Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets
Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these...
        Saved in:
      
    
          | Published in | Microscopy and microanalysis Vol. 25; no. 4; pp. 924 - 941 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, USA
          Cambridge University Press
    
        01.08.2019
     Oxford University Press  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1431-9276 1435-8115 1435-8115  | 
| DOI | 10.1017/S1431927619014569 | 
Cover
| Abstract | Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system. | 
    
|---|---|
| AbstractList | Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system. Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system. Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.  | 
    
| Author | Hobbs, Toren J. Brust, Alexander F. Niezgoda, Stephen R. Payton, Eric J.  | 
    
| Author_xml | – sequence: 1 givenname: Alexander F. surname: Brust fullname: Brust, Alexander F. organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA – sequence: 2 givenname: Eric J. surname: Payton fullname: Payton, Eric J. organization: 2Air Force Research Laboratory, Materials and Manufacturing Directorate, Dayton, OH 45433, USA – sequence: 3 givenname: Toren J. surname: Hobbs fullname: Hobbs, Toren J. organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA – sequence: 4 givenname: Stephen R. surname: Niezgoda fullname: Niezgoda, Stephen R. email: niezgoda.6@osu.edu organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31210120$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1O3DAUha2Kqvy0D9BNZakbNmnt-CfOcjSUgsSIBXQdeZKbwcixp7Yj6I534A15kjrMFCQqWPle-ztH1-fuox3nHSD0mZJvlNDq-wXljNZlJWlNKBeyfof28pUoFKVi57GmxfS-i_ZjvCaEMFLJD2iX0TIblGQP2dl6bU2rk_EO-x6nK8ALfWuGccDH1t883N0vjHts52PCM7vywaSrASePL2A1gEsbrXYdntsxJgjGrSarhZ5qbSM-0klHSPEjet_nHj5tzwP06_jH5fykODv_eTqfnRUtq1gqeskq4HXb52-1wJVkmlRKlaLqBScAQtQMOr0kUi85rzulGFdadv0UgqI1O0CHG9918L9HiKkZTGzBWu3Aj7EpS14qKgkXGf36Ar32Y3B5ukwJRiQXhGXqy5YalwN0zTqYQYc_zb8cM0A3QBt8jAH6J4SSZtpV89-usqZ6oWnNJswUtLFvKtlWqYdlMN0Knqd-XfUXXuGl1w | 
    
| CitedBy_id | crossref_primary_10_1007_s11128_024_04512_9 crossref_primary_10_2139_ssrn_4198894 crossref_primary_10_1007_s11661_019_05514_4 crossref_primary_10_1002_jccs_202300290 crossref_primary_10_1016_j_mtla_2019_100554 crossref_primary_10_1017_S1431927621012484 crossref_primary_10_1016_j_matdes_2023_111692 crossref_primary_10_1016_j_matchar_2022_112569  | 
    
| Cites_doi | 10.1016/S1359-6454(02)00577-3 10.1088/0266-5611/5/4/008 10.1109/TIP.2010.2090533 10.1016/j.scriptamat.2012.02.042 10.1107/S002188981003027X 10.1109/IWW-BCI.2013.6506639 10.1111/j.1365-2818.2009.03349.x 10.1016/j.msea.2006.10.023 10.1016/S1044-5803(97)00154-X 10.1109/CVPR.2003.1211420 10.5244/C.24.38 10.1017/S1431927613000305 10.1109/42.811261 10.1017/S1431927611000055 10.1179/1743284714Y.0000000603 10.1016/j.matdes.2017.12.049 10.1007/BF02644284 10.1007/BF01397346 10.1155/2013/217021 10.1007/BF02652208 10.1016/j.actamat.2005.11.001 10.1109/TPAMI.2004.60 10.1016/j.ultramic.2014.11.015 10.1109/ICIP.2014.7025985 10.1109/CRV.2011.42 10.1107/S0021889807048777 10.1007/978-3-642-39479-9_22 10.1109/ISCAS.2010.5536961 10.1016/0026-0800(75)90051-8 10.1007/BF02646706 10.1109/83.869185 10.1016/j.media.2009.05.004 10.1016/j.msea.2009.12.037 10.1016/j.matchar.2013.12.014 10.1007/BF02659924 10.1016/S0921-5093(98)00820-X 10.1080/01621459.1987.10478393 10.1016/j.matchar.2011.04.003 10.1109/TIT.1982.1056489 10.1017/S1431927607070900 10.1080/01411594.2011.582379 10.1016/0885-064X(88)90024-6 10.1111/j.2517-6161.1989.tb01764.x 10.1111/j.1365-2818.2008.02010.x 10.1515/9781400875184 10.1016/j.mee.2003.11.010 10.1016/j.actamat.2009.08.053 10.1109/TIP.2005.852196 10.1063/1.2770961 10.2355/isijinternational.51.130 10.1109/TPAMI.1986.4767769 10.1016/S0005-1098(96)00168-9 10.1017/S1431927617000320 10.1007/s00138-014-0616-3 10.1109/DICTA.2015.7371241 10.1109/ICIP.1994.413651 10.1111/j.2517-6161.1996.tb02080.x 10.1109/I3A.2014.22 10.1155/2016/1745839 10.1109/ICPR.2010.367 10.1016/j.actamat.2008.09.030 10.1007/s11661-018-4977-5 10.1007/s00170-014-6758-7 10.1016/0026-0800(79)90041-7 10.1016/j.matchar.2012.01.010 10.2355/isijinternational.45.254 10.1557/PROC-650-R6.6 10.1109/83.298395 10.1145/48014.61051 10.1016/0956-7151(90)90180-O 10.1016/j.msea.2011.01.030 10.1109/TIP.2013.2284071  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Microscopy Society of America 2019 | 
    
| Copyright_xml | – notice: Copyright © Microscopy Society of America 2019 | 
    
| DBID | AAYXX CITATION NPM 3V. 7QO 7RV 7TK 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8  | 
    
| DOI | 10.1017/S1431927619014569 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed CrossRef ProQuest Central Student MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| DocumentTitleAlternate | Microscopy and Microanalysis Alexander F. Brust et al.  | 
    
| EISSN | 1435-8115 | 
    
| EndPage | 941 | 
    
| ExternalDocumentID | 31210120 10_1017_S1431927619014569  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -E. .FH 0E1 0R~ 123 29M 3V. 4.4 53G 5VS 74X 74Y 7RV 7X7 7~V 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 9M5 AAAZR AABES AACJH AAGFV AAKTX AAPXW AARAB AASVR AAUAY AAUKB ABBXD ABDFA ABEFU ABITZ ABJNI ABKKG ABMWE ABPTD ABQTM ABROB ABTCQ ABUWG ABVKB ABWCF ABWST ABZCX ACBEK ACBMC ACFRR ACGFS ACIMK ACIPB ACIWK ACPRK ACUFI ACUIJ ACYZP ACZBM ACZUX ACZWT ADAZD ADBBV ADCGK ADFEC ADIYS ADKIL ADOVH ADQBN ADRDM ADVEK AEBAK AEHGV AEMTW AENEX AEUYN AEYYC AFFUJ AFGWE AFKRA AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AHIPN AHLTW AHMBA AISIE AJ7 AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALWZO ANFBD ANPSP AQJOH ARABE ARAPS ATGXG ATUCA AZGZS BBLKV BBNVY BENPR BGHMG BGLVJ BGNMA BHPHI BKEYQ BLZWO BMAJL BPHCQ BVXVI C0O CAG CCPQU CJCSC COF CS3 DC4 DOHLZ DU5 EBS EJD EX3 F5P FYUFA H13 HCIFZ HG- HMCUK HST HZ~ I.6 IH6 IS6 I~P J36 J38 J3A JHPGK JKPOH JQKCU KOP L98 LAS LK8 LW7 M-V M1P M4Y M7P NAPCQ NIKVX NU- NU0 O9- OVD OYBOY P62 PQQKQ PROAC PSQYO PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S6- S6U SAAAG SDH SY4 T9M TEORI UKHRP UT1 UU6 VUG WFFJZ WOW WQ3 WXU WYP AAYXX ABPQP AHGBF AJBYB AJNCP CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7QO 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8  | 
    
| ID | FETCH-LOGICAL-c373t-f637e49cf190ce4863a0788257f540ee5593edab06ab449d88348a6df01458193 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1431-9276 1435-8115  | 
    
| IngestDate | Thu Oct 02 10:25:34 EDT 2025 Tue Oct 07 05:36:01 EDT 2025 Thu Apr 03 06:54:53 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Wed Oct 01 04:09:56 EDT 2025 Tue Jan 21 06:26:56 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | segmentation atomic clustering Bayesian statistics graph cutting  | 
    
| Language | English | 
    
| License | https://www.cambridge.org/core/terms | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c373t-f637e49cf190ce4863a0788257f540ee5593edab06ab449d88348a6df01458193 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 31210120 | 
    
| PQID | 2253064503 | 
    
| PQPubID | 33692 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_miscellaneous_2242816045 proquest_journals_2253064503 pubmed_primary_31210120 crossref_primary_10_1017_S1431927619014569 crossref_citationtrail_10_1017_S1431927619014569 cambridge_journals_10_1017_S1431927619014569  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20190800 2019-08-00 2019-Aug 20190801  | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: 20190800  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York, USA | 
    
| PublicationPlace_xml | – name: New York, USA – name: United States – name: Oxford  | 
    
| PublicationTitle | Microscopy and microanalysis | 
    
| PublicationTitleAlternate | Microsc Microanal | 
    
| PublicationYear | 2019 | 
    
| Publisher | Cambridge University Press Oxford University Press  | 
    
| Publisher_xml | – name: Cambridge University Press – name: Oxford University Press  | 
    
| References | LaPera 1978; 12 Waggoner, Zhou, Simmons, Graef, Wang 2013; 22 Otsu 1979; 9 Shibata, Morito, Furuhara, Maki 2009; 57 Cayron 2007; 40 Wu, Wray, Garcia, Hua, DeArdo 2005; 45 Brust, Niezgoda, Yardley, Payton 2019; 50 Yardley, Fahimi, Payton 2015; 31 Chan, Ho, Nikolova 2005; 14 McInerney, Terzopoulos 1999; 18 Wright, Nowell, Fields 2011; 17 Zelenty, Dahl, Hyde, Smith, Moody 2017; 23 Stephenson, Moody, Liddicoat, Ringer 2007; 13 Comer, Delp 2000; 9 Gnäupel-Herold, Creuziger 2011; 528 Davies 1978; 9 Girault, Jacquest, Harlet, Mols, Humbeeck, Aernoudt, Delannay 1998; 40 Kurdjumow, Sachs 1930; 64 Zhang, Modestino, Langan 1994; 3 Payton, Nolze 2013; 19 Goldberg, Tarjan 1988; 35 Greninger, Troiano 1949; 185 Mondal, Vicidomini, Diaspro 2007; 102 Soni, Khare, Jain 2014; 4 Payton, Phillips, Mills 2010; 527 MacSleyne, Uchic, Simmons, Graef 2009; 57 Preethi, Narmadha 2012; 58 Faessel, Jeulin 2010; 239 Sandvik, Wayman 1983; 14A Hong, Yu 1989; 23 Banerji, McMahon, Feng 1978; 9A Kitahara, Ueji, Tsuji, Minamino 2006; 54 Kimura, Ohi, Shimazu, Matsuo 1987; 21 Ramírez, Porcayo-Calderon, Mazur, Salinas-Bravo, Martinez-Gomez 2016; 2016 Marroquin, Mitter, Poggio 1987; 82 Poggio, Voorhees, Yuille 1988; 4 Johansen 1997; 33 Hata, Wakita, Fujiwara, Kawano 2017; 114 Morito, Tanaka, Konishi, Maki 2003; 51 Greig, Porteous, Seheult 1989; 51 Cluff, Nelso, Song, Fullwood 2018; 375 El-Bagoury, Mohsen 2011; 84 Boykov, Kolmogorov 2004; 26 Hutchinson, Ryde, Lindh, Tagashira 1998; 257 Payton, Aghajani, Otto, Eggler, Yardley 2012; 66 Bernier, Bracke, Malet, Godet 2014; 89 Tolba, Raafat 2015; 79 Kelly, Jostons, Blake 1990; 38 Neubauer 1989; 5 Felfer, Ceguerra, Ringer, Cairney 2015; 150 Zaefferer, Romano, Friedel 2008; 230 Simmons, Chuang, Comer, Spowart, Uchic, Graef 2009; 17 Campbell, Murray, Yakushina, Marshall, Ion 2018; 141 Horn, Ritchie 1978; 9A Bae, Shi, Tai 2011; 20 Rodríguez 2013; 2013 Sosa, Huber, Welk, Fraser 2014; 3 Abbasi, Nelson, Sorensen, Wei 2012; 66 Payton, Phillips, Mills 2011; 62 Keller, Roshko, Geiss, Bertness, Quinn 2004; 75 Tibshirani 1996; 58 Petrov, Kestens, Wasilkowska, Houbaert 2007; 447 Wayman 1975; 8 Kang, Kim, Baik, Ahn, Kim, Han, Oh, Lee, Han 2011; 51 Lloyd 1982; 28 Waggoner, Zhou, Simmons, Graef, Wang 2014; 25 Bachmann, Hielscher, Schaeben 2010; 43 Heimann, Meinzer 2009; 13 S1431927619014569_ref80 Despotović (S1431927619014569_ref21) 2010 S1431927619014569_ref82 Payton (S1431927619014569_ref61) 2011; 62 S1431927619014569_ref81 Soni (S1431927619014569_ref72) 2014; 4 S1431927619014569_ref40 S1431927619014569_ref84 S1431927619014569_ref83 S1431927619014569_ref86 S1431927619014569_ref85 S1431927619014569_ref88 S1431927619014569_ref43 S1431927619014569_ref87 Otsu (S1431927619014569_ref57) 1979; 9 S1431927619014569_ref46 S1431927619014569_ref45 S1431927619014569_ref89 S1431927619014569_ref48 S1431927619014569_ref47 S1431927619014569_ref49 Comer (S1431927619014569_ref18) 2000; 9 Keller (S1431927619014569_ref42) 2004; 75 S1431927619014569_ref91 S1431927619014569_ref90 Felfer (S1431927619014569_ref25) 2015; 150 S1431927619014569_ref93 Hong (S1431927619014569_ref34) 1989; 23 S1431927619014569_ref92 Greig (S1431927619014569_ref30) 1989; 51 S1431927619014569_ref51 S1431927619014569_ref94 S1431927619014569_ref50 S1431927619014569_ref53 S1431927619014569_ref52 S1431927619014569_ref11 S1431927619014569_ref55 S1431927619014569_ref54 S1431927619014569_ref13 S1431927619014569_ref12 S1431927619014569_ref56 S1431927619014569_ref59 S1431927619014569_ref15 S1431927619014569_ref14 S1431927619014569_ref58 S1431927619014569_ref17 Bovik (S1431927619014569_ref8) 2000 Kimura (S1431927619014569_ref44) 1987; 21 Boykov (S1431927619014569_ref10) 2006 S1431927619014569_ref60 S1431927619014569_ref62 S1431927619014569_ref20 Simmons (S1431927619014569_ref71) 2009; 17 S1431927619014569_ref63 S1431927619014569_ref22 S1431927619014569_ref66 S1431927619014569_ref65 S1431927619014569_ref68 Preethi (S1431927619014569_ref64) 2012; 58 S1431927619014569_ref67 S1431927619014569_ref23 Greninger (S1431927619014569_ref31) 1949; 185 S1431927619014569_ref26 S1431927619014569_ref69 S1431927619014569_ref28 S1431927619014569_ref27 Cook (S1431927619014569_ref19) 1998 Cluff (S1431927619014569_ref16) 2018; 375 S1431927619014569_ref29 Kang (S1431927619014569_ref41) 2011; 51 Faessel (S1431927619014569_ref24) 2010; 239 S1431927619014569_ref70 Soubies (S1431927619014569_ref74) 2015 S1431927619014569_ref75 Hata (S1431927619014569_ref32) 2017; 114 S1431927619014569_ref33 S1431927619014569_ref77 S1431927619014569_ref76 S1431927619014569_ref35 S1431927619014569_ref79 S1431927619014569_ref4 S1431927619014569_ref37 S1431927619014569_ref3 S1431927619014569_ref36 S1431927619014569_ref39 S1431927619014569_ref2 S1431927619014569_ref1 S1431927619014569_ref38 Sosa (S1431927619014569_ref73) 2014; 3 S1431927619014569_ref9 S1431927619014569_ref7 Tibshirani (S1431927619014569_ref78) 1996; 58 S1431927619014569_ref6 S1431927619014569_ref5  | 
    
| References_xml | – volume: 84 start-page: 1108 year: 2011 end-page: 1122 article-title: Gamma prime and TCP phases and mechanical properties of thermally exposed nickel-base superalloy publication-title: Phase Transitions – volume: 51 start-page: 271 year: 1989 end-page: 279 article-title: Exact Maximum A posteriori estimation for binary images publication-title: J Roy Stats Soc – volume: 66 start-page: 1 year: 2012 end-page: 8 article-title: An approach to prior austenite reconstruction publication-title: Mater Charact – volume: 40 start-page: 111 year: 1998 end-page: 118 article-title: Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels publication-title: Mater Charact – volume: 22 start-page: 5282 year: 2013 end-page: 5293 article-title: 3D materials image segmentation by 2D propagation: A graph-Cut approach considering homomorphism publication-title: IEEE Trans Image Process – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the LASSO publication-title: J R Statistical Soc Ser B (Methodological) – volume: 9A start-page: 237 year: 1978 end-page: 247 article-title: Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen publication-title: Metall Trans A – volume: 33 start-page: 441 year: 1997 end-page: 446 article-title: On Tikhonov regularization, bias and variance in nonlinear system identification publication-title: Automatica – volume: 50 start-page: 837 year: 2019 end-page: 855 article-title: Analysis of misorientation relationships between austenite parents and twins publication-title: Metall Mater Trans A – volume: 4 start-page: 244 year: 2014 end-page: 250 article-title: Problem of denoising in digital image processing and its solving techniques publication-title: Int J Emerging Technol Adv Eng – volume: 21 start-page: 19 year: 1987 end-page: 22 article-title: Effect of prior austenite grain size on high temperature creep properties of Cr-Mo-V rotor steel publication-title: Scr Mater – volume: 528 start-page: 3594 year: 2011 end-page: 3600 article-title: Diffraction study of the retained austenite content in TRIP steels publication-title: Mater Sci Eng: A – volume: 23 start-page: 1057 year: 1989 end-page: 1062 article-title: Effect of prior austenite grain size on creep properties and on creep crack growth in 3.5-Ni-Cr-Mo-V steel publication-title: Scr Mater – volume: 25 start-page: 1615 year: 2014 end-page: 1629 article-title: Graph-Cut based interactive segmentation of 3D materials-science images publication-title: Mach Vis Appl – volume: 18 start-page: 840 year: 1999 end-page: 850 article-title: Topology adaptive deformable surfaces for medical image volume segmentation publication-title: IEEE Trans Med Imaging – volume: 54 start-page: 1279 year: 2006 end-page: 1288 article-title: Crystallographic features of lath martensite in low-carbon steel publication-title: Acta Mater – volume: 79 start-page: 113 year: 2015 end-page: 122 article-title: Multiscale image quality measures for defect detection in thin films publication-title: Int J Adv Manuf Technol – volume: 375 start-page: 1 year: 2018 end-page: 11 article-title: Crystallographic reconstruction of parent austenite twin boundaries in a lath martensitic steel publication-title: Int Conf Ser: Mat Sci Eng – volume: 257 start-page: 9 year: 1998 end-page: 17 article-title: Texture in hot rolled austenite and resulting transformation products publication-title: Mater Sci Eng A – volume: 28 start-page: 129 year: 1982 end-page: 137 article-title: Least squares quantization in PCM publication-title: IEEE Trans Inf Theory – volume: 82 start-page: 76 year: 1987 end-page: 89 article-title: Probabilistic solution of Ill-posed problems in computational vision publication-title: J Am Stats Assoc – volume: 66 start-page: 1045 year: 2012 end-page: 1048 article-title: On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep publication-title: Scr Mater – volume: 43 start-page: 1338 year: 2010 end-page: 1355 article-title: Inferential statistics of electron backscatter diffraction data from within individual crystalline grains publication-title: J Appli Crys – volume: 14 start-page: 1479 year: 2005 end-page: 1485 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans Image Process – volume: 9 start-page: 671 year: 1978 end-page: 679 article-title: Influence of martensite composition and content on the properties of dual phase steels publication-title: Metall Trans A – volume: 64 start-page: 325 year: 1930 end-page: 343 article-title: Ü ber der Mechanismus der Stahlhärtung (On the mechanism of hardening of steel) publication-title: Z Physik – volume: 527 start-page: 2684 year: 2010 end-page: 2694 article-title: Semi-automated characterization of the gamma prime phase in Ni-based superalloys via high-resolution backscatter imaging publication-title: Mater Sci Eng A – volume: 13 start-page: 448 year: 2007 end-page: 463 article-title: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) publication-title: Microstruct Microanal – volume: 57 start-page: 483 year: 2009 end-page: 492 article-title: Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys publication-title: Acta Mater – volume: 40 start-page: 1183 year: 2007 end-page: 1188 article-title: ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data publication-title: J Appl Crystallogr – volume: 8 start-page: 105 year: 1975 end-page: 130 article-title: Shear transformations and microstructure publication-title: Metallography – volume: 58 start-page: 27 year: 2012 end-page: 30 article-title: A survey on image denoising techniques publication-title: Int J Comput Appl – volume: 239 start-page: 17 year: 2010 end-page: 31 article-title: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed publication-title: J Microsc – volume: 38 start-page: 1075 year: 1990 end-page: 1081 article-title: The orientation relationship between lath martensite and austenite in low carbon, low alloy steels publication-title: Acta Metall Mater – volume: 51 start-page: 1789 year: 2003 end-page: 1799 article-title: The morphology and crystallography of lath martensite in Fe-C alloys publication-title: Acta Mater – volume: 9 start-page: 62 year: 1979 end-page: 66 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst – volume: 35 start-page: 921 year: 1988 end-page: 940 article-title: A new approach to the maximum-flow problem publication-title: J Assoc Comp Mach – volume: 114 start-page: 26 year: 2017 end-page: 31 article-title: Development of a Re-construction method of prior austenite microstructure using EBSD data of martensite publication-title: Nippon Steel and Sumitomo Metal Technical Report – volume: 5 start-page: 541 year: 1989 end-page: 557 article-title: Tikhonov regularisation for non-linear ill-posed problems: Optimal convergence rates and finite-dimensional approximation publication-title: Inverse Prob – volume: 12 start-page: 263 year: 1978 end-page: 268 article-title: Improved etching technique for the determination of percent martensite in high-strength, dual-phase steels publication-title: Metallography – volume: 31 start-page: 547 year: 2015 end-page: 553 article-title: Classification of creep crack and cavitation sites in tempered martensite ferritic steel microstructures publication-title: Mater Sci Technol – volume: 141 start-page: 395 year: 2018 end-page: 406 article-title: New methods for automatic quantification of microstructural features using digital image processing publication-title: Mater Des – volume: 13 start-page: 543 year: 2009 end-page: 563 article-title: Statistical shape models for 3D medical image segmentation: A review publication-title: Med Image Anal – volume: 75 start-page: 96 year: 2004 end-page: 102 article-title: EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers publication-title: Microelectron Eng – volume: 9A start-page: 1039 year: 1978 end-page: 1053 article-title: Mechanisms of tempered martensite embrittlement of low alloy steels publication-title: Metall Trans A – volume: 4 start-page: 106 year: 1988 end-page: 123 article-title: A regularized solution to edge detection publication-title: J Complex – volume: 26 start-page: 1124 year: 2004 end-page: 1137 article-title: An experimental comparison of Min-Cut/Max-flow algorithms for energy minimization in vision publication-title: IEEE Trans Pattern Anal Mach Intell (PAMI) – volume: 3 start-page: 10 year: 2014 article-title: Development and application of MIPART m : A novel software package for Two- and three-dimensional microstructural characterization publication-title: Integrating Mat Manuf Innovation – volume: 102 start-page: 044701 year: 2007 article-title: Markov random field aided Bayesian approach for image reconstruction in confocal microscopy publication-title: J Appl Phys – volume: 17 start-page: 316 year: 2011 end-page: 329 article-title: A review of strain analysis using electron backscatter diffraction publication-title: Microsc Microanal – volume: 2016 start-page: 1 year: 2016 end-page: 7 article-title: Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle publication-title: Adv Mater Sci Eng – volume: 185 start-page: 590 year: 1949 end-page: 598 article-title: The mechanism of martensite formation publication-title: Metals Transactions – volume: 17 start-page: 1 year: 2009 end-page: 22 article-title: Application and further development of advanced image processing algorithms for automated analysis of serial section image data publication-title: Mod Sim Mat Sci Eng – volume: 230 start-page: 499 year: 2008 end-page: 508 article-title: EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels publication-title: J Microsc – volume: 2013 start-page: 1 year: 2013 end-page: 18 article-title: Total variation regularization algorithms for images corrupted with different noise models: A review publication-title: J Elect Comput Eng – volume: 62 start-page: 563 year: 2011 end-page: 574 article-title: Stereology of backscatter electron images of etched surfaces for characterization of particle size distributions and volume fractions: Estimation of imaging bias Via monte carlo simulations publication-title: Mater Charact – volume: 57 start-page: 6251 year: 2009 end-page: 6267 article-title: Three-dimensional analysis of secondary γ' precipitates in René-88 DT and UMF-20 superalloys publication-title: Acta Mater – volume: 19 start-page: 929 year: 2013 end-page: 941 article-title: The backscatter electron signal as an additional tool for phase segmentation in EBSD publication-title: Microsc Microanal – volume: 89 start-page: 23 year: 2014 end-page: 32 article-title: An alternative to the crystallographic reconstruction of austenite in steels publication-title: Mater Charact – volume: 9 start-page: 1731 year: 2000 end-page: 1744 article-title: The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results publication-title: IEEE Trans Image Process – volume: 20 start-page: 1199 year: 2011 end-page: 1210 article-title: Graph cuts for curvature based image denoising publication-title: IEEE Trans Image Process – volume: 3 start-page: 404 year: 1994 end-page: 420 article-title: Maximum-Likelihood parameter estimation for unsupervised stochastic model-based image segmentation publication-title: IEEE Trans. Image Process – volume: 45 start-page: 254 year: 2005 end-page: 262 article-title: Image quality analysis: A new method of characterizing microstructures publication-title: ISIJ Int – volume: 14A start-page: 809 year: 1983 end-page: 822 article-title: Characteristics of lath martensite: Part 1. Crystallographic and substructural features publication-title: Metallurgical Transactions: A – volume: 23 start-page: 269 year: 2017 end-page: 278 article-title: Detecting clusters in atom probe data with Gaussian mixture models publication-title: Microstruct Microanal – volume: 51 start-page: 130 year: 2011 end-page: 136 article-title: Phase analysis of steels by grain-averaged EBSD functions publication-title: Iron Steel Inst Japan Int – volume: 150 start-page: 30 year: 2015 end-page: 36 article-title: Detecting and extracting clusters in atom probe data: A simple, automated method using voronoi cells publication-title: Ultramicroscopy – volume: 447 start-page: 285 year: 2007 end-page: 297 article-title: Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique publication-title: Mater Sci Eng A – volume-title: Graph Cuts in Vision and Graphics: Theories and Applications year: 2006 ident: S1431927619014569_ref10 – volume: 375 start-page: 1 year: 2018 ident: S1431927619014569_ref16 article-title: Crystallographic reconstruction of parent austenite twin boundaries in a lath martensitic steel publication-title: Int Conf Ser: Mat Sci Eng – ident: S1431927619014569_ref55 doi: 10.1016/S1359-6454(02)00577-3 – volume-title: Combinatorial Optimization year: 1998 ident: S1431927619014569_ref19 – ident: S1431927619014569_ref81 – ident: S1431927619014569_ref56 doi: 10.1088/0266-5611/5/4/008 – ident: S1431927619014569_ref4 doi: 10.1109/TIP.2010.2090533 – ident: S1431927619014569_ref58 doi: 10.1016/j.scriptamat.2012.02.042 – ident: S1431927619014569_ref3 doi: 10.1107/S002188981003027X – volume-title: Handbook of Image and Video Processing year: 2000 ident: S1431927619014569_ref8 – ident: S1431927619014569_ref48 doi: 10.1109/IWW-BCI.2013.6506639 – volume: 239 start-page: 17 year: 2010 ident: S1431927619014569_ref24 article-title: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed publication-title: J Microsc doi: 10.1111/j.1365-2818.2009.03349.x – ident: S1431927619014569_ref62 doi: 10.1016/j.msea.2006.10.023 – volume: 58 start-page: 27 year: 2012 ident: S1431927619014569_ref64 article-title: A survey on image denoising techniques publication-title: Int J Comput Appl – ident: S1431927619014569_ref76 – ident: S1431927619014569_ref27 doi: 10.1016/S1044-5803(97)00154-X – ident: S1431927619014569_ref82 doi: 10.1109/CVPR.2003.1211420 – volume: 23 start-page: 1057 year: 1989 ident: S1431927619014569_ref34 article-title: Effect of prior austenite grain size on creep properties and on creep crack growth in 3.5-Ni-Cr-Mo-V steel publication-title: Scr Mater – ident: S1431927619014569_ref38 doi: 10.5244/C.24.38 – ident: S1431927619014569_ref59 doi: 10.1017/S1431927613000305 – volume: 17 start-page: 1 year: 2009 ident: S1431927619014569_ref71 article-title: Application and further development of advanced image processing algorithms for automated analysis of serial section image data publication-title: Mod Sim Mat Sci Eng – ident: S1431927619014569_ref53 doi: 10.1109/42.811261 – ident: S1431927619014569_ref87 doi: 10.1017/S1431927611000055 – volume: 4 start-page: 244 year: 2014 ident: S1431927619014569_ref72 article-title: Problem of denoising in digital image processing and its solving techniques publication-title: Int J Emerging Technol Adv Eng – ident: S1431927619014569_ref89 doi: 10.1179/1743284714Y.0000000603 – ident: S1431927619014569_ref86 – volume: 114 start-page: 26 year: 2017 ident: S1431927619014569_ref32 article-title: Development of a Re-construction method of prior austenite microstructure using EBSD data of martensite publication-title: Nippon Steel and Sumitomo Metal Technical Report – ident: S1431927619014569_ref12 doi: 10.1016/j.matdes.2017.12.049 – ident: S1431927619014569_ref67 doi: 10.1007/BF02644284 – ident: S1431927619014569_ref46 doi: 10.1007/BF01397346 – ident: S1431927619014569_ref66 doi: 10.1155/2013/217021 – ident: S1431927619014569_ref35 doi: 10.1007/BF02652208 – ident: S1431927619014569_ref45 doi: 10.1016/j.actamat.2005.11.001 – ident: S1431927619014569_ref9 doi: 10.1109/TPAMI.2004.60 – volume: 150 start-page: 30 year: 2015 ident: S1431927619014569_ref25 article-title: Detecting and extracting clusters in atom probe data: A simple, automated method using voronoi cells publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2014.11.015 – volume: 21 start-page: 19 year: 1987 ident: S1431927619014569_ref44 article-title: Effect of prior austenite grain size on high temperature creep properties of Cr-Mo-V rotor steel publication-title: Scr Mater – ident: S1431927619014569_ref22 doi: 10.1109/ICIP.2014.7025985 – ident: S1431927619014569_ref2 doi: 10.1109/CRV.2011.42 – ident: S1431927619014569_ref13 doi: 10.1107/S0021889807048777 – ident: S1431927619014569_ref94 doi: 10.1007/978-3-642-39479-9_22 – ident: S1431927619014569_ref15 doi: 10.1109/ISCAS.2010.5536961 – ident: S1431927619014569_ref85 doi: 10.1016/0026-0800(75)90051-8 – ident: S1431927619014569_ref5 doi: 10.1007/BF02646706 – volume: 9 start-page: 1731 year: 2000 ident: S1431927619014569_ref18 article-title: The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results publication-title: IEEE Trans Image Process doi: 10.1109/83.869185 – ident: S1431927619014569_ref33 doi: 10.1016/j.media.2009.05.004 – ident: S1431927619014569_ref60 doi: 10.1016/j.msea.2009.12.037 – ident: S1431927619014569_ref7 doi: 10.1016/j.matchar.2013.12.014 – ident: S1431927619014569_ref39 – ident: S1431927619014569_ref20 doi: 10.1007/BF02659924 – volume: 9 start-page: 62 year: 1979 ident: S1431927619014569_ref57 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst – ident: S1431927619014569_ref36 doi: 10.1016/S0921-5093(98)00820-X – ident: S1431927619014569_ref52 doi: 10.1080/01621459.1987.10478393 – volume: 62 start-page: 563 year: 2011 ident: S1431927619014569_ref61 article-title: Stereology of backscatter electron images of etched surfaces for characterization of particle size distributions and volume fractions: Estimation of imaging bias Via monte carlo simulations publication-title: Mater Charact doi: 10.1016/j.matchar.2011.04.003 – ident: S1431927619014569_ref50 doi: 10.1109/TIT.1982.1056489 – volume: 185 start-page: 590 year: 1949 ident: S1431927619014569_ref31 article-title: The mechanism of martensite formation publication-title: Metals Transactions – ident: S1431927619014569_ref75 doi: 10.1017/S1431927607070900 – ident: S1431927619014569_ref23 doi: 10.1080/01411594.2011.582379 – ident: S1431927619014569_ref63 doi: 10.1016/0885-064X(88)90024-6 – volume: 51 start-page: 271 year: 1989 ident: S1431927619014569_ref30 article-title: Exact Maximum A posteriori estimation for binary images publication-title: J Roy Stats Soc doi: 10.1111/j.2517-6161.1989.tb01764.x – ident: S1431927619014569_ref70 – ident: S1431927619014569_ref91 doi: 10.1111/j.1365-2818.2008.02010.x – ident: S1431927619014569_ref26 doi: 10.1515/9781400875184 – volume: 75 start-page: 96 year: 2004 ident: S1431927619014569_ref42 article-title: EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers publication-title: Microelectron Eng doi: 10.1016/j.mee.2003.11.010 – ident: S1431927619014569_ref51 doi: 10.1016/j.actamat.2009.08.053 – ident: S1431927619014569_ref14 doi: 10.1109/TIP.2005.852196 – start-page: 153 volume-title: Graph Cut Based Segmentation of Predefined Shapes: Applications to Biological Imaging year: 2015 ident: S1431927619014569_ref74 – ident: S1431927619014569_ref54 doi: 10.1063/1.2770961 – volume: 51 start-page: 130 year: 2011 ident: S1431927619014569_ref41 article-title: Phase analysis of steels by grain-averaged EBSD functions publication-title: Iron Steel Inst Japan Int doi: 10.2355/isijinternational.51.130 – ident: S1431927619014569_ref80 doi: 10.1109/TPAMI.1986.4767769 – ident: S1431927619014569_ref40 doi: 10.1016/S0005-1098(96)00168-9 – ident: S1431927619014569_ref92 doi: 10.1017/S1431927617000320 – ident: S1431927619014569_ref84 doi: 10.1007/s00138-014-0616-3 – ident: S1431927619014569_ref90 – ident: S1431927619014569_ref6 doi: 10.1109/DICTA.2015.7371241 – ident: S1431927619014569_ref17 doi: 10.1109/ICIP.1994.413651 – volume: 58 start-page: 267 year: 1996 ident: S1431927619014569_ref78 article-title: Regression shrinkage and selection via the LASSO publication-title: J R Statistical Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – start-page: 153 volume-title: Noise-Robust method for image segmentation year: 2010 ident: S1431927619014569_ref21 – ident: S1431927619014569_ref69 doi: 10.1109/I3A.2014.22 – ident: S1431927619014569_ref65 doi: 10.1155/2016/1745839 – volume: 3 start-page: 10 year: 2014 ident: S1431927619014569_ref73 article-title: Development and application of MIPART m : A novel software package for Two- and three-dimensional microstructural characterization publication-title: Integrating Mat Manuf Innovation – ident: S1431927619014569_ref49 doi: 10.1109/ICPR.2010.367 – ident: S1431927619014569_ref68 doi: 10.1016/j.actamat.2008.09.030 – ident: S1431927619014569_ref77 – ident: S1431927619014569_ref11 doi: 10.1007/s11661-018-4977-5 – ident: S1431927619014569_ref79 doi: 10.1007/s00170-014-6758-7 – ident: S1431927619014569_ref47 doi: 10.1016/0026-0800(79)90041-7 – ident: S1431927619014569_ref1 doi: 10.1016/j.matchar.2012.01.010 – ident: S1431927619014569_ref88 doi: 10.2355/isijinternational.45.254 – ident: S1431927619014569_ref37 doi: 10.1557/PROC-650-R6.6 – ident: S1431927619014569_ref93 doi: 10.1109/83.298395 – ident: S1431927619014569_ref29 doi: 10.1145/48014.61051 – ident: S1431927619014569_ref43 doi: 10.1016/0956-7151(90)90180-O – ident: S1431927619014569_ref28 doi: 10.1016/j.msea.2011.01.030 – ident: S1431927619014569_ref83 doi: 10.1109/TIP.2013.2284071  | 
    
| SSID | ssj0003076 | 
    
| Score | 2.2592292 | 
    
| Snippet | Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have... | 
    
| SourceID | proquest pubmed crossref cambridge  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 924 | 
    
| SubjectTerms | Algorithms Automation Bayesian analysis Clustering Computer applications Data analysis Datasets Identification Image processing Image reconstruction Image segmentation Inverse problems Materials information Materials science Maximum flow Microscopy Nodes Software and Instrumentation  | 
    
| Title | Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets | 
    
| URI | https://www.cambridge.org/core/product/identifier/S1431927619014569/type/journal_article https://www.ncbi.nlm.nih.gov/pubmed/31210120 https://www.proquest.com/docview/2253064503 https://www.proquest.com/docview/2242816045  | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1435-8115 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: 7X7 dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1435-8115 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: BENPR dateStart: 20020201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1435-8115 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0003076 issn: 1431-9276 databaseCode: 8FG dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_alEFfxj66LltXVNjTqJkdKbL9MEqWNSuFhNGukLcgW1JbcOxuldn2tv-h_2H_kt75KxtjeTHY-rAlne5-5zvdAbz1pVKpltxD7Up4IrW4pazWnjBWBkkU2MBUDrIzeXIhTufD-QbM2rMw5FbZ8sSKUesipX_k75HuCCwPfX50882jrFFkXW1TaKgmtYL-UIUY24StAUXG6sHWx-PZl7OONyNF1-eNeODFg1C2dk4KIk0P6RmJSIQV8Z_RFv6WWv-BopVImjyBxw2WZKN68Z_ChsmfwaM6u-Sv55CNVsZpVliGUI9N1c_rZblkk6z4cf_7bnqdV7fj0rFRdonjdVdL5gp2bi6XzamknKlcs3FWUkgFFHTU1VS5mnLZJ-VQDrrbHbiYHH8dn3hNcgUv5SF3npU8NCJOLQ43NSKSXCFaQH0xtAjijEFNgxutElzMRIhYRxEXkZLa0uQgjOAvoJcXuXkJLIxRK8NyE5OZdThIEuSgyrexb2UkZdqHw24iF80WuV3U7mXh4p9574PfzvUibQKVU76MbF2Td12TmzpKx7rKe-0Crr5mRV59OOiKcauR_UTlpiipDupqgUQQ3IfdeuG7t3Eit2Dgv1rf-WvYRsQV1x6Ee9Bz30vzBlGNS_ZhM5yHeI0mn_cbsn0ADlnxYw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgguFb_tlgJGggsiIom9Tnyo0LLtaku7KwSt1FtwYrtUyiZtN1HpjXfgfXgYnoRx_haE2FuPcWwnGXv8fZOxZwBeulzKRHHqoHXFHJYYVCmjlMO04V4cesbT1QbZKR8fsw8n_ZMV-NmehbHbKts1sVqoVZ7Yf-Rvcd5Zstx36bvzC8dmjbLe1TaFhmxSK6idKsRYc7DjQF9foQk339nfxfF-5fujvaPh2GmyDDgJDWjhGE4DzURiEBoTzUJOJcImGk6BQTajNVJuqpWM8atixoQKQ8pCyZWxDjnEU4r93oI1RplA42_t_d7046cOC1CD6vNN1HOEH_DWr2qDVttCW2YhGWmM-DO6w98o-R_qW0Hg6B6sN9yVDOrJdh9WdPYAbtfZLK8fQjpYOMNJbghSSzKR385m5YyM0vzq1_cfk7OsuhyWBRmkpyjf4uuMFDn5rE9nzSmojMhMkWFa2hAOCKy2q4ksak0hu7JA3C3mj-D4RsT8GFazPNObQAKBViDe18K6dft-HOOKLV0jXMNDzpMevOkEGTUqOY_q7WxB9I_ce-C2so6SJjC6zc-RLmvyumtyXkcFWVZ5ux3AxdsspnMPXnS3UbWtv0ZmOi9tHbQNPY6kuwcb9cB3T6M28Jvnu1vLO38Od8ZHk8PocH968ATuItsT9e7FbVgtLkv9FBlVET9rpi2BLzetKb8BfAMrIQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Maximum+Flow%E2%80%93Minimum+Cut+Algorithm+to+Segmentation+and+Clustering+of+Materials+Datasets&rft.jtitle=Microscopy+and+microanalysis&rft.au=Brust%2C+Alexander+F.&rft.au=Payton%2C+Eric+J.&rft.au=Hobbs%2C+Toren+J.&rft.au=Niezgoda%2C+Stephen+R.&rft.date=2019-08-01&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=25&rft.issue=4&rft.spage=924&rft.epage=941&rft_id=info:doi/10.1017%2FS1431927619014569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1431927619014569 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon |