Budget-aware local influence iterative algorithm for efficient influence maximization in social networks
The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To...
        Saved in:
      
    
          | Published in | Heliyon Vol. 10; no. 21; p. e40031 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        15.11.2024
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2405-8440 2405-8440  | 
| DOI | 10.1016/j.heliyon.2024.e40031 | 
Cover
| Abstract | The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.
•Empirical data informs a realistic cost model for individual user activation in social networks.•A novel degree centrality-based algorithm swiftly selects seed nodes for the BIM problem, mitigating overlap.•Experimental validation demonstrates our algorithm's efficiency and superior influence spread compared to alternatives. | 
    
|---|---|
| AbstractList | The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems. The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems. •Empirical data informs a realistic cost model for individual user activation in social networks.•A novel degree centrality-based algorithm swiftly selects seed nodes for the BIM problem, mitigating overlap.•Experimental validation demonstrates our algorithm's efficiency and superior influence spread compared to alternatives. The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%–255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems. The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network structure and cost model. However, it is difficult for the existing algorithms to achieve a balance between timeliness and effectiveness. To address this challenge, our study initially proposes a refined cost model through empirical scrutiny of Weibo's quote data. Subsequently, we introduce a proxy-based algorithm, i.e., the budget-aware local influence iterative (BLII) algorithm tailored for the BIM problem, aimed at expediently identifying seed nodes. The algorithm approximates the global influence by leveraging the user's one-hop influence and circumvents influence overlap among seed nodes via iterative influence updates. Comparative experiments involving eight algorithms across four real networks demonstrate the effectiveness, efficiency, and robustness of the BLII algorithm. In terms of influence spread, the proposed algorithm outperforms other proxy-based algorithms by 20%-255 % and reaches the state-of-the-art simulation-based approach by 96 %. In addition, the running time of the BLII algorithm is reasonable. Generally, the proposed cost model and BLII algorithm provide novel insights and potent tools for studying BIM problems.  | 
    
| ArticleNumber | e40031 | 
    
| Author | Li, Lingfei Yuan, Kun Song, Yingxin Kong, Min Li, Yaguang Fathollahi-Fard, Amir M. Yang, Wei  | 
    
| Author_xml | – sequence: 1 givenname: Lingfei surname: Li fullname: Li, Lingfei email: lilingfei@hdu.edu.cn organization: School of Management, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 2 givenname: Yingxin surname: Song fullname: Song, Yingxin email: songyx@ahnu.edu.cn organization: School of Economics and Management, Anhui Normal University, Wuhu, 241000, China – sequence: 3 givenname: Wei surname: Yang fullname: Yang, Wei email: yang_wei@hdu.edu.cn organization: School of Management, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 4 givenname: Kun surname: Yuan fullname: Yuan, Kun email: yuankun@hfut.edu.cn organization: School of Management, Hefei University of Technology, Hefei, 230009, China – sequence: 5 givenname: Yaguang surname: Li fullname: Li, Yaguang email: yaguangli2009@126.com organization: School of Health Service Management and the Hospital Management Institute, Anhui Medical University, Hefei, 230032, China – sequence: 6 givenname: Min surname: Kong fullname: Kong, Min email: minkong@ahnu.edu.cn organization: School of Economics and Management, Anhui Normal University, Wuhu, 241000, China – sequence: 7 givenname: Amir M. orcidid: 0000-0002-5939-9795 surname: Fathollahi-Fard fullname: Fathollahi-Fard, Amir M. email: amirfard.ie@gmail.com, fathollahifard.amirmohammad@courrier.uqam.ca organization: Département d’Analytique, Opérations et Technologies de l’Information, Université de Québec à Montreal, 315, Sainte-Catherine Street East, H2X 3X2, Montreal, Canada  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39553681$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1vEzEQhleoiJbSnwDaI5cEe_0R-4Sg4qNSJS5wtmbtceLgXQd7t2n49WzYUPVWTrZG7_toNM_L6qxPPVbVa0qWlFD5brvcYAyH1C8b0vAlckIYfVZdNJyIheKcnD36n1dXpWwJIVQoqVfsRXXOtBBMKnpRbT6Obo3DAvaQsY7JQqxD7-OIvcU6DJhhCHdYQ1ynHIZNV_uUa_Q-2ID98CjbwX3owu8pnvppXJdkwwTrcdin_LO8qp57iAWvTu9l9ePzp-_XXxe3377cXH-4XVi24nTRgtScOS2RCaWAAFUtV43UTcO1bz0o7pHxtmXaOcmQICEtXbUAAmnbILusbmauS7A1uxw6yAeTIJi_g5TXBvIQbERjGfNOOAtcCY7Mau409a0mVjpqV0eWnFljv4PDHmJ8AFJijibM1pxMmKMJM5uYim_n4i6nXyOWwXShWIwRekxjMawhpFFCSvV0lDZaKr4SR-qbU3RsO3QPu_yzOQXEHLA5lZLR__e67-ceTmLuAmZTjnYtupDRDtPlwhOEP6PpzqY | 
    
| Cites_doi | 10.1016/j.eswa.2022.118770 10.1016/j.physa.2021.126258 10.1016/S0065-2601(05)37006-7 10.1109/JSAC.2013.130610 10.1287/mnsc.2019.3564 10.1016/j.ins.2020.12.048 10.1016/j.neucom.2019.02.010 10.1016/j.ins.2021.04.061 10.1109/TCSS.2022.3164667 10.1016/j.ins.2020.01.040 10.1016/j.ins.2024.121067 10.1145/3594544 10.1016/j.ins.2022.06.075 10.14778/3397230.3397244 10.1016/j.knosys.2021.106942 10.1016/j.ins.2022.06.052 10.1038/nphys1746 10.1016/j.chb.2023.108055 10.1016/j.ins.2022.11.163 10.1016/j.ins.2023.119105 10.1073/pnas.082090499 10.1016/j.ins.2023.119174 10.1016/j.knosys.2021.107497 10.1016/j.patcog.2021.108130 10.1145/3654673 10.1016/j.physa.2021.126480 10.1016/j.ins.2020.09.002 10.1089/big.2020.0259 10.1016/j.eswa.2022.117289 10.1145/3587100 10.1109/TNSE.2021.3064828 10.1109/ACCESS.2017.2782814 10.1145/3604559 10.1016/j.knosys.2021.107451 10.1016/j.ins.2022.07.103 10.1109/TNSE.2024.3362903 10.1016/j.eswa.2019.01.070 10.1287/isre.2016.0679 10.1016/j.datak.2023.102276 10.1177/00222437221116034 10.1016/j.knosys.2020.106600 10.1016/j.eswa.2019.112905 10.1016/j.eswa.2020.114207 10.1080/00913367.2021.1980470 10.1145/3573011 10.1080/01605682.2018.1489343 10.1016/j.physa.2022.127314 10.1007/s10115-013-0646-6 10.1016/j.neucom.2023.126936 10.1016/j.ins.2020.08.093 10.1016/j.eswa.2020.114346 10.1016/j.ins.2019.11.029 10.1016/j.eswa.2022.118869  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors 2024 The Authors. Published by Elsevier Ltd.  | 
    
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. Published by Elsevier Ltd.  | 
    
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.heliyon.2024.e40031 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2405-8440 | 
    
| ExternalDocumentID | oai_doaj_org_article_c33fd5dca4854e3c94d91fb90c6d1c7e 10.1016/j.heliyon.2024.e40031 39553681 10_1016_j_heliyon_2024_e40031 S2405844024160628  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG NPM 7X8 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3741-ba6943d96e3588a0a18b482692249fbfa84fe34bb39dd63e0e00b17baa5e1b2e3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2405-8440 | 
    
| IngestDate | Fri Oct 03 12:29:45 EDT 2025 Sun Oct 26 03:36:25 EDT 2025 Fri Aug 22 20:38:00 EDT 2025 Tue Oct 21 13:46:42 EDT 2025 Mon Jul 21 05:59:50 EDT 2025 Thu Oct 09 00:43:21 EDT 2025 Sat Oct 25 16:49:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 21 | 
    
| Keywords | Social networks Cost model Budgeted influence maximization Proxy-based algorithm  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. 2024 The Authors. Published by Elsevier Ltd. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3741-ba6943d96e3588a0a18b482692249fbfa84fe34bb39dd63e0e00b17baa5e1b2e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-5939-9795 | 
    
| OpenAccessLink | https://doaj.org/article/c33fd5dca4854e3c94d91fb90c6d1c7e | 
    
| PMID | 39553681 | 
    
| PQID | 3129684751 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c33fd5dca4854e3c94d91fb90c6d1c7e unpaywall_primary_10_1016_j_heliyon_2024_e40031 proquest_miscellaneous_3200285668 proquest_miscellaneous_3129684751 pubmed_primary_39553681 crossref_primary_10_1016_j_heliyon_2024_e40031 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e40031  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-11-15 | 
    
| PublicationDateYYYYMMDD | 2024-11-15 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Heliyon | 
    
| PublicationTitleAlternate | Heliyon | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Shi (bib59) 2019; 338 Biswas, Abbasi, Chakrabortty (bib40) 2021; 556 Liu, Li (bib52) 2019; 70 Huang, Meng, Shen (bib15) 2021; 213 Kazemzadeh, Safaei, Mirzarezaee (bib36) 2022; 598 Caliò, Tagarelli (bib25) 2021; 546 Liu (bib29) 2017; 96 Liu (bib30) 2015; 5 Keikha (bib43) 2020; 140 Jabari Lotf, Abdollahi Azgomi, Ebrahimi Dishabi (bib65) 2022; 586 Kumar, Mallik, Panda (bib41) 2023; 212 Kitsak (bib28) 2010; 6 Fathollahi-Fard (bib69) 2024; 39 Hovland, Janis, Kelley (bib63) 1953 Nguyen, Zheng (bib51) 2013; 31 Lee (bib48) 2024; 150 Yang (bib7) 2023; 17 Beni (bib8) 2023; 640 Borgs (bib22) 2014 Barbieri, Bonchi, Manco (bib12) 2013; 37 Li (bib33) 2021; 169 Watts (bib6) 2002; 99 Ahmadi Beni, Bouyer (bib31) 2021; 9 Yang, Liu (bib58) 2018; 6 Gong, Liu, Bai (bib9) 2021; 220 Xie (bib16) 2021; 233 Bouyer (bib34) 2023; 213 Sun, Miao, Staab (bib32) 2021; 120 Kempe, Kleinberg, Tardos (bib5) 2003 Bucur, Iacca (bib38) 2016 Li (bib11) 2020; 519 Wu (bib46) 2024; 18 Qiu, Kumar (bib2) 2017; 28 Li (bib19) 2021; 568 Güney (bib54) 2019; 19 Wang (bib14) 2021; 546 Banerjee, Jenamani, Pratihar (bib60) 2021; 169 Danaher (bib3) 2023; 60 Kumar (bib44) 2022; 607 Li (bib45) 2023; 17 Yang (bib13) 2024; 238 Zhong (bib20) 2023; 622 Park (bib4) 2021; 50 Tang (bib64) 2009 Goyal, Lu, Lakshmanan (bib21) 2011 Gelper, Lans, Bruggen (bib1) 2021; 67 Li (bib42) 2022; 202 Mohammadi (bib18) 2023; 645 Biswas, Abbasi, Chakrabortty (bib47) 2023; 17 Banerjee, Jenamani, Pratihar (bib56) 2019; 125 de Souza (bib57) 2020; 514 Bian (bib53) 2020; 13 Zhang (bib49) 2024 Zeng (bib27) 2024; 679 Qin, Zhong, Lin (bib66) 2023; 17 Tang, Shi, Xiao (bib23) 2015 Li (bib67) 2023; 10 Tran, Shin, Spitz (bib50) 2024; 11 Venkatakrishna Rao, Chowdary (bib37) 2022; 609 Kruglanski (bib61) 2005; 37 Guo (bib10) 2024; 564 Li, Sheng (bib62) 2024; 152 Tian (bib68) 2022; 608 Ju (bib17) 2021; 231 Wang (bib24) 2016 Tsai, Yang, Chiang (bib39) 2015 Samir, Rady, Gharib (bib35) 2021; 582 Chen, Wang, Yang (bib26) 2009 Zhang (bib55) 2021; 8 Park (10.1016/j.heliyon.2024.e40031_bib4) 2021; 50 Samir (10.1016/j.heliyon.2024.e40031_bib35) 2021; 582 Huang (10.1016/j.heliyon.2024.e40031_bib15) 2021; 213 Chen (10.1016/j.heliyon.2024.e40031_bib26) 2009 Venkatakrishna Rao (10.1016/j.heliyon.2024.e40031_bib37) 2022; 609 Li (10.1016/j.heliyon.2024.e40031_bib42) 2022; 202 Ju (10.1016/j.heliyon.2024.e40031_bib17) 2021; 231 Mohammadi (10.1016/j.heliyon.2024.e40031_bib18) 2023; 645 Yang (10.1016/j.heliyon.2024.e40031_bib58) 2018; 6 Guo (10.1016/j.heliyon.2024.e40031_bib10) 2024; 564 Biswas (10.1016/j.heliyon.2024.e40031_bib40) 2021; 556 Wang (10.1016/j.heliyon.2024.e40031_bib24) 2016 Li (10.1016/j.heliyon.2024.e40031_bib11) 2020; 519 Li (10.1016/j.heliyon.2024.e40031_bib45) 2023; 17 Banerjee (10.1016/j.heliyon.2024.e40031_bib56) 2019; 125 Xie (10.1016/j.heliyon.2024.e40031_bib16) 2021; 233 Banerjee (10.1016/j.heliyon.2024.e40031_bib60) 2021; 169 Li (10.1016/j.heliyon.2024.e40031_bib19) 2021; 568 Zhong (10.1016/j.heliyon.2024.e40031_bib20) 2023; 622 Goyal (10.1016/j.heliyon.2024.e40031_bib21) 2011 Kruglanski (10.1016/j.heliyon.2024.e40031_bib61) 2005; 37 Liu (10.1016/j.heliyon.2024.e40031_bib29) 2017; 96 Liu (10.1016/j.heliyon.2024.e40031_bib30) 2015; 5 Zhang (10.1016/j.heliyon.2024.e40031_bib49) 2024 Güney (10.1016/j.heliyon.2024.e40031_bib54) 2019; 19 Keikha (10.1016/j.heliyon.2024.e40031_bib43) 2020; 140 Bucur (10.1016/j.heliyon.2024.e40031_bib38) 2016 Li (10.1016/j.heliyon.2024.e40031_bib62) 2024; 152 Hovland (10.1016/j.heliyon.2024.e40031_bib63) 1953 Yang (10.1016/j.heliyon.2024.e40031_bib7) 2023; 17 Wu (10.1016/j.heliyon.2024.e40031_bib46) 2024; 18 Kumar (10.1016/j.heliyon.2024.e40031_bib41) 2023; 212 Li (10.1016/j.heliyon.2024.e40031_bib33) 2021; 169 Zeng (10.1016/j.heliyon.2024.e40031_bib27) 2024; 679 Biswas (10.1016/j.heliyon.2024.e40031_bib47) 2023; 17 Liu (10.1016/j.heliyon.2024.e40031_bib52) 2019; 70 Bian (10.1016/j.heliyon.2024.e40031_bib53) 2020; 13 Tian (10.1016/j.heliyon.2024.e40031_bib68) 2022; 608 Lee (10.1016/j.heliyon.2024.e40031_bib48) 2024; 150 Bouyer (10.1016/j.heliyon.2024.e40031_bib34) 2023; 213 Gong (10.1016/j.heliyon.2024.e40031_bib9) 2021; 220 de Souza (10.1016/j.heliyon.2024.e40031_bib57) 2020; 514 Qin (10.1016/j.heliyon.2024.e40031_bib66) 2023; 17 Barbieri (10.1016/j.heliyon.2024.e40031_bib12) 2013; 37 Shi (10.1016/j.heliyon.2024.e40031_bib59) 2019; 338 Sun (10.1016/j.heliyon.2024.e40031_bib32) 2021; 120 Kazemzadeh (10.1016/j.heliyon.2024.e40031_bib36) 2022; 598 Gelper (10.1016/j.heliyon.2024.e40031_bib1) 2021; 67 Tsai (10.1016/j.heliyon.2024.e40031_bib39) 2015 Caliò (10.1016/j.heliyon.2024.e40031_bib25) 2021; 546 Danaher (10.1016/j.heliyon.2024.e40031_bib3) 2023; 60 Tang (10.1016/j.heliyon.2024.e40031_bib64) 2009 Borgs (10.1016/j.heliyon.2024.e40031_bib22) 2014 Qiu (10.1016/j.heliyon.2024.e40031_bib2) 2017; 28 Kempe (10.1016/j.heliyon.2024.e40031_bib5) 2003 Zhang (10.1016/j.heliyon.2024.e40031_bib55) 2021; 8 Jabari Lotf (10.1016/j.heliyon.2024.e40031_bib65) 2022; 586 Yang (10.1016/j.heliyon.2024.e40031_bib13) 2024; 238 Wang (10.1016/j.heliyon.2024.e40031_bib14) 2021; 546 Watts (10.1016/j.heliyon.2024.e40031_bib6) 2002; 99 Nguyen (10.1016/j.heliyon.2024.e40031_bib51) 2013; 31 Kumar (10.1016/j.heliyon.2024.e40031_bib44) 2022; 607 Li (10.1016/j.heliyon.2024.e40031_bib67) 2023; 10 Fathollahi-Fard (10.1016/j.heliyon.2024.e40031_bib69) 2024; 39 Ahmadi Beni (10.1016/j.heliyon.2024.e40031_bib31) 2021; 9 Beni (10.1016/j.heliyon.2024.e40031_bib8) 2023; 640 Tran (10.1016/j.heliyon.2024.e40031_bib50) 2024; 11 Tang (10.1016/j.heliyon.2024.e40031_bib23) 2015 Kitsak (10.1016/j.heliyon.2024.e40031_bib28) 2010; 6  | 
    
| References_xml | – volume: 17 year: 2023 ident: bib45 article-title: A survey on influence maximization: from an ML-based combinatorial optimization publication-title: ACM Trans. Knowl. Discov. Data – year: 2015 ident: bib39 article-title: A genetic NewGreedy algorithm for influence maximization in social network publication-title: 2015 IEEE International Conference on Systems, Man, and Cybernetics – volume: 70 start-page: 1224 year: 2019 end-page: 1233 ident: bib52 article-title: How to maximize advertising performance in online social networks publication-title: J. Oper. Res. Soc. – volume: 60 start-page: 564 year: 2023 end-page: 584 ident: bib3 article-title: Optimal microtargeting of advertising publication-title: J. Market. Res. – volume: 17 year: 2023 ident: bib7 article-title: Triadic closure sensitive influence maximization publication-title: ACM Trans. Knowl. Discov. Data – volume: 609 start-page: 578 year: 2022 end-page: 594 ident: bib37 article-title: CBIM: community-based influence maximization in multilayer networks publication-title: Inf. Sci. – volume: 31 start-page: 1084 year: 2013 end-page: 1094 ident: bib51 article-title: On budgeted influence maximization in social networks publication-title: IEEE J. Sel. Area. Commun. – volume: 6 start-page: 2320 year: 2018 end-page: 2329 ident: bib58 article-title: Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm publication-title: IEEE Access – volume: 640 year: 2023 ident: bib8 article-title: A fast module identification and filtering approach for influence maximization problem in social networks publication-title: Inf. Sci. – volume: 13 start-page: 1498 year: 2020 end-page: 1510 ident: bib53 article-title: Efficient algorithms for budgeted influence maximization on massive social networks publication-title: Proc. VLDB Endow. – volume: 17 start-page: 1 year: 2023 end-page: 21 ident: bib66 article-title: Community-based influence maximization using network embedding in dynamic heterogeneous social networks publication-title: ACM Trans. Knowl. Discov. Data – volume: 679 year: 2024 ident: bib27 article-title: Identifying vital nodes through augmented random walks on higher-order networks publication-title: Inf. Sci. – volume: 608 start-page: 578 year: 2022 end-page: 596 ident: bib68 article-title: Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm publication-title: Inf. Sci. – year: 2009 ident: bib26 article-title: Efficient influence maximization in social networks publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 37 start-page: 555 year: 2013 end-page: 584 ident: bib12 article-title: Topic-aware social influence propagation models publication-title: Knowl. Inf. Syst. – volume: 125 start-page: 1 year: 2019 end-page: 13 ident: bib56 article-title: ComBIM: a community-based solution approach for the budgeted influence maximization problem publication-title: Expert Syst. Appl. – volume: 5 year: 2015 ident: bib30 article-title: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics publication-title: Sci. Rep. – year: 2009 ident: bib64 article-title: Social influence analysis in large-scale networks publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 140 year: 2020 ident: bib43 article-title: Influence maximization across heterogeneous interconnected networks based on deep learning publication-title: Expert Syst. Appl. – volume: 607 start-page: 1617 year: 2022 end-page: 1636 ident: bib44 article-title: Influence maximization in social networks using graph embedding and graph neural network publication-title: Inf. Sci. – year: 2014 ident: bib22 article-title: Maximizing social influence in nearly optimal time publication-title: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 50 start-page: 584 year: 2021 end-page: 602 ident: bib4 article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers publication-title: J. Advert. – volume: 213 year: 2023 ident: bib34 article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks publication-title: Expert Syst. Appl. – volume: 546 start-page: 1273 year: 2021 end-page: 1305 ident: bib25 article-title: Attribute based diversification of seeds for targeted influence maximization publication-title: Inf. Sci. – volume: 10 start-page: 1288 year: 2023 end-page: 1300 ident: bib67 article-title: PIANO: influence maximization meets deep reinforcement learning publication-title: IEEE Transac. Comput. Soc. Syst. – year: 2016 ident: bib38 article-title: Influence maximization in social networks with genetic algorithms publication-title: Applications of Evolutionary Computation – volume: 169 year: 2021 ident: bib60 article-title: Earned benefit maximization in social networks under budget constraint publication-title: Expert Syst. Appl. – volume: 99 start-page: 5766 year: 2002 end-page: 5771 ident: bib6 article-title: A simple model of global cascades on random networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 1557 year: 2021 end-page: 1570 ident: bib55 article-title: A local-global influence indicator based constrained evolutionary algorithm for budgeted influence maximization in social networks publication-title: IEEE Transactions on Network Science and Engineering – volume: 233 year: 2021 ident: bib16 article-title: Competitive influence maximization considering inactive nodes and community homophily publication-title: Knowl. Base Syst. – volume: 96 year: 2017 ident: bib29 article-title: Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights publication-title: Phys. Rev. – volume: 514 start-page: 369 year: 2020 end-page: 384 ident: bib57 article-title: Efficient network seeding under variable node cost and limited budget for social networks publication-title: Inf. Sci. – year: 2016 ident: bib24 article-title: Bring order into the samples: a novel scalable method for influence maximization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 17 year: 2023 ident: bib47 article-title: Robust influence maximization under both aleatory and epistemic uncertainty publication-title: ACM Trans. Knowl. Discov. Data – year: 2003 ident: bib5 article-title: Maximizing the spread of influence through a social network publication-title: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 67 start-page: 1026 year: 2021 end-page: 1047 ident: bib1 article-title: Competition for attention in online social networks: implications for seeding strategies publication-title: Manag. Sci. – volume: 169 year: 2021 ident: bib33 article-title: A dynamic algorithm based on cohesive entropy for influence maximization in social networks publication-title: Expert Syst. Appl. – volume: 220 year: 2021 ident: bib9 article-title: Efficient parallel computing on the game theory-aware robust influence maximization problem publication-title: Knowl. Base Syst. – volume: 202 year: 2022 ident: bib42 article-title: MAHE-IM: multiple aggregation of heterogeneous relation embedding for influence maximization on heterogeneous information network publication-title: Expert Syst. Appl. – volume: 546 start-page: 559 year: 2021 end-page: 572 ident: bib14 article-title: Maximizing positive influence in competitive social networks: a trust-based solution publication-title: Inf. Sci. – volume: 238 year: 2024 ident: bib13 article-title: Complementary influence maximization under comparative linear threshold model publication-title: Expert Syst. Appl. – volume: 6 start-page: 888 year: 2010 end-page: 893 ident: bib28 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. – volume: 152 year: 2024 ident: bib62 article-title: Determinants of public emergency information dissemination on social networks: a meta-analysis publication-title: Comput. Hum. Behav. – volume: 213 year: 2021 ident: bib15 article-title: Competitive and complementary influence maximization in social network: a follower's perspective publication-title: Knowl. Base Syst. – volume: 120 year: 2021 ident: bib32 article-title: Community-based k-shell decomposition for identifying influential spreaders publication-title: Pattern Recogn. – volume: 18 year: 2024 ident: bib46 article-title: Attacking social media via behavior poisoning publication-title: ACM Trans. Knowl. Discov. Data – volume: 556 start-page: 27 year: 2021 end-page: 48 ident: bib40 article-title: An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks publication-title: Inf. Sci. – volume: 9 year: 2021 ident: bib31 article-title: Identifying influential nodes using a shell-based ranking and filtering method in social networks publication-title: Big Data – volume: 37 start-page: 345 year: 2005 end-page: 392 ident: bib61 article-title: Says who? Epistemic authority effects in social judgment publication-title: Adv. Exp. Soc. Psychol. – volume: 231 year: 2021 ident: bib17 article-title: Node deletion-based algorithm for blocking maximizing on negative influence from uncertain sources publication-title: Knowl. Base Syst. – volume: 212 year: 2023 ident: bib41 article-title: Influence maximization in social networks using transfer learning via graph-based LSTM publication-title: Expert Syst. Appl. – volume: 582 year: 2021 ident: bib35 article-title: LKG: a fast scalable community-based approach for influence maximization problem in social networks publication-title: Phys. Stat. Mech. Appl. – volume: 519 start-page: 124 year: 2020 end-page: 140 ident: bib11 article-title: Targeted influence maximization under a multifactor-based information propagation model publication-title: Inf. Sci. – volume: 622 start-page: 1109 year: 2023 end-page: 1127 ident: bib20 article-title: Hierarchical attention neural network for information cascade prediction publication-title: Inf. Sci. – volume: 150 year: 2024 ident: bib48 article-title: A bitwise approach on influence overload problem publication-title: Data Knowl. Eng. – year: 1953 ident: bib63 article-title: Communication and persuasion publication-title: Communication and Persuasion – volume: 338 start-page: 92 year: 2019 end-page: 100 ident: bib59 article-title: Post and repost: a holistic view of budgeted influence maximization publication-title: Neurocomputing – volume: 598 year: 2022 ident: bib36 article-title: Influence maximization in social networks using effective community detection publication-title: Phys. Stat. Mech. Appl. – year: 2024 ident: bib49 article-title: BIM: improving graph neural networks with balanced influence maximization publication-title: 2024 IEEE 40th International Conference on Data Engineering (ICDE) – volume: 11 start-page: 3148 year: 2024 end-page: 3160 ident: bib50 article-title: IM-META: influence maximization using node metadata in networks with unknown topology publication-title: IEEE Transactions on Network Science and Engineering – year: 2015 ident: bib23 article-title: Influence Maximization in Near-Linear Time: A Martingale Approach – volume: 564 year: 2024 ident: bib10 article-title: Influence maximization algorithm based on group trust and local topology structure publication-title: Neurocomputing – volume: 19 start-page: 817 year: 2019 end-page: 831 ident: bib54 article-title: On the optimal solution of budgeted influence maximization problem in social networks publication-title: Oper. Res. – year: 2011 ident: bib21 article-title: Celf++: optimizing the greedy algorithm for influence maximization in social networks publication-title: Proceedings of the 20th International Conference Companion on World Wide Web – volume: 586 year: 2022 ident: bib65 article-title: An improved influence maximization method for social networks based on genetic algorithm publication-title: Phys. Stat. Mech. Appl. – volume: 568 start-page: 386 year: 2021 end-page: 402 ident: bib19 article-title: Influence maximization algorithm based on Gaussian propagation model publication-title: Inf. Sci. – volume: 645 year: 2023 ident: bib18 article-title: Fuzzy sign-aware diffusion models for influence maximization in signed social networks publication-title: Inf. Sci. – volume: 28 start-page: 529 year: 2017 end-page: 546 ident: bib2 article-title: Understanding voluntary knowledge provision and content contribution through a social-media-based prediction market: a field experiment publication-title: Inf. Syst. Res. – volume: 39 year: 2024 ident: bib69 article-title: A distributed permutation flow-shop considering sustainability criteria and real-time scheduling publication-title: J. Ind. Inf. Integr. – volume: 212 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib41 article-title: Influence maximization in social networks using transfer learning via graph-based LSTM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118770 – volume: 582 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib35 article-title: LKG: a fast scalable community-based approach for influence maximization problem in social networks publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2021.126258 – volume: 37 start-page: 345 issue: 37 year: 2005 ident: 10.1016/j.heliyon.2024.e40031_bib61 article-title: Says who? Epistemic authority effects in social judgment publication-title: Adv. Exp. Soc. Psychol. doi: 10.1016/S0065-2601(05)37006-7 – volume: 31 start-page: 1084 issue: 6 year: 2013 ident: 10.1016/j.heliyon.2024.e40031_bib51 article-title: On budgeted influence maximization in social networks publication-title: IEEE J. Sel. Area. Commun. doi: 10.1109/JSAC.2013.130610 – volume: 67 start-page: 1026 issue: 2 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib1 article-title: Competition for attention in online social networks: implications for seeding strategies publication-title: Manag. Sci. doi: 10.1287/mnsc.2019.3564 – volume: 556 start-page: 27 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib40 article-title: An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.12.048 – volume: 338 start-page: 92 year: 2019 ident: 10.1016/j.heliyon.2024.e40031_bib59 article-title: Post and repost: a holistic view of budgeted influence maximization publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.010 – volume: 568 start-page: 386 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib19 article-title: Influence maximization algorithm based on Gaussian propagation model publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.061 – volume: 10 start-page: 1288 issue: 3 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib67 article-title: PIANO: influence maximization meets deep reinforcement learning publication-title: IEEE Transac. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3164667 – volume: 519 start-page: 124 year: 2020 ident: 10.1016/j.heliyon.2024.e40031_bib11 article-title: Targeted influence maximization under a multifactor-based information propagation model publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.01.040 – volume: 679 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib27 article-title: Identifying vital nodes through augmented random walks on higher-order networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121067 – year: 1953 ident: 10.1016/j.heliyon.2024.e40031_bib63 article-title: Communication and persuasion – volume: 17 start-page: 1 issue: 8 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib66 article-title: Community-based influence maximization using network embedding in dynamic heterogeneous social networks publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3594544 – year: 2016 ident: 10.1016/j.heliyon.2024.e40031_bib38 article-title: Influence maximization in social networks with genetic algorithms – volume: 607 start-page: 1617 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib44 article-title: Influence maximization in social networks using graph embedding and graph neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.075 – volume: 13 start-page: 1498 issue: 9 year: 2020 ident: 10.1016/j.heliyon.2024.e40031_bib53 article-title: Efficient algorithms for budgeted influence maximization on massive social networks publication-title: Proc. VLDB Endow. doi: 10.14778/3397230.3397244 – volume: 220 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib9 article-title: Efficient parallel computing on the game theory-aware robust influence maximization problem publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.106942 – volume: 608 start-page: 578 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib68 article-title: Multi-objective scheduling of priority-based rescue vehicles to extinguish forest fires using a multi-objective discrete gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.052 – issue: 99 year: 2016 ident: 10.1016/j.heliyon.2024.e40031_bib24 article-title: Bring order into the samples: a novel scalable method for influence maximization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 5 year: 2015 ident: 10.1016/j.heliyon.2024.e40031_bib30 article-title: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics publication-title: Sci. Rep. – volume: 238 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib13 article-title: Complementary influence maximization under comparative linear threshold model publication-title: Expert Syst. Appl. – volume: 6 start-page: 888 issue: 11 year: 2010 ident: 10.1016/j.heliyon.2024.e40031_bib28 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. doi: 10.1038/nphys1746 – volume: 152 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib62 article-title: Determinants of public emergency information dissemination on social networks: a meta-analysis publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2023.108055 – volume: 19 start-page: 817 issue: 3 year: 2019 ident: 10.1016/j.heliyon.2024.e40031_bib54 article-title: On the optimal solution of budgeted influence maximization problem in social networks publication-title: Oper. Res. – volume: 622 start-page: 1109 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib20 article-title: Hierarchical attention neural network for information cascade prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.163 – volume: 39 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib69 article-title: A distributed permutation flow-shop considering sustainability criteria and real-time scheduling publication-title: J. Ind. Inf. Integr. – volume: 640 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib8 article-title: A fast module identification and filtering approach for influence maximization problem in social networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119105 – volume: 99 start-page: 5766 issue: 9 year: 2002 ident: 10.1016/j.heliyon.2024.e40031_bib6 article-title: A simple model of global cascades on random networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.082090499 – volume: 645 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib18 article-title: Fuzzy sign-aware diffusion models for influence maximization in signed social networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119174 – volume: 233 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib16 article-title: Competitive influence maximization considering inactive nodes and community homophily publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.107497 – volume: 120 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib32 article-title: Community-based k-shell decomposition for identifying influential spreaders publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2021.108130 – volume: 18 issue: 7 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib46 article-title: Attacking social media via behavior poisoning publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3654673 – volume: 586 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib65 article-title: An improved influence maximization method for social networks based on genetic algorithm publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2021.126480 – volume: 546 start-page: 559 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib14 article-title: Maximizing positive influence in competitive social networks: a trust-based solution publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.09.002 – volume: 9 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib31 article-title: Identifying influential nodes using a shell-based ranking and filtering method in social networks publication-title: Big Data doi: 10.1089/big.2020.0259 – year: 2003 ident: 10.1016/j.heliyon.2024.e40031_bib5 article-title: Maximizing the spread of influence through a social network – volume: 202 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib42 article-title: MAHE-IM: multiple aggregation of heterogeneous relation embedding for influence maximization on heterogeneous information network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117289 – volume: 17 issue: 7 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib47 article-title: Robust influence maximization under both aleatory and epistemic uncertainty publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3587100 – year: 2015 ident: 10.1016/j.heliyon.2024.e40031_bib39 article-title: A genetic NewGreedy algorithm for influence maximization in social network – year: 2014 ident: 10.1016/j.heliyon.2024.e40031_bib22 article-title: Maximizing social influence in nearly optimal time – volume: 8 start-page: 1557 issue: 2 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib55 article-title: A local-global influence indicator based constrained evolutionary algorithm for budgeted influence maximization in social networks publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2021.3064828 – volume: 6 start-page: 2320 year: 2018 ident: 10.1016/j.heliyon.2024.e40031_bib58 article-title: Influence maximization-cost minimization in social networks based on a multiobjective discrete particle swarm optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2782814 – volume: 17 issue: 9 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib45 article-title: A survey on influence maximization: from an ML-based combinatorial optimization publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3604559 – volume: 231 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib17 article-title: Node deletion-based algorithm for blocking maximizing on negative influence from uncertain sources publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.107451 – volume: 96 issue: 2 year: 2017 ident: 10.1016/j.heliyon.2024.e40031_bib29 article-title: Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights publication-title: Phys. Rev. – volume: 609 start-page: 578 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib37 article-title: CBIM: community-based influence maximization in multilayer networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.103 – volume: 11 start-page: 3148 issue: 3 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib50 article-title: IM-META: influence maximization using node metadata in networks with unknown topology publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2024.3362903 – volume: 125 start-page: 1 year: 2019 ident: 10.1016/j.heliyon.2024.e40031_bib56 article-title: ComBIM: a community-based solution approach for the budgeted influence maximization problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.070 – year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib49 article-title: BIM: improving graph neural networks with balanced influence maximization – volume: 28 start-page: 529 issue: 3 year: 2017 ident: 10.1016/j.heliyon.2024.e40031_bib2 article-title: Understanding voluntary knowledge provision and content contribution through a social-media-based prediction market: a field experiment publication-title: Inf. Syst. Res. doi: 10.1287/isre.2016.0679 – volume: 150 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib48 article-title: A bitwise approach on influence overload problem publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2023.102276 – volume: 60 start-page: 564 issue: 3 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib3 article-title: Optimal microtargeting of advertising publication-title: J. Market. Res. doi: 10.1177/00222437221116034 – volume: 213 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib15 article-title: Competitive and complementary influence maximization in social network: a follower's perspective publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.106600 – volume: 140 year: 2020 ident: 10.1016/j.heliyon.2024.e40031_bib43 article-title: Influence maximization across heterogeneous interconnected networks based on deep learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112905 – volume: 169 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib33 article-title: A dynamic algorithm based on cohesive entropy for influence maximization in social networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114207 – volume: 50 start-page: 584 issue: 5 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib4 article-title: David and goliath: when and why micro-influencers are more persuasive than mega-influencers publication-title: J. Advert. doi: 10.1080/00913367.2021.1980470 – volume: 17 issue: 6 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib7 article-title: Triadic closure sensitive influence maximization publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3573011 – year: 2011 ident: 10.1016/j.heliyon.2024.e40031_bib21 article-title: Celf++: optimizing the greedy algorithm for influence maximization in social networks – volume: 70 start-page: 1224 issue: 8 year: 2019 ident: 10.1016/j.heliyon.2024.e40031_bib52 article-title: How to maximize advertising performance in online social networks publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2018.1489343 – volume: 598 year: 2022 ident: 10.1016/j.heliyon.2024.e40031_bib36 article-title: Influence maximization in social networks using effective community detection publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2022.127314 – volume: 37 start-page: 555 issue: 3 year: 2013 ident: 10.1016/j.heliyon.2024.e40031_bib12 article-title: Topic-aware social influence propagation models publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0646-6 – year: 2009 ident: 10.1016/j.heliyon.2024.e40031_bib26 article-title: Efficient influence maximization in social networks – volume: 564 year: 2024 ident: 10.1016/j.heliyon.2024.e40031_bib10 article-title: Influence maximization algorithm based on group trust and local topology structure publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126936 – volume: 546 start-page: 1273 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib25 article-title: Attribute based diversification of seeds for targeted influence maximization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.093 – volume: 169 year: 2021 ident: 10.1016/j.heliyon.2024.e40031_bib60 article-title: Earned benefit maximization in social networks under budget constraint publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114346 – year: 2009 ident: 10.1016/j.heliyon.2024.e40031_bib64 article-title: Social influence analysis in large-scale networks – year: 2015 ident: 10.1016/j.heliyon.2024.e40031_bib23 – volume: 514 start-page: 369 year: 2020 ident: 10.1016/j.heliyon.2024.e40031_bib57 article-title: Efficient network seeding under variable node cost and limited budget for social networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.11.029 – volume: 213 year: 2023 ident: 10.1016/j.heliyon.2024.e40031_bib34 article-title: FIP: a fast overlapping community-based influence maximization algorithm using probability coefficient of global diffusion in social networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118869  | 
    
| SSID | ssj0001586973 | 
    
| Score | 2.284083 | 
    
| Snippet | The budgeted influence maximization (BIM) problem aims to identify a set of seed nodes that adhere to predefined budget constraints within a specified network... | 
    
| SourceID | doaj unpaywall proquest pubmed crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | e40031 | 
    
| SubjectTerms | algorithms Budgeted influence maximization Cost model empirical models Proxy-based algorithm seed set seeds Social networks  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4A1dXjIS1yxJ_Fj72CKqCqkrDqxUTpadTLoLu9lqm6gtv55xHksXEJRjrJkkHo89X-KZzwBvU68L5bGIhHd5JFRYB30mo5QXY8IL3KUNffHRRB1OxcdjedwVq4damK39-yYPa4aL-eUqUJWmYoQieOFN2FGSoPcAdqaTT3tfwgFyBDwiLUT8s0rnz7pb8aeh6d8KQ7_DzLtwuy5P3eW5WyyuhJ6D-zDpX7rNOPk2qis_yr7_wud47V49gHsdCGV7rdc8hBtYPoJbR902-2OY7df5CVaRO3drZE24Y_P-NBPWEjHTKsnc4mS1nlezJSPoy7Bho6AgdkV26S7my67Uk5pZ-4uelW3y-dkTmB58-Pz-MOqOZIgyTtgj8k4ZwXOjkEutXewS7QV9oRhCAqbwhdOiQC685ybPFccY49gnY--cxMSnyJ_CoFyVuAsskbkkEW4EKZF7-DRxSVg-0GeC9IYw6gfKnrbMG7ZPSftqO_vZYD_b2m8I-2E4N8KBOLtpIMvbbh7ajPOCnhu43KVAnhmRm6TwJs5UnmRjHILuncF2GKTFFnSr-b-e_6Z3HktzNGy8uBJX9ZnlBKoUwQD5N5mQLaMJXOshPGs9b9MTbqTkSpP2u40rXs8mz_9b4wXcCVeh3DKRL2FQrWt8Rbir8q-72fYDZ9ArgA priority: 102 providerName: Unpaywall  | 
    
| Title | Budget-aware local influence iterative algorithm for efficient influence maximization in social networks | 
    
| URI | https://dx.doi.org/10.1016/j.heliyon.2024.e40031 https://www.ncbi.nlm.nih.gov/pubmed/39553681 https://www.proquest.com/docview/3129684751 https://www.proquest.com/docview/3200285668 https://doi.org/10.1016/j.heliyon.2024.e40031 https://doaj.org/article/c33fd5dca4854e3c94d91fb90c6d1c7e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: KQ8 dateStart: 20150901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DIK dateStart: 20150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: AKRWK dateStart: 20150901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejhX08lH0v61Y02KsTy_qI9NiWlTJo2cMC3ZOQrHPjkjglTej63-9k2VnKYN3DXoUk23cn3U_W3e8I-Vx4XSkPVSa8C5lQcR_0pcwKXo0RL3BXtPTFZ-fqdCK-XsiLrVJfMSYs0QMnwY1KzqsgQyTflgJ4aUQwrPImL1Vg5Rji7ptrs3WYSvnBWpkx_52yM7oaTmFW3y0i52khhiCiOd9zRi1n_z2f9CfmfEaerJtrd3frZrMtP3TynOx1AJIephd_QR5B85I8PuuuyF-R6dE6XMIqc7duCbR1VbTuK5HQRKKMOxx1s8vFsl5N5xRhK4WWSQId0FbfuftZz7s0TWym6fc6bVLg-M1rMjn58v34NOvKKWQlR9yQeaeM4MEo4FJrlzumvcDThUEvbipfOS0q4MJ7bkJQHHLIc8_G3jkJzBfA35CdZtHAO0KZRJUozo3AQahaXzDH4tIHXwocNyDDXq72OrFm2D6c7Mp2irBRETYpYkCOovQ3nSPpdduApmA7U7APmcKA6F53tsMPCRfgVPVDz__U69ri-oqXJq6BxfrGcgRECl24_FufGOmiERjrAXmbDGXzJdxIyZXG0aON5fybTN7_D5nsk6dxypg9yeQHsrNaruEjwqiVP2hXzAHZnZx_O_zxC6jLH5Y | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4A1dXjIS1yxJ_Fj72CKqCqkrDqxUTpadTLoLu9lqm6gtv55xHksXEJRjrJkkHo89X-KZzwBvU68L5bGIhHd5JFRYB30mo5QXY8IL3KUNffHRRB1OxcdjedwVq4damK39-yYPa4aL-eUqUJWmYoQieOFN2FGSoPcAdqaTT3tfwgFyBDwiLUT8s0rnz7pb8aeh6d8KQ7_DzLtwuy5P3eW5WyyuhJ6D-zDpX7rNOPk2qis_yr7_wud47V49gHsdCGV7rdc8hBtYPoJbR902-2OY7df5CVaRO3drZE24Y_P-NBPWEjHTKsnc4mS1nlezJSPoy7Bho6AgdkV26S7my67Uk5pZ-4uelW3y-dkTmB58-Pz-MOqOZIgyTtgj8k4ZwXOjkEutXewS7QV9oRhCAqbwhdOiQC685ybPFccY49gnY--cxMSnyJ_CoFyVuAsskbkkEW4EKZF7-DRxSVg-0GeC9IYw6gfKnrbMG7ZPSftqO_vZYD_b2m8I-2E4N8KBOLtpIMvbbh7ajPOCnhu43KVAnhmRm6TwJs5UnmRjHILuncF2GKTFFnSr-b-e_6Z3HktzNGy8uBJX9ZnlBKoUwQD5N5mQLaMJXOshPGs9b9MTbqTkSpP2u40rXs8mz_9b4wXcCVeh3DKRL2FQrWt8Rbir8q-72fYDZ9ArgA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Budget-aware+local+influence+iterative+algorithm+for+efficient+influence+maximization+in+social+networks&rft.jtitle=Heliyon&rft.au=Li%2C+Lingfei&rft.au=Song%2C+Yingxin&rft.au=Yang%2C+Wei&rft.au=Yuan%2C+Kun&rft.date=2024-11-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=21+p.e40031-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e40031&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |