Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets

Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these...

Full description

Saved in:
Bibliographic Details
Published inMicroscopy and microanalysis Vol. 25; no. 4; pp. 924 - 941
Main Authors Brust, Alexander F., Payton, Eric J., Hobbs, Toren J., Niezgoda, Stephen R.
Format Journal Article
LanguageEnglish
Published New York, USA Cambridge University Press 01.08.2019
Oxford University Press
Subjects
Online AccessGet full text
ISSN1431-9276
1435-8115
1435-8115
DOI10.1017/S1431927619014569

Cover

Abstract Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.
AbstractList Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.
Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.
Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have seen various approaches attempt to solve them with mixed results. No single computational technique has been able to effectively tackle these problems due to the vast differences between them. We propose the application of graph cutting as a versatile technique that can provide solutions to numerous materials data analysis problems. This can be attributed to its configuration flexibility coupled with the ability to handle noisy experimental data. Implementation of a Bayesian statistical approach allows for the prior information, based on experimental results and already ingrained within nodes, to drive the expected solutions. This way, nodes within the graph can be grouped together with similar, neighboring nodes that are then assigned to a specific system with respect to calculated likelihoods. Associating probabilities with potential solutions and states of the system allows for quantitative, stochastic analysis. The promising, robust results for each problem indicate the potential usefulness of the technique so long as a network of nodes can be effectively established within the model system.
Author Hobbs, Toren J.
Brust, Alexander F.
Niezgoda, Stephen R.
Payton, Eric J.
Author_xml – sequence: 1
  givenname: Alexander F.
  surname: Brust
  fullname: Brust, Alexander F.
  organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: Eric J.
  surname: Payton
  fullname: Payton, Eric J.
  organization: 2Air Force Research Laboratory, Materials and Manufacturing Directorate, Dayton, OH 45433, USA
– sequence: 3
  givenname: Toren J.
  surname: Hobbs
  fullname: Hobbs, Toren J.
  organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
– sequence: 4
  givenname: Stephen R.
  surname: Niezgoda
  fullname: Niezgoda, Stephen R.
  email: niezgoda.6@osu.edu
  organization: 1Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31210120$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2Kqvy0D9BNZakbNmnt-CfOcjSUgsSIBXQdeZKbwcixp7Yj6I534A15kjrMFCQqWPle-ztH1-fuox3nHSD0mZJvlNDq-wXljNZlJWlNKBeyfof28pUoFKVi57GmxfS-i_ZjvCaEMFLJD2iX0TIblGQP2dl6bU2rk_EO-x6nK8ALfWuGccDH1t883N0vjHts52PCM7vywaSrASePL2A1gEsbrXYdntsxJgjGrSarhZ5qbSM-0klHSPEjet_nHj5tzwP06_jH5fykODv_eTqfnRUtq1gqeskq4HXb52-1wJVkmlRKlaLqBScAQtQMOr0kUi85rzulGFdadv0UgqI1O0CHG9918L9HiKkZTGzBWu3Aj7EpS14qKgkXGf36Ar32Y3B5ukwJRiQXhGXqy5YalwN0zTqYQYc_zb8cM0A3QBt8jAH6J4SSZtpV89-usqZ6oWnNJswUtLFvKtlWqYdlMN0Knqd-XfUXXuGl1w
CitedBy_id crossref_primary_10_1007_s11128_024_04512_9
crossref_primary_10_2139_ssrn_4198894
crossref_primary_10_1007_s11661_019_05514_4
crossref_primary_10_1002_jccs_202300290
crossref_primary_10_1016_j_mtla_2019_100554
crossref_primary_10_1017_S1431927621012484
crossref_primary_10_1016_j_matdes_2023_111692
crossref_primary_10_1016_j_matchar_2022_112569
Cites_doi 10.1016/S1359-6454(02)00577-3
10.1088/0266-5611/5/4/008
10.1109/TIP.2010.2090533
10.1016/j.scriptamat.2012.02.042
10.1107/S002188981003027X
10.1109/IWW-BCI.2013.6506639
10.1111/j.1365-2818.2009.03349.x
10.1016/j.msea.2006.10.023
10.1016/S1044-5803(97)00154-X
10.1109/CVPR.2003.1211420
10.5244/C.24.38
10.1017/S1431927613000305
10.1109/42.811261
10.1017/S1431927611000055
10.1179/1743284714Y.0000000603
10.1016/j.matdes.2017.12.049
10.1007/BF02644284
10.1007/BF01397346
10.1155/2013/217021
10.1007/BF02652208
10.1016/j.actamat.2005.11.001
10.1109/TPAMI.2004.60
10.1016/j.ultramic.2014.11.015
10.1109/ICIP.2014.7025985
10.1109/CRV.2011.42
10.1107/S0021889807048777
10.1007/978-3-642-39479-9_22
10.1109/ISCAS.2010.5536961
10.1016/0026-0800(75)90051-8
10.1007/BF02646706
10.1109/83.869185
10.1016/j.media.2009.05.004
10.1016/j.msea.2009.12.037
10.1016/j.matchar.2013.12.014
10.1007/BF02659924
10.1016/S0921-5093(98)00820-X
10.1080/01621459.1987.10478393
10.1016/j.matchar.2011.04.003
10.1109/TIT.1982.1056489
10.1017/S1431927607070900
10.1080/01411594.2011.582379
10.1016/0885-064X(88)90024-6
10.1111/j.2517-6161.1989.tb01764.x
10.1111/j.1365-2818.2008.02010.x
10.1515/9781400875184
10.1016/j.mee.2003.11.010
10.1016/j.actamat.2009.08.053
10.1109/TIP.2005.852196
10.1063/1.2770961
10.2355/isijinternational.51.130
10.1109/TPAMI.1986.4767769
10.1016/S0005-1098(96)00168-9
10.1017/S1431927617000320
10.1007/s00138-014-0616-3
10.1109/DICTA.2015.7371241
10.1109/ICIP.1994.413651
10.1111/j.2517-6161.1996.tb02080.x
10.1109/I3A.2014.22
10.1155/2016/1745839
10.1109/ICPR.2010.367
10.1016/j.actamat.2008.09.030
10.1007/s11661-018-4977-5
10.1007/s00170-014-6758-7
10.1016/0026-0800(79)90041-7
10.1016/j.matchar.2012.01.010
10.2355/isijinternational.45.254
10.1557/PROC-650-R6.6
10.1109/83.298395
10.1145/48014.61051
10.1016/0956-7151(90)90180-O
10.1016/j.msea.2011.01.030
10.1109/TIP.2013.2284071
ContentType Journal Article
Copyright Copyright © Microscopy Society of America 2019
Copyright_xml – notice: Copyright © Microscopy Society of America 2019
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7TK
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1017/S1431927619014569
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Central Student
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Microscopy and Microanalysis
Alexander F. Brust et al.
EISSN 1435-8115
EndPage 941
ExternalDocumentID 31210120
10_1017_S1431927619014569
Genre Journal Article
GroupedDBID ---
-E.
.FH
0E1
0R~
123
29M
3V.
4.4
53G
5VS
74X
74Y
7RV
7X7
7~V
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
9M5
AAAZR
AABES
AACJH
AAGFV
AAKTX
AAPXW
AARAB
AASVR
AAUAY
AAUKB
ABBXD
ABDFA
ABEFU
ABITZ
ABJNI
ABKKG
ABMWE
ABPTD
ABQTM
ABROB
ABTCQ
ABUWG
ABVKB
ABWCF
ABWST
ABZCX
ACBEK
ACBMC
ACFRR
ACGFS
ACIMK
ACIPB
ACIWK
ACPRK
ACUFI
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADAZD
ADBBV
ADCGK
ADFEC
ADIYS
ADKIL
ADOVH
ADQBN
ADRDM
ADVEK
AEBAK
AEHGV
AEMTW
AENEX
AEUYN
AEYYC
AFFUJ
AFGWE
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AHIPN
AHLTW
AHMBA
AISIE
AJ7
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALWZO
ANFBD
ANPSP
AQJOH
ARABE
ARAPS
ATGXG
ATUCA
AZGZS
BBLKV
BBNVY
BENPR
BGHMG
BGLVJ
BGNMA
BHPHI
BKEYQ
BLZWO
BMAJL
BPHCQ
BVXVI
C0O
CAG
CCPQU
CJCSC
COF
CS3
DC4
DOHLZ
DU5
EBS
EJD
EX3
F5P
FYUFA
H13
HCIFZ
HG-
HMCUK
HST
HZ~
I.6
IH6
IS6
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
KOP
L98
LAS
LK8
LW7
M-V
M1P
M4Y
M7P
NAPCQ
NIKVX
NU-
NU0
O9-
OVD
OYBOY
P62
PQQKQ
PROAC
PSQYO
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S6-
S6U
SAAAG
SDH
SY4
T9M
TEORI
UKHRP
UT1
UU6
VUG
WFFJZ
WOW
WQ3
WXU
WYP
AAYXX
ABPQP
AHGBF
AJBYB
AJNCP
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QO
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c373t-f637e49cf190ce4863a0788257f540ee5593edab06ab449d88348a6df01458193
IEDL.DBID BENPR
ISSN 1431-9276
1435-8115
IngestDate Thu Oct 02 10:25:34 EDT 2025
Tue Oct 07 05:36:01 EDT 2025
Thu Apr 03 06:54:53 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Oct 01 04:09:56 EDT 2025
Tue Jan 21 06:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords segmentation
atomic clustering
Bayesian statistics
graph cutting
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-f637e49cf190ce4863a0788257f540ee5593edab06ab449d88348a6df01458193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31210120
PQID 2253064503
PQPubID 33692
PageCount 18
ParticipantIDs proquest_miscellaneous_2242816045
proquest_journals_2253064503
pubmed_primary_31210120
crossref_primary_10_1017_S1431927619014569
crossref_citationtrail_10_1017_S1431927619014569
cambridge_journals_10_1017_S1431927619014569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190800
2019-08-00
2019-Aug
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 20190800
PublicationDecade 2010
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: United States
– name: Oxford
PublicationTitle Microscopy and microanalysis
PublicationTitleAlternate Microsc Microanal
PublicationYear 2019
Publisher Cambridge University Press
Oxford University Press
Publisher_xml – name: Cambridge University Press
– name: Oxford University Press
References LaPera 1978; 12
Waggoner, Zhou, Simmons, Graef, Wang 2013; 22
Otsu 1979; 9
Shibata, Morito, Furuhara, Maki 2009; 57
Cayron 2007; 40
Wu, Wray, Garcia, Hua, DeArdo 2005; 45
Brust, Niezgoda, Yardley, Payton 2019; 50
Yardley, Fahimi, Payton 2015; 31
Chan, Ho, Nikolova 2005; 14
McInerney, Terzopoulos 1999; 18
Wright, Nowell, Fields 2011; 17
Zelenty, Dahl, Hyde, Smith, Moody 2017; 23
Stephenson, Moody, Liddicoat, Ringer 2007; 13
Comer, Delp 2000; 9
Gnäupel-Herold, Creuziger 2011; 528
Davies 1978; 9
Girault, Jacquest, Harlet, Mols, Humbeeck, Aernoudt, Delannay 1998; 40
Kurdjumow, Sachs 1930; 64
Zhang, Modestino, Langan 1994; 3
Payton, Nolze 2013; 19
Goldberg, Tarjan 1988; 35
Greninger, Troiano 1949; 185
Mondal, Vicidomini, Diaspro 2007; 102
Soni, Khare, Jain 2014; 4
Payton, Phillips, Mills 2010; 527
MacSleyne, Uchic, Simmons, Graef 2009; 57
Preethi, Narmadha 2012; 58
Faessel, Jeulin 2010; 239
Sandvik, Wayman 1983; 14A
Hong, Yu 1989; 23
Banerji, McMahon, Feng 1978; 9A
Kitahara, Ueji, Tsuji, Minamino 2006; 54
Kimura, Ohi, Shimazu, Matsuo 1987; 21
Ramírez, Porcayo-Calderon, Mazur, Salinas-Bravo, Martinez-Gomez 2016; 2016
Marroquin, Mitter, Poggio 1987; 82
Poggio, Voorhees, Yuille 1988; 4
Johansen 1997; 33
Hata, Wakita, Fujiwara, Kawano 2017; 114
Morito, Tanaka, Konishi, Maki 2003; 51
Greig, Porteous, Seheult 1989; 51
Cluff, Nelso, Song, Fullwood 2018; 375
El-Bagoury, Mohsen 2011; 84
Boykov, Kolmogorov 2004; 26
Hutchinson, Ryde, Lindh, Tagashira 1998; 257
Payton, Aghajani, Otto, Eggler, Yardley 2012; 66
Bernier, Bracke, Malet, Godet 2014; 89
Tolba, Raafat 2015; 79
Kelly, Jostons, Blake 1990; 38
Neubauer 1989; 5
Felfer, Ceguerra, Ringer, Cairney 2015; 150
Zaefferer, Romano, Friedel 2008; 230
Simmons, Chuang, Comer, Spowart, Uchic, Graef 2009; 17
Campbell, Murray, Yakushina, Marshall, Ion 2018; 141
Horn, Ritchie 1978; 9A
Bae, Shi, Tai 2011; 20
Rodríguez 2013; 2013
Sosa, Huber, Welk, Fraser 2014; 3
Abbasi, Nelson, Sorensen, Wei 2012; 66
Payton, Phillips, Mills 2011; 62
Keller, Roshko, Geiss, Bertness, Quinn 2004; 75
Tibshirani 1996; 58
Petrov, Kestens, Wasilkowska, Houbaert 2007; 447
Wayman 1975; 8
Kang, Kim, Baik, Ahn, Kim, Han, Oh, Lee, Han 2011; 51
Lloyd 1982; 28
Waggoner, Zhou, Simmons, Graef, Wang 2014; 25
Bachmann, Hielscher, Schaeben 2010; 43
Heimann, Meinzer 2009; 13
S1431927619014569_ref80
Despotović (S1431927619014569_ref21) 2010
S1431927619014569_ref82
Payton (S1431927619014569_ref61) 2011; 62
S1431927619014569_ref81
Soni (S1431927619014569_ref72) 2014; 4
S1431927619014569_ref40
S1431927619014569_ref84
S1431927619014569_ref83
S1431927619014569_ref86
S1431927619014569_ref85
S1431927619014569_ref88
S1431927619014569_ref43
S1431927619014569_ref87
Otsu (S1431927619014569_ref57) 1979; 9
S1431927619014569_ref46
S1431927619014569_ref45
S1431927619014569_ref89
S1431927619014569_ref48
S1431927619014569_ref47
S1431927619014569_ref49
Comer (S1431927619014569_ref18) 2000; 9
Keller (S1431927619014569_ref42) 2004; 75
S1431927619014569_ref91
S1431927619014569_ref90
Felfer (S1431927619014569_ref25) 2015; 150
S1431927619014569_ref93
Hong (S1431927619014569_ref34) 1989; 23
S1431927619014569_ref92
Greig (S1431927619014569_ref30) 1989; 51
S1431927619014569_ref51
S1431927619014569_ref94
S1431927619014569_ref50
S1431927619014569_ref53
S1431927619014569_ref52
S1431927619014569_ref11
S1431927619014569_ref55
S1431927619014569_ref54
S1431927619014569_ref13
S1431927619014569_ref12
S1431927619014569_ref56
S1431927619014569_ref59
S1431927619014569_ref15
S1431927619014569_ref14
S1431927619014569_ref58
S1431927619014569_ref17
Bovik (S1431927619014569_ref8) 2000
Kimura (S1431927619014569_ref44) 1987; 21
Boykov (S1431927619014569_ref10) 2006
S1431927619014569_ref60
S1431927619014569_ref62
S1431927619014569_ref20
Simmons (S1431927619014569_ref71) 2009; 17
S1431927619014569_ref63
S1431927619014569_ref22
S1431927619014569_ref66
S1431927619014569_ref65
S1431927619014569_ref68
Preethi (S1431927619014569_ref64) 2012; 58
S1431927619014569_ref67
S1431927619014569_ref23
Greninger (S1431927619014569_ref31) 1949; 185
S1431927619014569_ref26
S1431927619014569_ref69
S1431927619014569_ref28
S1431927619014569_ref27
Cook (S1431927619014569_ref19) 1998
Cluff (S1431927619014569_ref16) 2018; 375
S1431927619014569_ref29
Kang (S1431927619014569_ref41) 2011; 51
Faessel (S1431927619014569_ref24) 2010; 239
S1431927619014569_ref70
Soubies (S1431927619014569_ref74) 2015
S1431927619014569_ref75
Hata (S1431927619014569_ref32) 2017; 114
S1431927619014569_ref33
S1431927619014569_ref77
S1431927619014569_ref76
S1431927619014569_ref35
S1431927619014569_ref79
S1431927619014569_ref4
S1431927619014569_ref37
S1431927619014569_ref3
S1431927619014569_ref36
S1431927619014569_ref39
S1431927619014569_ref2
S1431927619014569_ref1
S1431927619014569_ref38
Sosa (S1431927619014569_ref73) 2014; 3
S1431927619014569_ref9
S1431927619014569_ref7
Tibshirani (S1431927619014569_ref78) 1996; 58
S1431927619014569_ref6
S1431927619014569_ref5
References_xml – volume: 84
  start-page: 1108
  year: 2011
  end-page: 1122
  article-title: Gamma prime and TCP phases and mechanical properties of thermally exposed nickel-base superalloy
  publication-title: Phase Transitions
– volume: 51
  start-page: 271
  year: 1989
  end-page: 279
  article-title: Exact Maximum A posteriori estimation for binary images
  publication-title: J Roy Stats Soc
– volume: 66
  start-page: 1
  year: 2012
  end-page: 8
  article-title: An approach to prior austenite reconstruction
  publication-title: Mater Charact
– volume: 40
  start-page: 111
  year: 1998
  end-page: 118
  article-title: Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels
  publication-title: Mater Charact
– volume: 22
  start-page: 5282
  year: 2013
  end-page: 5293
  article-title: 3D materials image segmentation by 2D propagation: A graph-Cut approach considering homomorphism
  publication-title: IEEE Trans Image Process
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J R Statistical Soc Ser B (Methodological)
– volume: 9A
  start-page: 237
  year: 1978
  end-page: 247
  article-title: Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen
  publication-title: Metall Trans A
– volume: 33
  start-page: 441
  year: 1997
  end-page: 446
  article-title: On Tikhonov regularization, bias and variance in nonlinear system identification
  publication-title: Automatica
– volume: 50
  start-page: 837
  year: 2019
  end-page: 855
  article-title: Analysis of misorientation relationships between austenite parents and twins
  publication-title: Metall Mater Trans A
– volume: 4
  start-page: 244
  year: 2014
  end-page: 250
  article-title: Problem of denoising in digital image processing and its solving techniques
  publication-title: Int J Emerging Technol Adv Eng
– volume: 21
  start-page: 19
  year: 1987
  end-page: 22
  article-title: Effect of prior austenite grain size on high temperature creep properties of Cr-Mo-V rotor steel
  publication-title: Scr Mater
– volume: 528
  start-page: 3594
  year: 2011
  end-page: 3600
  article-title: Diffraction study of the retained austenite content in TRIP steels
  publication-title: Mater Sci Eng: A
– volume: 23
  start-page: 1057
  year: 1989
  end-page: 1062
  article-title: Effect of prior austenite grain size on creep properties and on creep crack growth in 3.5-Ni-Cr-Mo-V steel
  publication-title: Scr Mater
– volume: 25
  start-page: 1615
  year: 2014
  end-page: 1629
  article-title: Graph-Cut based interactive segmentation of 3D materials-science images
  publication-title: Mach Vis Appl
– volume: 18
  start-page: 840
  year: 1999
  end-page: 850
  article-title: Topology adaptive deformable surfaces for medical image volume segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 54
  start-page: 1279
  year: 2006
  end-page: 1288
  article-title: Crystallographic features of lath martensite in low-carbon steel
  publication-title: Acta Mater
– volume: 79
  start-page: 113
  year: 2015
  end-page: 122
  article-title: Multiscale image quality measures for defect detection in thin films
  publication-title: Int J Adv Manuf Technol
– volume: 375
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Crystallographic reconstruction of parent austenite twin boundaries in a lath martensitic steel
  publication-title: Int Conf Ser: Mat Sci Eng
– volume: 257
  start-page: 9
  year: 1998
  end-page: 17
  article-title: Texture in hot rolled austenite and resulting transformation products
  publication-title: Mater Sci Eng A
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans Inf Theory
– volume: 82
  start-page: 76
  year: 1987
  end-page: 89
  article-title: Probabilistic solution of Ill-posed problems in computational vision
  publication-title: J Am Stats Assoc
– volume: 66
  start-page: 1045
  year: 2012
  end-page: 1048
  article-title: On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep
  publication-title: Scr Mater
– volume: 43
  start-page: 1338
  year: 2010
  end-page: 1355
  article-title: Inferential statistics of electron backscatter diffraction data from within individual crystalline grains
  publication-title: J Appli Crys
– volume: 14
  start-page: 1479
  year: 2005
  end-page: 1485
  article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization
  publication-title: IEEE Trans Image Process
– volume: 9
  start-page: 671
  year: 1978
  end-page: 679
  article-title: Influence of martensite composition and content on the properties of dual phase steels
  publication-title: Metall Trans A
– volume: 64
  start-page: 325
  year: 1930
  end-page: 343
  article-title: Ü ber der Mechanismus der Stahlhärtung (On the mechanism of hardening of steel)
  publication-title: Z Physik
– volume: 527
  start-page: 2684
  year: 2010
  end-page: 2694
  article-title: Semi-automated characterization of the gamma prime phase in Ni-based superalloys via high-resolution backscatter imaging
  publication-title: Mater Sci Eng A
– volume: 13
  start-page: 448
  year: 2007
  end-page: 463
  article-title: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT)
  publication-title: Microstruct Microanal
– volume: 57
  start-page: 483
  year: 2009
  end-page: 492
  article-title: Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys
  publication-title: Acta Mater
– volume: 40
  start-page: 1183
  year: 2007
  end-page: 1188
  article-title: ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data
  publication-title: J Appl Crystallogr
– volume: 8
  start-page: 105
  year: 1975
  end-page: 130
  article-title: Shear transformations and microstructure
  publication-title: Metallography
– volume: 58
  start-page: 27
  year: 2012
  end-page: 30
  article-title: A survey on image denoising techniques
  publication-title: Int J Comput Appl
– volume: 239
  start-page: 17
  year: 2010
  end-page: 31
  article-title: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed
  publication-title: J Microsc
– volume: 38
  start-page: 1075
  year: 1990
  end-page: 1081
  article-title: The orientation relationship between lath martensite and austenite in low carbon, low alloy steels
  publication-title: Acta Metall Mater
– volume: 51
  start-page: 1789
  year: 2003
  end-page: 1799
  article-title: The morphology and crystallography of lath martensite in Fe-C alloys
  publication-title: Acta Mater
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst
– volume: 35
  start-page: 921
  year: 1988
  end-page: 940
  article-title: A new approach to the maximum-flow problem
  publication-title: J Assoc Comp Mach
– volume: 114
  start-page: 26
  year: 2017
  end-page: 31
  article-title: Development of a Re-construction method of prior austenite microstructure using EBSD data of martensite
  publication-title: Nippon Steel and Sumitomo Metal Technical Report
– volume: 5
  start-page: 541
  year: 1989
  end-page: 557
  article-title: Tikhonov regularisation for non-linear ill-posed problems: Optimal convergence rates and finite-dimensional approximation
  publication-title: Inverse Prob
– volume: 12
  start-page: 263
  year: 1978
  end-page: 268
  article-title: Improved etching technique for the determination of percent martensite in high-strength, dual-phase steels
  publication-title: Metallography
– volume: 31
  start-page: 547
  year: 2015
  end-page: 553
  article-title: Classification of creep crack and cavitation sites in tempered martensite ferritic steel microstructures
  publication-title: Mater Sci Technol
– volume: 141
  start-page: 395
  year: 2018
  end-page: 406
  article-title: New methods for automatic quantification of microstructural features using digital image processing
  publication-title: Mater Des
– volume: 13
  start-page: 543
  year: 2009
  end-page: 563
  article-title: Statistical shape models for 3D medical image segmentation: A review
  publication-title: Med Image Anal
– volume: 75
  start-page: 96
  year: 2004
  end-page: 102
  article-title: EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers
  publication-title: Microelectron Eng
– volume: 9A
  start-page: 1039
  year: 1978
  end-page: 1053
  article-title: Mechanisms of tempered martensite embrittlement of low alloy steels
  publication-title: Metall Trans A
– volume: 4
  start-page: 106
  year: 1988
  end-page: 123
  article-title: A regularized solution to edge detection
  publication-title: J Complex
– volume: 26
  start-page: 1124
  year: 2004
  end-page: 1137
  article-title: An experimental comparison of Min-Cut/Max-flow algorithms for energy minimization in vision
  publication-title: IEEE Trans Pattern Anal Mach Intell (PAMI)
– volume: 3
  start-page: 10
  year: 2014
  article-title: Development and application of MIPART m : A novel software package for Two- and three-dimensional microstructural characterization
  publication-title: Integrating Mat Manuf Innovation
– volume: 102
  start-page: 044701
  year: 2007
  article-title: Markov random field aided Bayesian approach for image reconstruction in confocal microscopy
  publication-title: J Appl Phys
– volume: 17
  start-page: 316
  year: 2011
  end-page: 329
  article-title: A review of strain analysis using electron backscatter diffraction
  publication-title: Microsc Microanal
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 7
  article-title: Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle
  publication-title: Adv Mater Sci Eng
– volume: 185
  start-page: 590
  year: 1949
  end-page: 598
  article-title: The mechanism of martensite formation
  publication-title: Metals Transactions
– volume: 17
  start-page: 1
  year: 2009
  end-page: 22
  article-title: Application and further development of advanced image processing algorithms for automated analysis of serial section image data
  publication-title: Mod Sim Mat Sci Eng
– volume: 230
  start-page: 499
  year: 2008
  end-page: 508
  article-title: EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels
  publication-title: J Microsc
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 18
  article-title: Total variation regularization algorithms for images corrupted with different noise models: A review
  publication-title: J Elect Comput Eng
– volume: 62
  start-page: 563
  year: 2011
  end-page: 574
  article-title: Stereology of backscatter electron images of etched surfaces for characterization of particle size distributions and volume fractions: Estimation of imaging bias Via monte carlo simulations
  publication-title: Mater Charact
– volume: 57
  start-page: 6251
  year: 2009
  end-page: 6267
  article-title: Three-dimensional analysis of secondary γ' precipitates in René-88 DT and UMF-20 superalloys
  publication-title: Acta Mater
– volume: 19
  start-page: 929
  year: 2013
  end-page: 941
  article-title: The backscatter electron signal as an additional tool for phase segmentation in EBSD
  publication-title: Microsc Microanal
– volume: 89
  start-page: 23
  year: 2014
  end-page: 32
  article-title: An alternative to the crystallographic reconstruction of austenite in steels
  publication-title: Mater Charact
– volume: 9
  start-page: 1731
  year: 2000
  end-page: 1744
  article-title: The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results
  publication-title: IEEE Trans Image Process
– volume: 20
  start-page: 1199
  year: 2011
  end-page: 1210
  article-title: Graph cuts for curvature based image denoising
  publication-title: IEEE Trans Image Process
– volume: 3
  start-page: 404
  year: 1994
  end-page: 420
  article-title: Maximum-Likelihood parameter estimation for unsupervised stochastic model-based image segmentation
  publication-title: IEEE Trans. Image Process
– volume: 45
  start-page: 254
  year: 2005
  end-page: 262
  article-title: Image quality analysis: A new method of characterizing microstructures
  publication-title: ISIJ Int
– volume: 14A
  start-page: 809
  year: 1983
  end-page: 822
  article-title: Characteristics of lath martensite: Part 1. Crystallographic and substructural features
  publication-title: Metallurgical Transactions: A
– volume: 23
  start-page: 269
  year: 2017
  end-page: 278
  article-title: Detecting clusters in atom probe data with Gaussian mixture models
  publication-title: Microstruct Microanal
– volume: 51
  start-page: 130
  year: 2011
  end-page: 136
  article-title: Phase analysis of steels by grain-averaged EBSD functions
  publication-title: Iron Steel Inst Japan Int
– volume: 150
  start-page: 30
  year: 2015
  end-page: 36
  article-title: Detecting and extracting clusters in atom probe data: A simple, automated method using voronoi cells
  publication-title: Ultramicroscopy
– volume: 447
  start-page: 285
  year: 2007
  end-page: 297
  article-title: Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique
  publication-title: Mater Sci Eng A
– volume-title: Graph Cuts in Vision and Graphics: Theories and Applications
  year: 2006
  ident: S1431927619014569_ref10
– volume: 375
  start-page: 1
  year: 2018
  ident: S1431927619014569_ref16
  article-title: Crystallographic reconstruction of parent austenite twin boundaries in a lath martensitic steel
  publication-title: Int Conf Ser: Mat Sci Eng
– ident: S1431927619014569_ref55
  doi: 10.1016/S1359-6454(02)00577-3
– volume-title: Combinatorial Optimization
  year: 1998
  ident: S1431927619014569_ref19
– ident: S1431927619014569_ref81
– ident: S1431927619014569_ref56
  doi: 10.1088/0266-5611/5/4/008
– ident: S1431927619014569_ref4
  doi: 10.1109/TIP.2010.2090533
– ident: S1431927619014569_ref58
  doi: 10.1016/j.scriptamat.2012.02.042
– ident: S1431927619014569_ref3
  doi: 10.1107/S002188981003027X
– volume-title: Handbook of Image and Video Processing
  year: 2000
  ident: S1431927619014569_ref8
– ident: S1431927619014569_ref48
  doi: 10.1109/IWW-BCI.2013.6506639
– volume: 239
  start-page: 17
  year: 2010
  ident: S1431927619014569_ref24
  article-title: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2009.03349.x
– ident: S1431927619014569_ref62
  doi: 10.1016/j.msea.2006.10.023
– volume: 58
  start-page: 27
  year: 2012
  ident: S1431927619014569_ref64
  article-title: A survey on image denoising techniques
  publication-title: Int J Comput Appl
– ident: S1431927619014569_ref76
– ident: S1431927619014569_ref27
  doi: 10.1016/S1044-5803(97)00154-X
– ident: S1431927619014569_ref82
  doi: 10.1109/CVPR.2003.1211420
– volume: 23
  start-page: 1057
  year: 1989
  ident: S1431927619014569_ref34
  article-title: Effect of prior austenite grain size on creep properties and on creep crack growth in 3.5-Ni-Cr-Mo-V steel
  publication-title: Scr Mater
– ident: S1431927619014569_ref38
  doi: 10.5244/C.24.38
– ident: S1431927619014569_ref59
  doi: 10.1017/S1431927613000305
– volume: 17
  start-page: 1
  year: 2009
  ident: S1431927619014569_ref71
  article-title: Application and further development of advanced image processing algorithms for automated analysis of serial section image data
  publication-title: Mod Sim Mat Sci Eng
– ident: S1431927619014569_ref53
  doi: 10.1109/42.811261
– ident: S1431927619014569_ref87
  doi: 10.1017/S1431927611000055
– volume: 4
  start-page: 244
  year: 2014
  ident: S1431927619014569_ref72
  article-title: Problem of denoising in digital image processing and its solving techniques
  publication-title: Int J Emerging Technol Adv Eng
– ident: S1431927619014569_ref89
  doi: 10.1179/1743284714Y.0000000603
– ident: S1431927619014569_ref86
– volume: 114
  start-page: 26
  year: 2017
  ident: S1431927619014569_ref32
  article-title: Development of a Re-construction method of prior austenite microstructure using EBSD data of martensite
  publication-title: Nippon Steel and Sumitomo Metal Technical Report
– ident: S1431927619014569_ref12
  doi: 10.1016/j.matdes.2017.12.049
– ident: S1431927619014569_ref67
  doi: 10.1007/BF02644284
– ident: S1431927619014569_ref46
  doi: 10.1007/BF01397346
– ident: S1431927619014569_ref66
  doi: 10.1155/2013/217021
– ident: S1431927619014569_ref35
  doi: 10.1007/BF02652208
– ident: S1431927619014569_ref45
  doi: 10.1016/j.actamat.2005.11.001
– ident: S1431927619014569_ref9
  doi: 10.1109/TPAMI.2004.60
– volume: 150
  start-page: 30
  year: 2015
  ident: S1431927619014569_ref25
  article-title: Detecting and extracting clusters in atom probe data: A simple, automated method using voronoi cells
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2014.11.015
– volume: 21
  start-page: 19
  year: 1987
  ident: S1431927619014569_ref44
  article-title: Effect of prior austenite grain size on high temperature creep properties of Cr-Mo-V rotor steel
  publication-title: Scr Mater
– ident: S1431927619014569_ref22
  doi: 10.1109/ICIP.2014.7025985
– ident: S1431927619014569_ref2
  doi: 10.1109/CRV.2011.42
– ident: S1431927619014569_ref13
  doi: 10.1107/S0021889807048777
– ident: S1431927619014569_ref94
  doi: 10.1007/978-3-642-39479-9_22
– ident: S1431927619014569_ref15
  doi: 10.1109/ISCAS.2010.5536961
– ident: S1431927619014569_ref85
  doi: 10.1016/0026-0800(75)90051-8
– ident: S1431927619014569_ref5
  doi: 10.1007/BF02646706
– volume: 9
  start-page: 1731
  year: 2000
  ident: S1431927619014569_ref18
  article-title: The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental results
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.869185
– ident: S1431927619014569_ref33
  doi: 10.1016/j.media.2009.05.004
– ident: S1431927619014569_ref60
  doi: 10.1016/j.msea.2009.12.037
– ident: S1431927619014569_ref7
  doi: 10.1016/j.matchar.2013.12.014
– ident: S1431927619014569_ref39
– ident: S1431927619014569_ref20
  doi: 10.1007/BF02659924
– volume: 9
  start-page: 62
  year: 1979
  ident: S1431927619014569_ref57
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans Syst
– ident: S1431927619014569_ref36
  doi: 10.1016/S0921-5093(98)00820-X
– ident: S1431927619014569_ref52
  doi: 10.1080/01621459.1987.10478393
– volume: 62
  start-page: 563
  year: 2011
  ident: S1431927619014569_ref61
  article-title: Stereology of backscatter electron images of etched surfaces for characterization of particle size distributions and volume fractions: Estimation of imaging bias Via monte carlo simulations
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2011.04.003
– ident: S1431927619014569_ref50
  doi: 10.1109/TIT.1982.1056489
– volume: 185
  start-page: 590
  year: 1949
  ident: S1431927619014569_ref31
  article-title: The mechanism of martensite formation
  publication-title: Metals Transactions
– ident: S1431927619014569_ref75
  doi: 10.1017/S1431927607070900
– ident: S1431927619014569_ref23
  doi: 10.1080/01411594.2011.582379
– ident: S1431927619014569_ref63
  doi: 10.1016/0885-064X(88)90024-6
– volume: 51
  start-page: 271
  year: 1989
  ident: S1431927619014569_ref30
  article-title: Exact Maximum A posteriori estimation for binary images
  publication-title: J Roy Stats Soc
  doi: 10.1111/j.2517-6161.1989.tb01764.x
– ident: S1431927619014569_ref70
– ident: S1431927619014569_ref91
  doi: 10.1111/j.1365-2818.2008.02010.x
– ident: S1431927619014569_ref26
  doi: 10.1515/9781400875184
– volume: 75
  start-page: 96
  year: 2004
  ident: S1431927619014569_ref42
  article-title: EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2003.11.010
– ident: S1431927619014569_ref51
  doi: 10.1016/j.actamat.2009.08.053
– ident: S1431927619014569_ref14
  doi: 10.1109/TIP.2005.852196
– start-page: 153
  volume-title: Graph Cut Based Segmentation of Predefined Shapes: Applications to Biological Imaging
  year: 2015
  ident: S1431927619014569_ref74
– ident: S1431927619014569_ref54
  doi: 10.1063/1.2770961
– volume: 51
  start-page: 130
  year: 2011
  ident: S1431927619014569_ref41
  article-title: Phase analysis of steels by grain-averaged EBSD functions
  publication-title: Iron Steel Inst Japan Int
  doi: 10.2355/isijinternational.51.130
– ident: S1431927619014569_ref80
  doi: 10.1109/TPAMI.1986.4767769
– ident: S1431927619014569_ref40
  doi: 10.1016/S0005-1098(96)00168-9
– ident: S1431927619014569_ref92
  doi: 10.1017/S1431927617000320
– ident: S1431927619014569_ref84
  doi: 10.1007/s00138-014-0616-3
– ident: S1431927619014569_ref90
– ident: S1431927619014569_ref6
  doi: 10.1109/DICTA.2015.7371241
– ident: S1431927619014569_ref17
  doi: 10.1109/ICIP.1994.413651
– volume: 58
  start-page: 267
  year: 1996
  ident: S1431927619014569_ref78
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J R Statistical Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 153
  volume-title: Noise-Robust method for image segmentation
  year: 2010
  ident: S1431927619014569_ref21
– ident: S1431927619014569_ref69
  doi: 10.1109/I3A.2014.22
– ident: S1431927619014569_ref65
  doi: 10.1155/2016/1745839
– volume: 3
  start-page: 10
  year: 2014
  ident: S1431927619014569_ref73
  article-title: Development and application of MIPART m : A novel software package for Two- and three-dimensional microstructural characterization
  publication-title: Integrating Mat Manuf Innovation
– ident: S1431927619014569_ref49
  doi: 10.1109/ICPR.2010.367
– ident: S1431927619014569_ref68
  doi: 10.1016/j.actamat.2008.09.030
– ident: S1431927619014569_ref77
– ident: S1431927619014569_ref11
  doi: 10.1007/s11661-018-4977-5
– ident: S1431927619014569_ref79
  doi: 10.1007/s00170-014-6758-7
– ident: S1431927619014569_ref47
  doi: 10.1016/0026-0800(79)90041-7
– ident: S1431927619014569_ref1
  doi: 10.1016/j.matchar.2012.01.010
– ident: S1431927619014569_ref88
  doi: 10.2355/isijinternational.45.254
– ident: S1431927619014569_ref37
  doi: 10.1557/PROC-650-R6.6
– ident: S1431927619014569_ref93
  doi: 10.1109/83.298395
– ident: S1431927619014569_ref29
  doi: 10.1145/48014.61051
– ident: S1431927619014569_ref43
  doi: 10.1016/0956-7151(90)90180-O
– ident: S1431927619014569_ref28
  doi: 10.1016/j.msea.2011.01.030
– ident: S1431927619014569_ref83
  doi: 10.1109/TIP.2013.2284071
SSID ssj0003076
Score 2.2592292
Snippet Problems involving image segmentation, atomic cluster identification, segmentation of microstructure constituents in images and austenite reconstruction have...
SourceID proquest
pubmed
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 924
SubjectTerms Algorithms
Automation
Bayesian analysis
Clustering
Computer applications
Data analysis
Datasets
Identification
Image processing
Image reconstruction
Image segmentation
Inverse problems
Materials information
Materials science
Maximum flow
Microscopy
Nodes
Software and Instrumentation
Title Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets
URI https://www.cambridge.org/core/product/identifier/S1431927619014569/type/journal_article
https://www.ncbi.nlm.nih.gov/pubmed/31210120
https://www.proquest.com/docview/2253064503
https://www.proquest.com/docview/2242816045
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 7X7
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1435-8115
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: BENPR
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-8115
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003076
  issn: 1431-9276
  databaseCode: 8FG
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_alEFfxj66LltXVNjTqJkdKbL9MEqWNSuFhNGukLcgW1JbcOxuldn2tv-h_2H_kt75KxtjeTHY-rAlne5-5zvdAbz1pVKpltxD7Up4IrW4pazWnjBWBkkU2MBUDrIzeXIhTufD-QbM2rMw5FbZ8sSKUesipX_k75HuCCwPfX50882jrFFkXW1TaKgmtYL-UIUY24StAUXG6sHWx-PZl7OONyNF1-eNeODFg1C2dk4KIk0P6RmJSIQV8Z_RFv6WWv-BopVImjyBxw2WZKN68Z_ChsmfwaM6u-Sv55CNVsZpVliGUI9N1c_rZblkk6z4cf_7bnqdV7fj0rFRdonjdVdL5gp2bi6XzamknKlcs3FWUkgFFHTU1VS5mnLZJ-VQDrrbHbiYHH8dn3hNcgUv5SF3npU8NCJOLQ43NSKSXCFaQH0xtAjijEFNgxutElzMRIhYRxEXkZLa0uQgjOAvoJcXuXkJLIxRK8NyE5OZdThIEuSgyrexb2UkZdqHw24iF80WuV3U7mXh4p9574PfzvUibQKVU76MbF2Td12TmzpKx7rKe-0Crr5mRV59OOiKcauR_UTlpiipDupqgUQQ3IfdeuG7t3Eit2Dgv1rf-WvYRsQV1x6Ee9Bz30vzBlGNS_ZhM5yHeI0mn_cbsn0ADlnxYw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgguFb_tlgJGggsiIom9Tnyo0LLtaku7KwSt1FtwYrtUyiZtN1HpjXfgfXgYnoRx_haE2FuPcWwnGXv8fZOxZwBeulzKRHHqoHXFHJYYVCmjlMO04V4cesbT1QbZKR8fsw8n_ZMV-NmehbHbKts1sVqoVZ7Yf-Rvcd5Zstx36bvzC8dmjbLe1TaFhmxSK6idKsRYc7DjQF9foQk339nfxfF-5fujvaPh2GmyDDgJDWjhGE4DzURiEBoTzUJOJcImGk6BQTajNVJuqpWM8atixoQKQ8pCyZWxDjnEU4r93oI1RplA42_t_d7046cOC1CD6vNN1HOEH_DWr2qDVttCW2YhGWmM-DO6w98o-R_qW0Hg6B6sN9yVDOrJdh9WdPYAbtfZLK8fQjpYOMNJbghSSzKR385m5YyM0vzq1_cfk7OsuhyWBRmkpyjf4uuMFDn5rE9nzSmojMhMkWFa2hAOCKy2q4ksak0hu7JA3C3mj-D4RsT8GFazPNObQAKBViDe18K6dft-HOOKLV0jXMNDzpMevOkEGTUqOY_q7WxB9I_ce-C2so6SJjC6zc-RLmvyumtyXkcFWVZ5ux3AxdsspnMPXnS3UbWtv0ZmOi9tHbQNPY6kuwcb9cB3T6M28Jvnu1vLO38Od8ZHk8PocH968ATuItsT9e7FbVgtLkv9FBlVET9rpi2BLzetKb8BfAMrIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+Maximum+Flow%E2%80%93Minimum+Cut+Algorithm+to+Segmentation+and+Clustering+of+Materials+Datasets&rft.jtitle=Microscopy+and+microanalysis&rft.au=Brust%2C+Alexander+F.&rft.au=Payton%2C+Eric+J.&rft.au=Hobbs%2C+Toren+J.&rft.au=Niezgoda%2C+Stephen+R.&rft.date=2019-08-01&rft.issn=1431-9276&rft.eissn=1435-8115&rft.volume=25&rft.issue=4&rft.spage=924&rft.epage=941&rft_id=info:doi/10.1017%2FS1431927619014569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1431927619014569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1431-9276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1431-9276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1431-9276&client=summon