3RsO3QPu_yzOQXEHLA5lZLR__e67-ceTmLuAmZTjnYtupDRDtPlwhOEP6PpzqY
Cites_doi 10.1016/j.eswa.2022.118770
10.1016/j.physa.2021.126258
10.1016/S0065-2601(05)37006-7
10.1109/JSAC.2013.130610
10.1287/mnsc.2019.3564
10.1016/j.ins.2020.12.048
10.1016/j.neucom.2019.02.010
10.1016/j.ins.2021.04.061
10.1109/TCSS.2022.3164667
10.1016/j.ins.2020.01.040
10.1016/j.ins.2024.121067
10.1145/3594544
10.1016/j.ins.2022.06.075
10.14778/3397230.3397244
10.1016/j.knosys.2021.106942
10.1016/j.ins.2022.06.052
10.1038/nphys1746
10.1016/j.chb.2023.108055
10.1016/j.ins.2022.11.163
10.1016/j.ins.2023.119105
10.1073/pnas.082090499
10.1016/j.ins.2023.119174
10.1016/j.knosys.2021.107497
10.1016/j.patcog.2021.108130
10.1145/3654673
10.1016/j.physa.2021.126480
10.1016/j.ins.2020.09.002
10.1089/big.2020.0259
10.1016/j.eswa.2022.117289
10.1145/3587100
10.1109/TNSE.2021.3064828
10.1109/ACCESS.2017.2782814
10.1145/3604559
10.1016/j.knosys.2021.107451
10.1016/j.ins.2022.07.103
10.1109/TNSE.2024.3362903
10.1016/j.eswa.2019.01.070
10.1287/isre.2016.0679
10.1016/j.datak.2023.102276
10.1177/00222437221116034
10.1016/j.knosys.2020.106600
10.1016/j.eswa.2019.112905
10.1016/j.eswa.2020.114207
10.1080/00913367.2021.1980470
10.1145/3573011
10.1080/01605682.2018.1489343
10.1016/j.physa.2022.127314
10.1007/s10115-013-0646-6
10.1016/j.neucom.2023.126936
10.1016/j.ins.2020.08.093
10.1016/j.eswa.2020.114346
10.1016/j.ins.2019.11.029
10.1016/j.eswa.2022.118869
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors. Published by Elsevier Ltd.
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.heliyon.2024.e40031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_c33fd5dca4854e3c94d91fb90c6d1c7e
10.1016/j.heliyon.2024.e40031
39553681
10_1016_j_heliyon_2024_e40031
S2405844024160628
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
NPM
7X8
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c3741-ba6943d96e3588a0a18b482692249fbfa84fe34bb39dd63e0e00b17baa5e1b2e3
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Fri Oct 03 12:29:45 EDT 2025
Sun Oct 26 03:36:25 EDT 2025
Fri Aug 22 20:38:00 EDT 2025
Tue Oct 21 13:46:42 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Thu Oct 09 00:43:21 EDT 2025
Sat Oct 25 16:49:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Social networks
Cost model
Budgeted influence maximization
Proxy-based algorithm
Language English
License This is an open access article under the CC BY license.
2024 The Authors. Published by Elsevier Ltd.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3741-ba6943d96e3588a0a18b482692249fbfa84fe34bb39dd63e0e00b17baa5e1b2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5939-9795
OpenAccessLink https://doaj.org/article/c33fd5dca4854e3c94d91fb90c6d1c7e
PMID 39553681
PQID 3129684751
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c33fd5dca4854e3c94d91fb90c6d1c7e
unpaywall_primary_10_1016_j_heliyon_2024_e40031
proquest_miscellaneous_3200285668
proquest_miscellaneous_3129684751
pubmed_primary_39553681
crossref_primary_10_1016_j_heliyon_2024_e40031
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e40031
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shi (bib59) 2019; 338
Biswas, Abbasi, Chakrabortty (bib40) 2021; 556
Liu, Li (bib52) 2019; 70
Huang, Meng, Shen (bib15) 2021; 213
Kazemzadeh, Safaei, Mirzarezaee (bib36) 2022; 598
Caliò, Tagarelli (bib25) 2021; 546
Liu (bib29) 2017; 96
Liu (bib30) 2015; 5
Keikha (bib43) 2020; 140
Jabari Lotf, Abdollahi Azgomi, Ebrahimi Dishabi (bib65) 2022; 586
Kumar, Mallik, Panda (bib41) 2023; 212
Kitsak (bib28) 2010; 6
Fathollahi-Fard (bib69) 2024; 39
Hovland, Janis, Kelley (bib63) 1953
Nguyen, Zheng (bib51) 2013; 31
Lee (bib48) 2024; 150
Yang (bib7) 2023; 17
Beni (bib8) 2023; 640
Borgs (bib22) 2014
Barbieri, Bonchi, Manco (bib12) 2013; 37
Li (bib33) 2021; 169
Watts (bib6) 2002; 99
Ahmadi Beni, Bouyer (bib31) 2021; 9
Yang, Liu (bib58) 2018; 6
Gong, Liu, Bai (bib9) 2021; 220
Xie (bib16) 2021; 233
Bouyer (bib34) 2023; 213
Sun, Miao, Staab (bib32) 2021; 120
Kempe, Kleinberg, Tardos (bib5) 2003
Bucur, Iacca (bib38) 2016
Li (bib11) 2020; 519
Wu (bib46) 2024; 18
Qiu, Kumar (bib2) 2017; 28
Li (bib19) 2021; 568
Güney (bib54) 2019; 19
Wang (bib14) 2021; 546
Banerjee, Jenamani, Pratihar (bib60) 2021; 169
Danaher (bib3) 2023; 60
Kumar (bib44) 2022; 607
Li (bib45) 2023; 17
Yang (bib13) 2024; 238
Zhong (bib20) 2023; 622
Park (bib4) 2021; 50
Tang (bib64) 2009
Goyal, Lu, Lakshmanan (bib21) 2011
Gelper, Lans, Bruggen (bib1) 2021; 67
Li (bib42) 2022; 202
Mohammadi (bib18) 2023; 645
Biswas, Abbasi, Chakrabortty (bib47) 2023; 17
Banerjee, Jenamani, Pratihar (bib56) 2019; 125
de Souza (bib57) 2020; 514
Bian (bib53) 2020; 13
Zhang (bib49) 2024
Zeng (bib27) 2024; 679
Qin, Zhong, Lin (bib66) 2023; 17
Tang, Shi, Xiao (bib23) 2015
Li (bib67) 2023; 10
Tran, Shin, Spitz (bib50) 2024; 11
Venkatakrishna Rao, Chowdary (bib37) 2022; 609
Kruglanski (bib61) 2005; 37
Guo (bib10) 2024; 564
Li, Sheng (bib62) 2024; 152
Tian (bib68) 2022; 608
Ju (bib17) 2021; 231
Wang (bib24) 2016
Tsai, Yang, Chiang (bib39) 2015
Samir, Rady, Gharib (bib35) 2021; 582
Chen, Wang, Yang (bib26) 2009
Zhang (bib55) 2021; 8
Park (10.1016/j.heliyon.2024.e40031_bib4) 2021; 50
Samir (10.1016/j.heliyon.2024.e40031_bib35) 2021; 582
Huang (10.1016/j.heliyon.2024.e40031_bib15) 2021; 213
Chen (10.1016/j.heliyon.2024.e40031_bib26) 2009
Venkatakrishna Rao (10.1016/j.heliyon.2024.e40031_bib37) 2022; 609
Li (10.1016/j.heliyon.2024.e40031_bib42) 2022; 202
Ju (10.1016/j.heliyon.2024.e40031_bib17) 2021; 231
Mohammadi (10.1016/j.heliyon.2024.e40031_bib18) 2023; 645
Yang (10.1016/j.heliyon.2024.e40031_bib58) 2018; 6
Guo (10.1016/j.heliyon.2024.e40031_bib10) 2024; 564
Biswas (10.1016/j.heliyon.2024.e40031_bib40) 2021; 556
Wang (10.1016/j.heliyon.2024.e40031_bib24) 2016
Li (10.1016/j.heliyon.2024.e40031_bib11) 2020; 519
Li (10.1016/j.heliyon.2024.e40031_bib45) 2023; 17
Banerjee (10.1016/j.heliyon.2024.e40031_bib56) 2019; 125
Xie (10.1016/j.heliyon.2024.e40031_bib16) 2021; 233
Banerjee (10.1016/j.heliyon.2024.e40031_bib60) 2021; 169
Li (10.1016/j.heliyon.2024.e40031_bib19) 2021; 568
Zhong (10.1016/j.heliyon.2024.e40031_bib20) 2023; 622
Goyal (10.1016/j.heliyon.2024.e40031_bib21) 2011
Kruglanski (10.1016/j.heliyon.2024.e40031_bib61) 2005; 37
Liu (10.1016/j.heliyon.2024.e40031_bib29) 2017; 96
Liu (10.1016/j.heliyon.2024.e40031_bib30) 2015; 5
Zhang (10.1016/j.heliyon.2024.e40031_bib49) 2024
Güney (10.1016/j.heliyon.2024.e40031_bib54) 2019; 19
Keikha (10.1016/j.heliyon.2024.e40031_bib43) 2020; 140
Bucur (10.1016/j.heliyon.2024.e40031_bib38) 2016
Li (10.1016/j.heliyon.2024.e40031_bib62) 2024; 152
Hovland (10.1016/j.heliyon.2024.e40031_bib63) 1953
Yang (10.1016/j.heliyon.2024.e40031_bib7) 2023; 17
Wu (10.1016/j.heliyon.2024.e40031_bib46) 2024; 18
Kumar (10.1016/j.heliyon.2024.e40031_bib41) 2023; 212
Li (10.1016/j.heliyon.2024.e40031_bib33) 2021; 169
Zeng (10.1016/j.heliyon.2024.e40031_bib27) 2024; 679
Biswas (10.1016/j.heliyon.2024.e40031_bib47) 2023; 17
Liu (10.1016/j.heliyon.2024.e40031_bib52) 2019; 70
Bian (10.1016/j.heliyon.2024.e40031_bib53) 2020; 13
Tian (10.1016/j.heliyon.2024.e40031_bib68) 2022; 608
Lee (10.1016/j.heliyon.2024.e40031_bib48) 2024; 150
Bouyer (10.1016/j.heliyon.2024.e40031_bib34) 2023; 213
Gong (10.1016/j.heliyon.2024.e40031_bib9) 2021; 220
de Souza (10.1016/j.heliyon.2024.e40031_bib57) 2020; 514
Qin (10.1016/j.heliyon.2024.e40031_bib66) 2023; 17
Barbieri (10.1016/j.heliyon.2024.e40031_bib12) 2013; 37
Shi (10.1016/j.heliyon.2024.e40031_bib59) 2019; 338
Sun (10.1016/j.heliyon.2024.e40031_bib32) 2021; 120
Kazemzadeh (10.1016/j.heliyon.2024.e40031_bib36) 2022; 598
Gelper (10.1016/j.heliyon.2024.e40031_bib1) 2021; 67
Tsai (10.1016/j.heliyon.2024.e40031_bib39) 2015
Caliò (10.1016/j.heliyon.2024.e40031_bib25) 2021; 546
Danaher (10.1016/j.heliyon.2024.e40031_bib3) 2023; 60
Tang (10.1016/j.heliyon.2024.e40031_bib64) 2009
Borgs (10.1016/j.heliyon.2024.e40031_bib22) 2014
Qiu (10.1016/j.heliyon.2024.e40031_bib2) 2017; 28
Kempe (10.1016/j.heliyon.2024.e40031_bib5) 2003
Zhang (10.1016/j.heliyon.2024.e40031_bib55) 2021; 8
Jabari Lotf (10.1016/j.heliyon.2024.e40031_bib65) 2022; 586
Yang (10.1016/j.heliyon.2024.e40031_bib13) 2024; 238
Wang (10.1016/j.heliyon.2024.e40031_bib14) 2021; 546
Watts (10.1016/j.heliyon.2024.e40031_bib6) 2002; 99
Nguyen (10.1016/j.heliyon.2024.e40031_bib51) 2013; 31
Kumar (10.1016/j.heliyon.2024.e40031_bib44) 2022; 607
Li (10.1016/j.heliyon.2024.e40031_bib67) 2023; 10
Fathollahi-Fard (10.1016/j.heliyon.2024.e40031_bib69) 2024; 39
Ahmadi Beni (10.1016/j.heliyon.2024.e40031_bib31) 2021; 9
Beni (10.1016/j.heliyon.2024.e40031_bib8) 2023; 640
Tran (10.1016/j.heliyon.2024.e40031_bib50) 2024; 11
Tang (10.1016/j.heliyon.2024.e40031_bib23) 2015
Kitsak (10.1016/j.heliyon.2024.e40031_bib28) 2010; 6
References_xml – volume: 17
  year: 2023
  ident: bib45
  article-title: A survey on influence maximization: from an ML-based combinatorial optimization
  publication-title: ACM Trans. Knowl. Discov. Data
– year: 2015
  ident: bib39
  article-title: A genetic NewGreedy algorithm for influence maximization in social network
  publication-title: 2015 IEEE International Conference on Systems, Man, and Cybernetics
– volume: 70
  start-page: 1224
  year: 2019
  end-page: 1233
  ident: bib52
  article-title: How to maximize advertising performance in online social networks
  publication-title: J. Oper. Res. Soc.
– volume: 60
  start-page: 564
  year: 2023
  end-page: 584
  ident: bib3
  article-title: Optimal microtargeting of advertising
  publication-title: J. Market. Res.
– volume: 17
  year: 2023
  ident: bib7
  article-title: Triadic closure sensitive influence maximization
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 609
  start-page: 578
  year: 2022
  end-page: 594
  ident: bib37
  article-title: CBIM: community-based influence maximization in multilayer networks
  publication-title: Inf. Sci.
– volume: 31
  start-page: 1084
  year: 2013
  end-page: 1094
  ident: bib51
  article-title: On budgeted influence maximization in social networks
  publication-title: IEEE J. Sel. Area. Commun.
– volume: 6
  start-page: 2320
  year: 2018
  end-page: 2329
  ident: bib58
  article-title: Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm
  publication-title: IEEE Access
– volume: 640
  year: 2023
  ident: bib8
  article-title: A fast module identification and filtering approach for influence maximization problem in social networks
  publication-title: Inf. Sci.
– volume: 13
  start-page: 1498
  year: 2020
  end-page: 1510
  ident: bib53
  article-title: Efficient algorithms for budgeted influence maximization on massive social networks
  publication-title: Proc. VLDB Endow.
– volume: 17
  start-page: 1
  year: 2023
  end-page: 21
  ident: bib66
  article-title: Community-based influence maximization using network embedding in dynamic heterogeneous social networks
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 679
  year: 2024
  ident: bib27
  article-title: Identifying vital nodes through augmented random walks on higher-order networks
  publication-title: Inf. Sci.
– volume: 608
  start-page: 578
  year: 2022
  end-page: 596
  ident: bib68
  article-title: Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm
  publication-title: Inf. Sci.
– year: 2009
  ident: bib26
  article-title: Efficient influence maximization in social networks
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 37
  start-page: 555
  year: 2013
  end-page: 584
  ident: bib12
  article-title: Topic-aware social influence propagation models
  publication-title: Knowl. Inf. Syst.
– volume: 125
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib56
  article-title: ComBIM: a community-based solution approach for the budgeted influence maximization problem
  publication-title: Expert Syst. Appl.
– volume: 5
  year: 2015
  ident: bib30
  article-title: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics
  publication-title: Sci. Rep.
– year: 2009
  ident: bib64
  article-title: Social influence analysis in large-scale networks
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 140
  year: 2020
  ident: bib43
  article-title: Influence maximization across heterogeneous interconnected networks based on deep learning
  publication-title: Expert Syst. Appl.
– volume: 607
  start-page: 1617
  year: 2022
  end-page: 1636
  ident: bib44
  article-title: Influence maximization in social networks using graph embedding and graph neural network
  publication-title: Inf. Sci.
– year: 2014
  ident: bib22
  article-title: Maximizing social influence in nearly optimal time
  publication-title: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 50
  start-page: 584
  year: 2021
  end-page: 602
  ident: bib4
  article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers
  publication-title: J. Advert.
– volume: 213
  year: 2023
  ident: bib34
  article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks
  publication-title: Expert Syst. Appl.
– volume: 546
  start-page: 1273
  year: 2021
  end-page: 1305
  ident: bib25
  article-title: Attribute based diversification of seeds for targeted influence maximization
  publication-title: Inf. Sci.
– volume: 10
  start-page: 1288
  year: 2023
  end-page: 1300
  ident: bib67
  article-title: PIANO: influence maximization meets deep reinforcement learning
  publication-title: IEEE Transac. Comput. Soc. Syst.
– year: 2016
  ident: bib38
  article-title: Influence maximization in social networks with genetic algorithms
  publication-title: Applications of Evolutionary Computation
– volume: 169
  year: 2021
  ident: bib60
  article-title: Earned benefit maximization in social networks under budget constraint
  publication-title: Expert Syst. Appl.
– volume: 99
  start-page: 5766
  year: 2002
  end-page: 5771
  ident: bib6
  article-title: A simple model of global cascades on random networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 1557
  year: 2021
  end-page: 1570
  ident: bib55
  article-title: A local-global influence indicator based constrained evolutionary algorithm for budgeted influence maximization in social networks
  publication-title: IEEE Transactions on Network Science and Engineering
– volume: 233
  year: 2021
  ident: bib16
  article-title: Competitive influence maximization considering inactive nodes and community homophily
  publication-title: Knowl. Base Syst.
– volume: 96
  year: 2017
  ident: bib29
  article-title: Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights
  publication-title: Phys. Rev.
– volume: 514
  start-page: 369
  year: 2020
  end-page: 384
  ident: bib57
  article-title: Efficient network seeding under variable node cost and limited budget for social networks
  publication-title: Inf. Sci.
– year: 2016
  ident: bib24
  article-title: Bring order into the samples: a novel scalable method for influence maximization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 17
  year: 2023
  ident: bib47
  article-title: Robust influence maximization under both aleatory and epistemic uncertainty
  publication-title: ACM Trans. Knowl. Discov. Data
– year: 2003
  ident: bib5
  article-title: Maximizing the spread of influence through a social network
  publication-title: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 67
  start-page: 1026
  year: 2021
  end-page: 1047
  ident: bib1
  article-title: Competition for attention in online social networks: implications for seeding strategies
  publication-title: Manag. Sci.
– volume: 169
  year: 2021
  ident: bib33
  article-title: A dynamic algorithm based on cohesive entropy for influence maximization in social networks
  publication-title: Expert Syst. Appl.
– volume: 220
  year: 2021
  ident: bib9
  article-title: Efficient parallel computing on the game theory-aware robust influence maximization problem
  publication-title: Knowl. Base Syst.
– volume: 202
  year: 2022
  ident: bib42
  article-title: MAHE-IM: multiple aggregation of heterogeneous relation embedding for influence maximization on heterogeneous information network
  publication-title: Expert Syst. Appl.
– volume: 546
  start-page: 559
  year: 2021
  end-page: 572
  ident: bib14
  article-title: Maximizing positive influence in competitive social networks: a trust-based solution
  publication-title: Inf. Sci.
– volume: 238
  year: 2024
  ident: bib13
  article-title: Complementary influence maximization under comparative linear threshold model
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 888
  year: 2010
  end-page: 893
  ident: bib28
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nat. Phys.
– volume: 152
  year: 2024
  ident: bib62
  article-title: Determinants of public emergency information dissemination on social networks: a meta-analysis
  publication-title: Comput. Hum. Behav.
– volume: 213
  year: 2021
  ident: bib15
  article-title: Competitive and complementary influence maximization in social network: a follower's perspective
  publication-title: Knowl. Base Syst.
– volume: 120
  year: 2021
  ident: bib32
  article-title: Community-based k-shell decomposition for identifying influential spreaders
  publication-title: Pattern Recogn.
– volume: 18
  year: 2024
  ident: bib46
  article-title: Attacking social media via behavior poisoning
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 556
  start-page: 27
  year: 2021
  end-page: 48
  ident: bib40
  article-title: An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks
  publication-title: Inf. Sci.
– volume: 9
  year: 2021
  ident: bib31
  article-title: Identifying influential nodes using a shell-based ranking and filtering method in social networks
  publication-title: Big Data
– volume: 37
  start-page: 345
  year: 2005
  end-page: 392
  ident: bib61
  article-title: Says who? Epistemic authority effects in social judgment
  publication-title: Adv. Exp. Soc. Psychol.
– volume: 231
  year: 2021
  ident: bib17
  article-title: Node deletion-based algorithm for blocking maximizing on negative influence from uncertain sources
  publication-title: Knowl. Base Syst.
– volume: 212
  year: 2023
  ident: bib41
  article-title: Influence maximization in social networks using transfer learning via graph-based LSTM
  publication-title: Expert Syst. Appl.
– volume: 582
  year: 2021
  ident: bib35
  article-title: LKG: a fast scalable community-based approach for influence maximization problem in social networks
  publication-title: Phys. Stat. Mech. Appl.
– volume: 519
  start-page: 124
  year: 2020
  end-page: 140
  ident: bib11
  article-title: Targeted influence maximization under a multifactor-based information propagation model
  publication-title: Inf. Sci.
– volume: 622
  start-page: 1109
  year: 2023
  end-page: 1127
  ident: bib20
  article-title: Hierarchical attention neural network for information cascade prediction
  publication-title: Inf. Sci.
– volume: 150
  year: 2024
  ident: bib48
  article-title: A bitwise approach on influence overload problem
  publication-title: Data Knowl. Eng.
– year: 1953
  ident: bib63
  article-title: Communication and persuasion
  publication-title: Communication and Persuasion
– volume: 338
  start-page: 92
  year: 2019
  end-page: 100
  ident: bib59
  article-title: Post and repost: a holistic view of budgeted influence maximization
  publication-title: Neurocomputing
– volume: 598
  year: 2022
  ident: bib36
  article-title: Influence maximization in social networks using effective community detection
  publication-title: Phys. Stat. Mech. Appl.
– year: 2024
  ident: bib49
  article-title: BIM: improving graph neural networks with balanced influence maximization
  publication-title: 2024 IEEE 40th International Conference on Data Engineering (ICDE)
– volume: 11
  start-page: 3148
  year: 2024
  end-page: 3160
  ident: bib50
  article-title: IM-META: influence maximization using node metadata in networks with unknown topology
  publication-title: IEEE Transactions on Network Science and Engineering
– year: 2015
  ident: bib23
  article-title: Influence Maximization in Near-Linear Time: A Martingale Approach
– volume: 564
  year: 2024
  ident: bib10
  article-title: Influence maximization algorithm based on group trust and local topology structure
  publication-title: Neurocomputing
– volume: 19
  start-page: 817
  year: 2019
  end-page: 831
  ident: bib54
  article-title: On the optimal solution of budgeted influence maximization problem in social networks
  publication-title: Oper. Res.
– year: 2011
  ident: bib21
  article-title: Celf++: optimizing the greedy algorithm for influence maximization in social networks
  publication-title: Proceedings of the 20th International Conference Companion on World Wide Web
– volume: 586
  year: 2022
  ident: bib65
  article-title: An improved influence maximization method for social networks based on genetic algorithm
  publication-title: Phys. Stat. Mech. Appl.
– volume: 568
  start-page: 386
  year: 2021
  end-page: 402
  ident: bib19
  article-title: Influence maximization algorithm based on Gaussian propagation model
  publication-title: Inf. Sci.
– volume: 645
  year: 2023
  ident: bib18
  article-title: Fuzzy sign-aware diffusion models for influence maximization in signed social networks
  publication-title: Inf. Sci.
– volume: 28
  start-page: 529
  year: 2017
  end-page: 546
  ident: bib2
  article-title: Understanding voluntary knowledge provision and content contribution through a social-media-based prediction market: a field experiment
  publication-title: Inf. Syst. Res.
– volume: 39
  year: 2024
  ident: bib69
  article-title: A distributed permutation flow-shop considering sustainability criteria and real-time scheduling
  publication-title: J. Ind. Inf. Integr.
– volume: 212
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib41
  article-title: Influence maximization in social networks using transfer learning via graph-based LSTM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118770
– volume: 582
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib35
  article-title: LKG: a fast scalable community-based approach for influence maximization problem in social networks
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2021.126258
– volume: 37
  start-page: 345
  issue: 37
  year: 2005
  ident: 10.1016/j.heliyon.2024.e40031_bib61
  article-title: Says who? Epistemic authority effects in social judgment
  publication-title: Adv. Exp. Soc. Psychol.
  doi: 10.1016/S0065-2601(05)37006-7
– volume: 31
  start-page: 1084
  issue: 6
  year: 2013
  ident: 10.1016/j.heliyon.2024.e40031_bib51
  article-title: On budgeted influence maximization in social networks
  publication-title: IEEE J. Sel. Area. Commun.
  doi: 10.1109/JSAC.2013.130610
– volume: 67
  start-page: 1026
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib1
  article-title: Competition for attention in online social networks: implications for seeding strategies
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2019.3564
– volume: 556
  start-page: 27
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib40
  article-title: An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.12.048
– volume: 338
  start-page: 92
  year: 2019
  ident: 10.1016/j.heliyon.2024.e40031_bib59
  article-title: Post and repost: a holistic view of budgeted influence maximization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.010
– volume: 568
  start-page: 386
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib19
  article-title: Influence maximization algorithm based on Gaussian propagation model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.061
– volume: 10
  start-page: 1288
  issue: 3
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib67
  article-title: PIANO: influence maximization meets deep reinforcement learning
  publication-title: IEEE Transac. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3164667
– volume: 519
  start-page: 124
  year: 2020
  ident: 10.1016/j.heliyon.2024.e40031_bib11
  article-title: Targeted influence maximization under a multifactor-based information propagation model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.01.040
– volume: 679
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib27
  article-title: Identifying vital nodes through augmented random walks on higher-order networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121067
– year: 1953
  ident: 10.1016/j.heliyon.2024.e40031_bib63
  article-title: Communication and persuasion
– volume: 17
  start-page: 1
  issue: 8
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib66
  article-title: Community-based influence maximization using network embedding in dynamic heterogeneous social networks
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3594544
– year: 2016
  ident: 10.1016/j.heliyon.2024.e40031_bib38
  article-title: Influence maximization in social networks with genetic algorithms
– volume: 607
  start-page: 1617
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib44
  article-title: Influence maximization in social networks using graph embedding and graph neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.06.075
– volume: 13
  start-page: 1498
  issue: 9
  year: 2020
  ident: 10.1016/j.heliyon.2024.e40031_bib53
  article-title: Efficient algorithms for budgeted influence maximization on massive social networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3397230.3397244
– volume: 220
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib9
  article-title: Efficient parallel computing on the game theory-aware robust influence maximization problem
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.106942
– volume: 608
  start-page: 578
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib68
  article-title: Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.06.052
– issue: 99
  year: 2016
  ident: 10.1016/j.heliyon.2024.e40031_bib24
  article-title: Bring order into the samples: a novel scalable method for influence maximization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 5
  year: 2015
  ident: 10.1016/j.heliyon.2024.e40031_bib30
  article-title: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics
  publication-title: Sci. Rep.
– volume: 238
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib13
  article-title: Complementary influence maximization under comparative linear threshold model
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 888
  issue: 11
  year: 2010
  ident: 10.1016/j.heliyon.2024.e40031_bib28
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1746
– volume: 152
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib62
  article-title: Determinants of public emergency information dissemination on social networks: a meta-analysis
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2023.108055
– volume: 19
  start-page: 817
  issue: 3
  year: 2019
  ident: 10.1016/j.heliyon.2024.e40031_bib54
  article-title: On the optimal solution of budgeted influence maximization problem in social networks
  publication-title: Oper. Res.
– volume: 622
  start-page: 1109
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib20
  article-title: Hierarchical attention neural network for information cascade prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.163
– volume: 39
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib69
  article-title: A distributed permutation flow-shop considering sustainability criteria and real-time scheduling
  publication-title: J. Ind. Inf. Integr.
– volume: 640
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib8
  article-title: A fast module identification and filtering approach for influence maximization problem in social networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119105
– volume: 99
  start-page: 5766
  issue: 9
  year: 2002
  ident: 10.1016/j.heliyon.2024.e40031_bib6
  article-title: A simple model of global cascades on random networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.082090499
– volume: 645
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib18
  article-title: Fuzzy sign-aware diffusion models for influence maximization in signed social networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119174
– volume: 233
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib16
  article-title: Competitive influence maximization considering inactive nodes and community homophily
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.107497
– volume: 120
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib32
  article-title: Community-based k-shell decomposition for identifying influential spreaders
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.108130
– volume: 18
  issue: 7
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib46
  article-title: Attacking social media via behavior poisoning
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3654673
– volume: 586
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib65
  article-title: An improved influence maximization method for social networks based on genetic algorithm
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2021.126480
– volume: 546
  start-page: 559
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib14
  article-title: Maximizing positive influence in competitive social networks: a trust-based solution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.09.002
– volume: 9
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib31
  article-title: Identifying influential nodes using a shell-based ranking and filtering method in social networks
  publication-title: Big Data
  doi: 10.1089/big.2020.0259
– year: 2003
  ident: 10.1016/j.heliyon.2024.e40031_bib5
  article-title: Maximizing the spread of influence through a social network
– volume: 202
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib42
  article-title: MAHE-IM: multiple aggregation of heterogeneous relation embedding for influence maximization on heterogeneous information network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117289
– volume: 17
  issue: 7
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib47
  article-title: Robust influence maximization under both aleatory and epistemic uncertainty
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3587100
– year: 2015
  ident: 10.1016/j.heliyon.2024.e40031_bib39
  article-title: A genetic NewGreedy algorithm for influence maximization in social network
– year: 2014
  ident: 10.1016/j.heliyon.2024.e40031_bib22
  article-title: Maximizing social influence in nearly optimal time
– volume: 8
  start-page: 1557
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib55
  article-title: A local-global influence indicator based constrained evolutionary algorithm for budgeted influence maximization in social networks
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2021.3064828
– volume: 6
  start-page: 2320
  year: 2018
  ident: 10.1016/j.heliyon.2024.e40031_bib58
  article-title: Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2782814
– volume: 17
  issue: 9
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib45
  article-title: A survey on influence maximization: from an ML-based combinatorial optimization
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3604559
– volume: 231
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib17
  article-title: Node deletion-based algorithm for blocking maximizing on negative influence from uncertain sources
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.107451
– volume: 96
  issue: 2
  year: 2017
  ident: 10.1016/j.heliyon.2024.e40031_bib29
  article-title: Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights
  publication-title: Phys. Rev.
– volume: 609
  start-page: 578
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib37
  article-title: CBIM: community-based influence maximization in multilayer networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.103
– volume: 11
  start-page: 3148
  issue: 3
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib50
  article-title: IM-META: influence maximization using node metadata in networks with unknown topology
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2024.3362903
– volume: 125
  start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e40031_bib56
  article-title: ComBIM: a community-based solution approach for the budgeted influence maximization problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.070
– year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib49
  article-title: BIM: improving graph neural networks with balanced influence maximization
– volume: 28
  start-page: 529
  issue: 3
  year: 2017
  ident: 10.1016/j.heliyon.2024.e40031_bib2
  article-title: Understanding voluntary knowledge provision and content contribution through a social-media-based prediction market: a field experiment
  publication-title: Inf. Syst. Res.
  doi: 10.1287/isre.2016.0679
– volume: 150
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib48
  article-title: A bitwise approach on influence overload problem
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2023.102276
– volume: 60
  start-page: 564
  issue: 3
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib3
  article-title: Optimal microtargeting of advertising
  publication-title: J. Market. Res.
  doi: 10.1177/00222437221116034
– volume: 213
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib15
  article-title: Competitive and complementary influence maximization in social network: a follower's perspective
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106600
– volume: 140
  year: 2020
  ident: 10.1016/j.heliyon.2024.e40031_bib43
  article-title: Influence maximization across heterogeneous interconnected networks based on deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112905
– volume: 169
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib33
  article-title: A dynamic algorithm based on cohesive entropy for influence maximization in social networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114207
– volume: 50
  start-page: 584
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib4
  article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers
  publication-title: J. Advert.
  doi: 10.1080/00913367.2021.1980470
– volume: 17
  issue: 6
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib7
  article-title: Triadic closure sensitive influence maximization
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3573011
– year: 2011
  ident: 10.1016/j.heliyon.2024.e40031_bib21
  article-title: Celf++: optimizing the greedy algorithm for influence maximization in social networks
– volume: 70
  start-page: 1224
  issue: 8
  year: 2019
  ident: 10.1016/j.heliyon.2024.e40031_bib52
  article-title: How to maximize advertising performance in online social networks
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2018.1489343
– volume: 598
  year: 2022
  ident: 10.1016/j.heliyon.2024.e40031_bib36
  article-title: Influence maximization in social networks using effective community detection
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2022.127314
– volume: 37
  start-page: 555
  issue: 3
  year: 2013
  ident: 10.1016/j.heliyon.2024.e40031_bib12
  article-title: Topic-aware social influence propagation models
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0646-6
– year: 2009
  ident: 10.1016/j.heliyon.2024.e40031_bib26
  article-title: Efficient influence maximization in social networks
– volume: 564
  year: 2024
  ident: 10.1016/j.heliyon.2024.e40031_bib10
  article-title: Influence maximization algorithm based on group trust and local topology structure
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126936
– volume: 546
  start-page: 1273
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib25
  article-title: Attribute based diversification of seeds for targeted influence maximization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.093
– volume: 169
  year: 2021
  ident: 10.1016/j.heliyon.2024.e40031_bib60
  article-title: Earned benefit maximization in social networks under budget constraint
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114346
– year: 2009
  ident: 10.1016/j.heliyon.2024.e40031_bib64
  article-title: Social influence analysis in large-scale networks
– year: 2015
  ident: 10.1016/j.heliyon.2024.e40031_bib23
– volume: 514
  start-page: 369
  year: 2020
  ident: 10.1016/j.heliyon.2024.e40031_bib57
  article-title: Efficient network seeding under variable node cost and limited budget for social networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.11.029
– volume: 213
  year: 2023
  ident: 10.1016/j.heliyon.2024.e40031_bib34
  article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118869
SSID ssj0001586973
Score 2.284083
Snippet The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network...
SourceID doaj
unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e40031
SubjectTerms algorithms
Budgeted influence maximization
Cost model
empirical models
Proxy-based algorithm
seed set
seeds
Social networks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4A1dXjIS1yxJ_Fj72CKqCqkrDqxUTpadTLoLu9lqm6gtv55xHksXEJRjrJkkHo89X-KZzwBvU68L5bGIhHd5JFRYB30mo5QXY8IL3KUNffHRRB1OxcdjedwVq4damK39-yYPa4aL-eUqUJWmYoQieOFN2FGSoPcAdqaTT3tfwgFyBDwiLUT8s0rnz7pb8aeh6d8KQ7_DzLtwuy5P3eW5WyyuhJ6D-zDpX7rNOPk2qis_yr7_wud47V49gHsdCGV7rdc8hBtYPoJbR902-2OY7df5CVaRO3drZE24Y_P-NBPWEjHTKsnc4mS1nlezJSPoy7Bho6AgdkV26S7my67Uk5pZ-4uelW3y-dkTmB58-Pz-MOqOZIgyTtgj8k4ZwXOjkEutXewS7QV9oRhCAqbwhdOiQC685ybPFccY49gnY--cxMSnyJ_CoFyVuAsskbkkEW4EKZF7-DRxSVg-0GeC9IYw6gfKnrbMG7ZPSftqO_vZYD_b2m8I-2E4N8KBOLtpIMvbbh7ajPOCnhu43KVAnhmRm6TwJs5UnmRjHILuncF2GKTFFnSr-b-e_6Z3HktzNGy8uBJX9ZnlBKoUwQD5N5mQLaMJXOshPGs9b9MTbqTkSpP2u40rXs8mz_9b4wXcCVeh3DKRL2FQrWt8Rbir8q-72fYDZ9ArgA
  priority: 102
  providerName: Unpaywall
Title Budget-aware local influence iterative algorithm for efficient influence maximization in social networks
URI https://dx.doi.org/10.1016/j.heliyon.2024.e40031
https://www.ncbi.nlm.nih.gov/pubmed/39553681
https://www.proquest.com/docview/3129684751
https://www.proquest.com/docview/3200285668
https://doi.org/10.1016/j.heliyon.2024.e40031
https://doaj.org/article/c33fd5dca4854e3c94d91fb90c6d1c7e
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: KQ8
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DIK
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: AKRWK
  dateStart: 20150901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejhX08lH0v61Y02KsTy_qI9NiWlTJo2cMC3ZOQrHPjkjglTej63-9k2VnKYN3DXoUk23cn3U_W3e8I-Vx4XSkPVSa8C5lQcR_0pcwKXo0RL3BXtPTFZ-fqdCK-XsiLrVJfMSYs0QMnwY1KzqsgQyTflgJ4aUQwrPImL1Vg5Rji7ptrs3WYSvnBWpkx_52yM7oaTmFW3y0i52khhiCiOd9zRi1n_z2f9CfmfEaerJtrd3frZrMtP3TynOx1AJIephd_QR5B85I8PuuuyF-R6dE6XMIqc7duCbR1VbTuK5HQRKKMOxx1s8vFsl5N5xRhK4WWSQId0FbfuftZz7s0TWym6fc6bVLg-M1rMjn58v34NOvKKWQlR9yQeaeM4MEo4FJrlzumvcDThUEvbipfOS0q4MJ7bkJQHHLIc8_G3jkJzBfA35CdZtHAO0KZRJUozo3AQahaXzDH4tIHXwocNyDDXq72OrFm2D6c7Mp2irBRETYpYkCOovQ3nSPpdduApmA7U7APmcKA6F53tsMPCRfgVPVDz__U69ri-oqXJq6BxfrGcgRECl24_FufGOmiERjrAXmbDGXzJdxIyZXG0aON5fybTN7_D5nsk6dxypg9yeQHsrNaruEjwqiVP2hXzAHZnZx_O_zxC6jLH5Y
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4A1dXjIS1yxJ_Fj72CKqCqkrDqxUTpadTLoLu9lqm6gtv55xHksXEJRjrJkkHo89X-KZzwBvU68L5bGIhHd5JFRYB30mo5QXY8IL3KUNffHRRB1OxcdjedwVq4damK39-yYPa4aL-eUqUJWmYoQieOFN2FGSoPcAdqaTT3tfwgFyBDwiLUT8s0rnz7pb8aeh6d8KQ7_DzLtwuy5P3eW5WyyuhJ6D-zDpX7rNOPk2qis_yr7_wud47V49gHsdCGV7rdc8hBtYPoJbR902-2OY7df5CVaRO3drZE24Y_P-NBPWEjHTKsnc4mS1nlezJSPoy7Bho6AgdkV26S7my67Uk5pZ-4uelW3y-dkTmB58-Pz-MOqOZIgyTtgj8k4ZwXOjkEutXewS7QV9oRhCAqbwhdOiQC685ybPFccY49gnY--cxMSnyJ_CoFyVuAsskbkkEW4EKZF7-DRxSVg-0GeC9IYw6gfKnrbMG7ZPSftqO_vZYD_b2m8I-2E4N8KBOLtpIMvbbh7ajPOCnhu43KVAnhmRm6TwJs5UnmRjHILuncF2GKTFFnSr-b-e_6Z3HktzNGy8uBJX9ZnlBKoUwQD5N5mQLaMJXOshPGs9b9MTbqTkSpP2u40rXs8mz_9b4wXcCVeh3DKRL2FQrWt8Rbir8q-72fYDZ9ArgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Budget-aware+local+influence+iterative+algorithm+for+efficient+influence+maximization+in+social+networks&rft.jtitle=Heliyon&rft.au=Li%2C+Lingfei&rft.au=Song%2C+Yingxin&rft.au=Yang%2C+Wei&rft.au=Yuan%2C+Kun&rft.date=2024-11-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=21+p.e40031-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e40031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon