Connectivity-Enhanced 3D Deployment Algorithm for Multiple UAVs in Space–Air–Ground Integrated Network

The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless a...

Full description

Saved in:
Bibliographic Details
Published inAerospace Vol. 11; no. 12; p. 969
Main Authors Guo, Shaoxiong, Zhou, Li, Liang, Shijie, Cao, Kuo, Song, Zhiqun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN2226-4310
2226-4310
DOI10.3390/aerospace11120969

Cover

Abstract The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless access to designated regions. Meanwhile, ensuring the connectivity between UAVs as well as between UAVs and ground users (GUs) is critical for enhancing the quality of service (QoS) in SAGIN. In this paper, we consider the 3D deployment problem of multiple UAVs in SAGIN subject to the UAVs’ connection capacity limit and the UAV network’s robustness, maximizing the coverage of UAVs. Firstly, the horizontal positions of the UAVs at a fixed height are initialized using the k-means algorithm. Subsequently, the connections between the UAVs are established based on constraint conditions, and a fairness connection strategy is employed to establish connections between the UAVs and GUs. Following this, an improved genetic algorithm (IGA) with elite selection, adaptive crossover, and mutation capabilities is proposed to update the horizontal positions of the UAVs, thereby updating the connection relationships. Finally, a height optimization algorithm is proposed to adjust the height of each UAV, completing the 3D deployment of multiple UAVs. Extensive simulations indicate that the proposed algorithm achieves faster deployment and higher coverage under both random and clustered distribution scenarios of GUs, while also enhancing the robustness and load balance of the UAV network.
AbstractList The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless access to designated regions. Meanwhile, ensuring the connectivity between UAVs as well as between UAVs and ground users (GUs) is critical for enhancing the quality of service (QoS) in SAGIN. In this paper, we consider the 3D deployment problem of multiple UAVs in SAGIN subject to the UAVs’ connection capacity limit and the UAV network’s robustness, maximizing the coverage of UAVs. Firstly, the horizontal positions of the UAVs at a fixed height are initialized using the k-means algorithm. Subsequently, the connections between the UAVs are established based on constraint conditions, and a fairness connection strategy is employed to establish connections between the UAVs and GUs. Following this, an improved genetic algorithm (IGA) with elite selection, adaptive crossover, and mutation capabilities is proposed to update the horizontal positions of the UAVs, thereby updating the connection relationships. Finally, a height optimization algorithm is proposed to adjust the height of each UAV, completing the 3D deployment of multiple UAVs. Extensive simulations indicate that the proposed algorithm achieves faster deployment and higher coverage under both random and clustered distribution scenarios of GUs, while also enhancing the robustness and load balance of the UAV network.
Audience Academic
Author Cao, Kuo
Guo, Shaoxiong
Liang, Shijie
Song, Zhiqun
Zhou, Li
Author_xml – sequence: 1
  givenname: Shaoxiong
  surname: Guo
  fullname: Guo, Shaoxiong
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-4099-6917
  surname: Zhou
  fullname: Zhou, Li
– sequence: 3
  givenname: Shijie
  orcidid: 0009-0007-3602-4484
  surname: Liang
  fullname: Liang, Shijie
– sequence: 4
  givenname: Kuo
  surname: Cao
  fullname: Cao, Kuo
– sequence: 5
  givenname: Zhiqun
  surname: Song
  fullname: Song, Zhiqun
BookMark eNplkc1uFDEMx0eoSJTSB-A2Eucp-Z7JcbQtZaUCByjXKB_ONstsMmSyRXvjHfqGfRJSFiEkbMm2LPtnS_-XzUlMEZrmNUYXlEr0VkNOy6wtYIwJkkI-a04JIaJjFKOTf-oXzfmybFE1iemA-GmzXaUYwZZwH8qhu4p3OlpwLb1sL2Ge0mEHsbTjtEk5lLtd61NuP-ynEuYJ2tvx69KG2H5-Ov3482EMucbrnPbRtetYYJN1qbCPUH6k_O1V89zraYHzP_msuX139WX1vrv5dL1ejTedpT0tHXDvDdXOgZACjMPOI-oMI1xgbRj0Diz2kiPhreFWGsmpEz3XTINEA6ZnzfrIdUlv1ZzDTueDSjqo342UN0rnEuwEyhhaEdgTrB0bmNFg7YAEFqYn1GNUWW-OrDmn73tYitqmfY71fUUxk0ySXrA6dXGc2ugKDdGnkrWt7mAXbNXKh9ofB4K5lJzRuoCPC7YKt2Twf9_ESD1Jqv6TlP4CcHKbBg
Cites_doi 10.1007/s00607-021-00955-5
10.1109/JIOT.2024.3466221
10.1155/2021/2937224
10.1109/JIOT.2024.3378217
10.23919/JCN.2022.000014
10.1109/JSAC.2018.2864426
10.1109/TVT.2023.3237551
10.1109/LWC.2014.2342736
10.1109/TCOMM.2021.3049387
10.1109/LCOMM.2016.2633248
10.1109/6GNet54646.2022.9830368
10.1016/j.phycom.2021.101564
10.1038/nature14604
10.1109/OJCOMS.2021.3057679
10.3390/drones8090478
10.1109/JSAC.2024.3365891
10.1109/LCOMM.2019.2906194
10.1109/LWC.2019.2899599
10.1109/JIOT.2023.3287838
10.1109/TVT.2023.3244812
10.1109/JIOT.2020.3019065
10.1109/JIOT.2019.2935105
10.3390/info13080389
10.1109/LWC.2017.2700840
10.1016/j.comcom.2023.05.013
10.1109/TWC.2020.2964656
10.1109/ACCESS.2022.3224776
10.23919/JCC.2022.02.008
10.1109/JSYST.2020.3015428
10.1109/TCOMM.2022.3232512
10.1109/LCOMM.2022.3161382
10.1109/ICCT.2018.8600206
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
7TG
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KL.
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/aerospace11120969
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2226-4310
ExternalDocumentID oai_doaj_org_article_bb3b5c1f21ad484baecc80616b723f10
A821599543
10_3390_aerospace11120969
GroupedDBID -~X
5VS
85S
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABPPZ
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
BQN
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
LK5
M7R
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7TB
7TG
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KL.
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c373t-e5ffb3adde696ebd1df03db42561ab4e7dec1f9506fcb5c9b953d675a4ae90813
IEDL.DBID DOA
ISSN 2226-4310
IngestDate Wed Aug 27 01:30:36 EDT 2025
Fri Jul 25 22:50:21 EDT 2025
Tue Jun 10 21:00:24 EDT 2025
Tue Jul 01 03:28:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-e5ffb3adde696ebd1df03db42561ab4e7dec1f9506fcb5c9b953d675a4ae90813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4099-6917
0009-0007-3602-4484
OpenAccessLink https://doaj.org/article/bb3b5c1f21ad484baecc80616b723f10
PQID 3149492764
PQPubID 2032442
ParticipantIDs doaj_primary_oai_doaj_org_article_bb3b5c1f21ad484baecc80616b723f10
proquest_journals_3149492764
gale_infotracacademiconefile_A821599543
crossref_primary_10_3390_aerospace11120969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Aerospace
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_11) 2024; 11
Wang (ref_25) 2022; 26
Rajabi (ref_32) 2021; 8
Hu (ref_8) 2023; 72
Shakoor (ref_19) 2020; 8
Alzenad (ref_29) 2017; 6
Jiang (ref_1) 2021; 2
ref_13
Cui (ref_2) 2022; 2
Morone (ref_34) 2015; 524
Lee (ref_30) 2023; 72
Anand (ref_33) 2022; 104
Elnabty (ref_10) 2022; 51
Lyu (ref_20) 2016; 21
ref_16
Zhou (ref_14) 2018; 36
Lin (ref_7) 2019; 23
Wen (ref_27) 2022; 24
Wu (ref_15) 2020; 19
Gu (ref_4) 2023; 208
Kandeepan (ref_28) 2014; 3
Hayajneh (ref_22) 2021; 2021
Zhang (ref_31) 2021; 356
Liu (ref_3) 2024; 42
Liao (ref_17) 2022; 71
Zhang (ref_21) 2021; 69
Wang (ref_23) 2019; 6
Mao (ref_24) 2023; 11
Song (ref_18) 2022; 10
ref_9
Lai (ref_12) 2019; 8
ref_5
Zhong (ref_26) 2020; 15
ref_6
References_xml – volume: 104
  start-page: 251
  year: 2022
  ident: ref_33
  article-title: Nature inspired meta heuristic algorithms for optimization problems
  publication-title: Computing
  doi: 10.1007/s00607-021-00955-5
– ident: ref_6
  doi: 10.1109/JIOT.2024.3466221
– volume: 2021
  start-page: 2937224
  year: 2021
  ident: ref_22
  article-title: 3D deployment of unmanned aerial vehicle-base station assisting ground-base station
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/2937224
– volume: 11
  start-page: 21337
  year: 2024
  ident: ref_11
  article-title: Real-Time Radio Map Construction and Distribution for UAV-Assisted Mobile Edge Computing Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3378217
– volume: 24
  start-page: 223
  year: 2022
  ident: ref_27
  article-title: Improved genetic algorithm based 3-D deployment of UAVs
  publication-title: J. Commun. Netw.
  doi: 10.23919/JCN.2022.000014
– volume: 36
  start-page: 1927
  year: 2018
  ident: ref_14
  article-title: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864426
– volume: 72
  start-page: 8244
  year: 2023
  ident: ref_30
  article-title: Deep Learning-Based Network-Wide Energy Efficiency Optimization in Ultra-Dense Small Cell Networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3237551
– volume: 3
  start-page: 569
  year: 2014
  ident: ref_28
  article-title: Optimal LAP Altitude for Maximum Coverage
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2014.2342736
– volume: 69
  start-page: 2473
  year: 2021
  ident: ref_21
  article-title: 3D deployment of multiple UAV-mounted base stations for UAV communications
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2021.3049387
– volume: 21
  start-page: 604
  year: 2016
  ident: ref_20
  article-title: Placement optimization of UAV-mounted mobile base stations
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2633248
– volume: 8
  start-page: 63
  year: 2021
  ident: ref_32
  article-title: A comprehensive review on meta-heuristic algorithms and their classification with novel approach
  publication-title: J. Appl. Res. Ind. Eng.
– volume: 356
  start-page: 260
  year: 2021
  ident: ref_31
  article-title: Trajectory Planning in UAV Emergency Networks with Potential Underlaying D2D Communication Based on K-means
  publication-title: J. Wirel. Commun. Netw.
– ident: ref_9
  doi: 10.1109/6GNet54646.2022.9830368
– volume: 51
  start-page: 101564
  year: 2022
  ident: ref_10
  article-title: A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2021.101564
– volume: 524
  start-page: 65
  year: 2015
  ident: ref_34
  article-title: Influence maximization in complex networks through optimal percolation
  publication-title: Nature
  doi: 10.1038/nature14604
– volume: 2
  start-page: 334
  year: 2021
  ident: ref_1
  article-title: The road towards 6G: A comprehensive survey
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2021.3057679
– ident: ref_5
  doi: 10.3390/drones8090478
– volume: 42
  start-page: 1387
  year: 2024
  ident: ref_3
  article-title: Space-Air-Ground Integrated Networks: Spherical Stochastic Geometry-Based Uplink Connectivity Analysis
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2024.3365891
– volume: 23
  start-page: 938
  year: 2019
  ident: ref_7
  article-title: UAV-assisted emergency communications: An extended multi-armed bandit perspective
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2906194
– volume: 8
  start-page: 913
  year: 2019
  ident: ref_12
  article-title: On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with guaranteed data rates
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2899599
– volume: 11
  start-page: 559
  year: 2023
  ident: ref_24
  article-title: Joint resource allocation and 3D deployment for multi-UAV covert communications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3287838
– volume: 72
  start-page: 14214
  year: 2023
  ident: ref_8
  article-title: Joint resources allocation and 3D trajectory optimization for UAV-enabled space-air-ground integrated networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3244812
– volume: 8
  start-page: 9776
  year: 2020
  ident: ref_19
  article-title: Joint optimization of UAV 3-D placement and path-loss factor for energy-efficient maximal coverage
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3019065
– volume: 6
  start-page: 10009
  year: 2019
  ident: ref_23
  article-title: Deployment algorithms of flying base stations: 5G and beyond with UAVs
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2935105
– ident: ref_16
  doi: 10.3390/info13080389
– volume: 6
  start-page: 434
  year: 2017
  ident: ref_29
  article-title: 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2017.2700840
– volume: 208
  start-page: 44
  year: 2023
  ident: ref_4
  article-title: A survey on UAV-assisted wireless communications: Recent advances and future trends
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2023.05.013
– volume: 19
  start-page: 2411
  year: 2020
  ident: ref_15
  article-title: Cell-edge user offloading via flying UAV in non-uniform heterogeneous cellular networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2964656
– volume: 10
  start-page: 125930
  year: 2022
  ident: ref_18
  article-title: Air-to-ground large-scale channel characterization by ray tracing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3224776
– volume: 2
  start-page: 90
  year: 2022
  ident: ref_2
  article-title: Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture and challenges
  publication-title: China Commun.
  doi: 10.23919/JCC.2022.02.008
– volume: 15
  start-page: 1795
  year: 2020
  ident: ref_26
  article-title: QoS-compliant 3-D deployment optimization strategy for UAV base stations
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3015428
– volume: 71
  start-page: 1536
  year: 2022
  ident: ref_17
  article-title: Energy-aware 3D-deployment of UAV for IoV with highway interchange
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3232512
– volume: 26
  start-page: 1363
  year: 2022
  ident: ref_25
  article-title: 3D UAV deployment in multi-UAV networks with statistical user position information
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2022.3161382
– ident: ref_13
  doi: 10.1109/ICCT.2018.8600206
SSID ssj0000913805
Score 2.2795894
Snippet The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 969
SubjectTerms 3D deployment
Algorithms
Communication
Connectivity
Disaster recovery
Drone aircraft
Genetic algorithms
load balance
Load distribution
Mathematical optimization
Optimization
Optimization algorithms
Probability
Quality of service
Quality of service architectures
Robustness
SAGIN
Satellites
UAV
Unmanned aerial vehicles
Wireless networks
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsQwDI1YLnBArGLYlAMSElJF06TbCZVlWCS4wCBuUdIkLIIOzJQ7_8Af8iXYbYZFCC49tJWaOrH97DjPhGwmKUSygHSDUMcqAH9rA6WZgCjFYRfphKmmGPPsPDnuidPr-Non3Ia-rHJkExtDbfol5sh3OEMelShNxO7Tc4Bdo3B31bfQGCeTLAJfiyfFu0efORbkvMzCuN3M5BDd7ygLvgeCUQsqHgF6z3-4o4a1_y_b3Dic7iyZ8UiRFu3UzpExW82T6W_8gQvkvilTKdsGEMFhddts51N-QA8sNvLFzB8tHm7gP-rbRwr4lJ75AkLaK66G9K6iFzjO99e34m4AV0xFVYaejEgkDD1v68QXSa97eLl_HPjmCUHJU14HNnZOc7ReSZ5YbZhxITcaVBTkr4VNjS2Zy-MwcaWOy1znMTcQPSihbA44gS-Riapf2WVCdRYJiNssnrMWmbCZMi51woC3BzCYuQ7ZHslQPrUcGRJiCxS4_CXwDtlDKX--iPTWzY3-4EZ6bZFacxgTcxFTBr6oFSy0DJBHotOIOxZ2yBbOkUQlrAeqVP4sAYwX6axkkQGSQaY73iFro2mUXjuH8mstrfz_eJVMRQBi2vKVNTJRD17sOoCQWm80K-0DAmPfUQ
  priority: 102
  providerName: ProQuest
Title Connectivity-Enhanced 3D Deployment Algorithm for Multiple UAVs in Space–Air–Ground Integrated Network
URI https://www.proquest.com/docview/3149492764
https://doaj.org/article/bb3b5c1f21ad484baecc80616b723f10
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB1S59IeSpK21Klr9hAIFEQk7errKMd2PsAmtHXJbdnV7iYujVxs957_kH-YX5IZrVwMJeTSiw5CQssbzc683dk3AEdphkwWM90g1IkKMN7aQOlIIEtx1EU6jVRTjDmZpuczcXmdXG-1-qKaMC8P7IE70ZrrpIpcHCkjcqEVfjPHIJTqLObOH64Ki3CLTDVzcBHxPEz8NiZHXn-iLEYdpKEWnRtfoALnrUDU6PU_Nys3oWa8B2_bHJGVfmz7sGPrA3izpRz4Dn42BSqVb_0QjOrbZiOf8SEbWmrhS2t-rPx1s0Duf3vHMDNlk7Z0kM3KHys2r9k3Gufj_UM5X-KVFqFqwy428hGGTX2F-HuYjUffT8-Dtm1CUPGMrwObOKc5zVtpkVptIuNCbjQ6JyKvhc2MRTyLJExdhdAWuki4Qd6ghLIFZgj8A3TqRW0_AtN5LJCxWTphjeDbXBmXOWEwzmMamLsufNlgKH97dQyJrIIAl_8A3oUBofz3QRK2bm6guWVrbvmSubtwTDaS5H7rpapUe4oAx0tCVrLMMYchjTvehd7GjLL1y5XkEanxxFkqDv_HaD7B6xiTHF_e0oPOevnHfsYkZa378Cofn_VhdzCaXn3tN3_nE-Bb6ug
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAcUMuPuqWADyAkpKhJ7Pwdqiplu-zS7l7oot6MHdttEWTb3VSIW9-B9-hD9UmYyU8BIbj1kkMSJdZ4PPPN-PMMwMs4wUgWka7n60h56G-tp3QgMEpx1EU6DlRNxhxP4uFUvD-KjpbgqjsLQ7TKzibWhtrMCsqRb_GA6qiESSx2zs496hpFu6tdC41GLfbt928Ysi22R32c31dhONg7fDv02q4CXsETXnk2ck5zWtZxFlttAuN8bjTqLg5MC5sYWwQui_zYFToqMp1F3CCsVkLZDB0ox-_egRXBOScKYTp4d5PToRqbqR81m6ecZ_6WsujrMPi1aFJCjBayP9xf3SXgX76gdnCDVXjQIlOWN6q0Bku2fAj3f6tX-Ag-17SYomk44e2VJzV9gPE-61tqHEyZRpZ_OUa5VSdfGeJhNm4Ji2yaf1yw05J9oHFeX_7IT-d4pdRXadioK1ph2KThpT-G6a2I9Qksl7PSrgPTaSgwTrR0rlukwqbKuMQJg-gCwWfqevCmk6E8a2pySIxlSODyL4H3YJekfPMildOub8zmx7JdnVJrjmMKXBgog3_UChU7RaQT6yTkLvB78JrmSNKir-aqUO3ZBRwvlc-SeYrIiSrr8R5sdtMoW2uwkL90d-P_j1_A3eHh-EAejCb7T-FeiACqoc5swnI1v7DPEABV-nmtdQw-3baa_wSvbx60
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB4tRUJwQPwUsaW0PoCQKkWbxM7fAaHA7tKldFWpbNWbsWO7LSrZshuEuPEOvA2Pw5Mwk5_SCpVbLzkkUWKNxzPfjMffADyLE4xkEel6vo6Uh_7WekoHAqMUR12k40DVxZi703h7Jt4dRoc9-NWdhaGyys4m1obazAvKkQ94QDwqYRKLgWvLIvaG41dnXzzqIEU7rV07jUZFduz3bxi-LV9OhjjXz8NwPPrwZttrOwx4BU945dnIOc1picdZbLUJjPO50ajHOEgtbGJsEbgs8mNX6KjIdBZxgxBbCWUzdKYcv3sDbib4MWobkY7fnud3iG8z9aNmI5XzzB8oi34PA2GL5iXEyCG75ArrjgFX-YXa2Y3vwd0WpbK8Uav70LPlA7hzgbvwIXyqS2SKpvmENyqP61ICxodsaKmJMGUdWX56hHKrjj8zxMZsty1eZLP8YMlOSrZP4_z942d-ssArpcFKwyYdgYVh06ZGfRVm1yLWR7BSzkv7GJhOQ4Exo6Uz3iIVNlXGJU4YRBoIRFPXh61OhvKs4eeQGNeQwOU_Au_Da5Ly-YtErV3fmC-OZLtSpdYcxxS4MFAG_6gVKnmKqCfWSchd4PfhBc2RJANQLVSh2nMMOF6i0pJ5iiiKWPZ4H9a7aZStZVjKv3q89v_Hm3ALFVy-n0x3nsDtELFUU0WzDivV4qt9ilio0hu10jH4eN1a_gdw1SLn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity-Enhanced+3D+Deployment+Algorithm+for+Multiple+UAVs+in+Space%E2%80%93Air%E2%80%93Ground+Integrated+Network&rft.jtitle=Aerospace&rft.au=Guo%2C+Shaoxiong&rft.au=Zhou%2C+Li&rft.au=Liang%2C+Shijie&rft.au=Cao%2C+Kuo&rft.date=2024-12-01&rft.issn=2226-4310&rft.eissn=2226-4310&rft.volume=11&rft.issue=12&rft.spage=969&rft_id=info:doi/10.3390%2Faerospace11120969&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_aerospace11120969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-4310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-4310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-4310&client=summon