Connectivity-Enhanced 3D Deployment Algorithm for Multiple UAVs in Space–Air–Ground Integrated Network
The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless a...
Saved in:
Published in | Aerospace Vol. 11; no. 12; p. 969 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2226-4310 2226-4310 |
DOI | 10.3390/aerospace11120969 |
Cover
Abstract | The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless access to designated regions. Meanwhile, ensuring the connectivity between UAVs as well as between UAVs and ground users (GUs) is critical for enhancing the quality of service (QoS) in SAGIN. In this paper, we consider the 3D deployment problem of multiple UAVs in SAGIN subject to the UAVs’ connection capacity limit and the UAV network’s robustness, maximizing the coverage of UAVs. Firstly, the horizontal positions of the UAVs at a fixed height are initialized using the k-means algorithm. Subsequently, the connections between the UAVs are established based on constraint conditions, and a fairness connection strategy is employed to establish connections between the UAVs and GUs. Following this, an improved genetic algorithm (IGA) with elite selection, adaptive crossover, and mutation capabilities is proposed to update the horizontal positions of the UAVs, thereby updating the connection relationships. Finally, a height optimization algorithm is proposed to adjust the height of each UAV, completing the 3D deployment of multiple UAVs. Extensive simulations indicate that the proposed algorithm achieves faster deployment and higher coverage under both random and clustered distribution scenarios of GUs, while also enhancing the robustness and load balance of the UAV network. |
---|---|
AbstractList | The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In scenarios where terrestrial networks are unavailable or compromised, deploying unmanned aerial vehicles (UAVs) within air network offers wireless access to designated regions. Meanwhile, ensuring the connectivity between UAVs as well as between UAVs and ground users (GUs) is critical for enhancing the quality of service (QoS) in SAGIN. In this paper, we consider the 3D deployment problem of multiple UAVs in SAGIN subject to the UAVs’ connection capacity limit and the UAV network’s robustness, maximizing the coverage of UAVs. Firstly, the horizontal positions of the UAVs at a fixed height are initialized using the k-means algorithm. Subsequently, the connections between the UAVs are established based on constraint conditions, and a fairness connection strategy is employed to establish connections between the UAVs and GUs. Following this, an improved genetic algorithm (IGA) with elite selection, adaptive crossover, and mutation capabilities is proposed to update the horizontal positions of the UAVs, thereby updating the connection relationships. Finally, a height optimization algorithm is proposed to adjust the height of each UAV, completing the 3D deployment of multiple UAVs. Extensive simulations indicate that the proposed algorithm achieves faster deployment and higher coverage under both random and clustered distribution scenarios of GUs, while also enhancing the robustness and load balance of the UAV network. |
Audience | Academic |
Author | Cao, Kuo Guo, Shaoxiong Liang, Shijie Song, Zhiqun Zhou, Li |
Author_xml | – sequence: 1 givenname: Shaoxiong surname: Guo fullname: Guo, Shaoxiong – sequence: 2 givenname: Li orcidid: 0000-0003-4099-6917 surname: Zhou fullname: Zhou, Li – sequence: 3 givenname: Shijie orcidid: 0009-0007-3602-4484 surname: Liang fullname: Liang, Shijie – sequence: 4 givenname: Kuo surname: Cao fullname: Cao, Kuo – sequence: 5 givenname: Zhiqun surname: Song fullname: Song, Zhiqun |
BookMark | eNplkc1uFDEMx0eoSJTSB-A2Eucp-Z7JcbQtZaUCByjXKB_ONstsMmSyRXvjHfqGfRJSFiEkbMm2LPtnS_-XzUlMEZrmNUYXlEr0VkNOy6wtYIwJkkI-a04JIaJjFKOTf-oXzfmybFE1iemA-GmzXaUYwZZwH8qhu4p3OlpwLb1sL2Ge0mEHsbTjtEk5lLtd61NuP-ynEuYJ2tvx69KG2H5-Ov3482EMucbrnPbRtetYYJN1qbCPUH6k_O1V89zraYHzP_msuX139WX1vrv5dL1ejTedpT0tHXDvDdXOgZACjMPOI-oMI1xgbRj0Diz2kiPhreFWGsmpEz3XTINEA6ZnzfrIdUlv1ZzDTueDSjqo342UN0rnEuwEyhhaEdgTrB0bmNFg7YAEFqYn1GNUWW-OrDmn73tYitqmfY71fUUxk0ySXrA6dXGc2ugKDdGnkrWt7mAXbNXKh9ofB4K5lJzRuoCPC7YKt2Twf9_ESD1Jqv6TlP4CcHKbBg |
Cites_doi | 10.1007/s00607-021-00955-5 10.1109/JIOT.2024.3466221 10.1155/2021/2937224 10.1109/JIOT.2024.3378217 10.23919/JCN.2022.000014 10.1109/JSAC.2018.2864426 10.1109/TVT.2023.3237551 10.1109/LWC.2014.2342736 10.1109/TCOMM.2021.3049387 10.1109/LCOMM.2016.2633248 10.1109/6GNet54646.2022.9830368 10.1016/j.phycom.2021.101564 10.1038/nature14604 10.1109/OJCOMS.2021.3057679 10.3390/drones8090478 10.1109/JSAC.2024.3365891 10.1109/LCOMM.2019.2906194 10.1109/LWC.2019.2899599 10.1109/JIOT.2023.3287838 10.1109/TVT.2023.3244812 10.1109/JIOT.2020.3019065 10.1109/JIOT.2019.2935105 10.3390/info13080389 10.1109/LWC.2017.2700840 10.1016/j.comcom.2023.05.013 10.1109/TWC.2020.2964656 10.1109/ACCESS.2022.3224776 10.23919/JCC.2022.02.008 10.1109/JSYST.2020.3015428 10.1109/TCOMM.2022.3232512 10.1109/LCOMM.2022.3161382 10.1109/ICCT.2018.8600206 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TB 7TG 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KL. L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/aerospace11120969 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Openly Available Collection - DOAJ |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2226-4310 |
ExternalDocumentID | oai_doaj_org_article_bb3b5c1f21ad484baecc80616b723f10 A821599543 10_3390_aerospace11120969 |
GroupedDBID | -~X 5VS 85S 8FE 8FG 8FH AADQD AAFWJ AAYXX ABPPZ ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR BQN CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 LK5 M7R MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PMFND 7TB 7TG 8FD ABUWG AZQEC DWQXO FR3 H8D KL. L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c373t-e5ffb3adde696ebd1df03db42561ab4e7dec1f9506fcb5c9b953d675a4ae90813 |
IEDL.DBID | DOA |
ISSN | 2226-4310 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Fri Jul 25 22:50:21 EDT 2025 Tue Jun 10 21:00:24 EDT 2025 Tue Jul 01 03:28:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-e5ffb3adde696ebd1df03db42561ab4e7dec1f9506fcb5c9b953d675a4ae90813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4099-6917 0009-0007-3602-4484 |
OpenAccessLink | https://doaj.org/article/bb3b5c1f21ad484baecc80616b723f10 |
PQID | 3149492764 |
PQPubID | 2032442 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb3b5c1f21ad484baecc80616b723f10 proquest_journals_3149492764 gale_infotracacademiconefile_A821599543 crossref_primary_10_3390_aerospace11120969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Aerospace |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhou (ref_11) 2024; 11 Wang (ref_25) 2022; 26 Rajabi (ref_32) 2021; 8 Hu (ref_8) 2023; 72 Shakoor (ref_19) 2020; 8 Alzenad (ref_29) 2017; 6 Jiang (ref_1) 2021; 2 ref_13 Cui (ref_2) 2022; 2 Morone (ref_34) 2015; 524 Lee (ref_30) 2023; 72 Anand (ref_33) 2022; 104 Elnabty (ref_10) 2022; 51 Lyu (ref_20) 2016; 21 ref_16 Zhou (ref_14) 2018; 36 Lin (ref_7) 2019; 23 Wen (ref_27) 2022; 24 Wu (ref_15) 2020; 19 Gu (ref_4) 2023; 208 Kandeepan (ref_28) 2014; 3 Hayajneh (ref_22) 2021; 2021 Zhang (ref_31) 2021; 356 Liu (ref_3) 2024; 42 Liao (ref_17) 2022; 71 Zhang (ref_21) 2021; 69 Wang (ref_23) 2019; 6 Mao (ref_24) 2023; 11 Song (ref_18) 2022; 10 ref_9 Lai (ref_12) 2019; 8 ref_5 Zhong (ref_26) 2020; 15 ref_6 |
References_xml | – volume: 104 start-page: 251 year: 2022 ident: ref_33 article-title: Nature inspired meta heuristic algorithms for optimization problems publication-title: Computing doi: 10.1007/s00607-021-00955-5 – ident: ref_6 doi: 10.1109/JIOT.2024.3466221 – volume: 2021 start-page: 2937224 year: 2021 ident: ref_22 article-title: 3D deployment of unmanned aerial vehicle-base station assisting ground-base station publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/2937224 – volume: 11 start-page: 21337 year: 2024 ident: ref_11 article-title: Real-Time Radio Map Construction and Distribution for UAV-Assisted Mobile Edge Computing Networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2024.3378217 – volume: 24 start-page: 223 year: 2022 ident: ref_27 article-title: Improved genetic algorithm based 3-D deployment of UAVs publication-title: J. Commun. Netw. doi: 10.23919/JCN.2022.000014 – volume: 36 start-page: 1927 year: 2018 ident: ref_14 article-title: Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2864426 – volume: 72 start-page: 8244 year: 2023 ident: ref_30 article-title: Deep Learning-Based Network-Wide Energy Efficiency Optimization in Ultra-Dense Small Cell Networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3237551 – volume: 3 start-page: 569 year: 2014 ident: ref_28 article-title: Optimal LAP Altitude for Maximum Coverage publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2014.2342736 – volume: 69 start-page: 2473 year: 2021 ident: ref_21 article-title: 3D deployment of multiple UAV-mounted base stations for UAV communications publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2021.3049387 – volume: 21 start-page: 604 year: 2016 ident: ref_20 article-title: Placement optimization of UAV-mounted mobile base stations publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2633248 – volume: 8 start-page: 63 year: 2021 ident: ref_32 article-title: A comprehensive review on meta-heuristic algorithms and their classification with novel approach publication-title: J. Appl. Res. Ind. Eng. – volume: 356 start-page: 260 year: 2021 ident: ref_31 article-title: Trajectory Planning in UAV Emergency Networks with Potential Underlaying D2D Communication Based on K-means publication-title: J. Wirel. Commun. Netw. – ident: ref_9 doi: 10.1109/6GNet54646.2022.9830368 – volume: 51 start-page: 101564 year: 2022 ident: ref_10 article-title: A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks publication-title: Phys. Commun. doi: 10.1016/j.phycom.2021.101564 – volume: 524 start-page: 65 year: 2015 ident: ref_34 article-title: Influence maximization in complex networks through optimal percolation publication-title: Nature doi: 10.1038/nature14604 – volume: 2 start-page: 334 year: 2021 ident: ref_1 article-title: The road towards 6G: A comprehensive survey publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2021.3057679 – ident: ref_5 doi: 10.3390/drones8090478 – volume: 42 start-page: 1387 year: 2024 ident: ref_3 article-title: Space-Air-Ground Integrated Networks: Spherical Stochastic Geometry-Based Uplink Connectivity Analysis publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2024.3365891 – volume: 23 start-page: 938 year: 2019 ident: ref_7 article-title: UAV-assisted emergency communications: An extended multi-armed bandit perspective publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2906194 – volume: 8 start-page: 913 year: 2019 ident: ref_12 article-title: On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with guaranteed data rates publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2899599 – volume: 11 start-page: 559 year: 2023 ident: ref_24 article-title: Joint resource allocation and 3D deployment for multi-UAV covert communications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3287838 – volume: 72 start-page: 14214 year: 2023 ident: ref_8 article-title: Joint resources allocation and 3D trajectory optimization for UAV-enabled space-air-ground integrated networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3244812 – volume: 8 start-page: 9776 year: 2020 ident: ref_19 article-title: Joint optimization of UAV 3-D placement and path-loss factor for energy-efficient maximal coverage publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3019065 – volume: 6 start-page: 10009 year: 2019 ident: ref_23 article-title: Deployment algorithms of flying base stations: 5G and beyond with UAVs publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2935105 – ident: ref_16 doi: 10.3390/info13080389 – volume: 6 start-page: 434 year: 2017 ident: ref_29 article-title: 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2017.2700840 – volume: 208 start-page: 44 year: 2023 ident: ref_4 article-title: A survey on UAV-assisted wireless communications: Recent advances and future trends publication-title: Comput. Commun. doi: 10.1016/j.comcom.2023.05.013 – volume: 19 start-page: 2411 year: 2020 ident: ref_15 article-title: Cell-edge user offloading via flying UAV in non-uniform heterogeneous cellular networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2964656 – volume: 10 start-page: 125930 year: 2022 ident: ref_18 article-title: Air-to-ground large-scale channel characterization by ray tracing publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3224776 – volume: 2 start-page: 90 year: 2022 ident: ref_2 article-title: Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture and challenges publication-title: China Commun. doi: 10.23919/JCC.2022.02.008 – volume: 15 start-page: 1795 year: 2020 ident: ref_26 article-title: QoS-compliant 3-D deployment optimization strategy for UAV base stations publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3015428 – volume: 71 start-page: 1536 year: 2022 ident: ref_17 article-title: Energy-aware 3D-deployment of UAV for IoV with highway interchange publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3232512 – volume: 26 start-page: 1363 year: 2022 ident: ref_25 article-title: 3D UAV deployment in multi-UAV networks with statistical user position information publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2022.3161382 – ident: ref_13 doi: 10.1109/ICCT.2018.8600206 |
SSID | ssj0000913805 |
Score | 2.2795894 |
Snippet | The space–air–ground integrated network (SAGIN) can provide extensive access, continuous coverage, and reliable transmission for global applications. In... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 969 |
SubjectTerms | 3D deployment Algorithms Communication Connectivity Disaster recovery Drone aircraft Genetic algorithms load balance Load distribution Mathematical optimization Optimization Optimization algorithms Probability Quality of service Quality of service architectures Robustness SAGIN Satellites UAV Unmanned aerial vehicles Wireless networks |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsQwDI1YLnBArGLYlAMSElJF06TbCZVlWCS4wCBuUdIkLIIOzJQ7_8Af8iXYbYZFCC49tJWaOrH97DjPhGwmKUSygHSDUMcqAH9rA6WZgCjFYRfphKmmGPPsPDnuidPr-Non3Ia-rHJkExtDbfol5sh3OEMelShNxO7Tc4Bdo3B31bfQGCeTLAJfiyfFu0efORbkvMzCuN3M5BDd7ygLvgeCUQsqHgF6z3-4o4a1_y_b3Dic7iyZ8UiRFu3UzpExW82T6W_8gQvkvilTKdsGEMFhddts51N-QA8sNvLFzB8tHm7gP-rbRwr4lJ75AkLaK66G9K6iFzjO99e34m4AV0xFVYaejEgkDD1v68QXSa97eLl_HPjmCUHJU14HNnZOc7ReSZ5YbZhxITcaVBTkr4VNjS2Zy-MwcaWOy1znMTcQPSihbA44gS-Riapf2WVCdRYJiNssnrMWmbCZMi51woC3BzCYuQ7ZHslQPrUcGRJiCxS4_CXwDtlDKX--iPTWzY3-4EZ6bZFacxgTcxFTBr6oFSy0DJBHotOIOxZ2yBbOkUQlrAeqVP4sAYwX6axkkQGSQaY73iFro2mUXjuH8mstrfz_eJVMRQBi2vKVNTJRD17sOoCQWm80K-0DAmPfUQ priority: 102 providerName: ProQuest |
Title | Connectivity-Enhanced 3D Deployment Algorithm for Multiple UAVs in Space–Air–Ground Integrated Network |
URI | https://www.proquest.com/docview/3149492764 https://doaj.org/article/bb3b5c1f21ad484baecc80616b723f10 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB1S59IeSpK21Klr9hAIFEQk7errKMd2PsAmtHXJbdnV7iYujVxs957_kH-YX5IZrVwMJeTSiw5CQssbzc683dk3AEdphkwWM90g1IkKMN7aQOlIIEtx1EU6jVRTjDmZpuczcXmdXG-1-qKaMC8P7IE70ZrrpIpcHCkjcqEVfjPHIJTqLObOH64Ki3CLTDVzcBHxPEz8NiZHXn-iLEYdpKEWnRtfoALnrUDU6PU_Nys3oWa8B2_bHJGVfmz7sGPrA3izpRz4Dn42BSqVb_0QjOrbZiOf8SEbWmrhS2t-rPx1s0Duf3vHMDNlk7Z0kM3KHys2r9k3Gufj_UM5X-KVFqFqwy428hGGTX2F-HuYjUffT8-Dtm1CUPGMrwObOKc5zVtpkVptIuNCbjQ6JyKvhc2MRTyLJExdhdAWuki4Qd6ghLIFZgj8A3TqRW0_AtN5LJCxWTphjeDbXBmXOWEwzmMamLsufNlgKH97dQyJrIIAl_8A3oUBofz3QRK2bm6guWVrbvmSubtwTDaS5H7rpapUe4oAx0tCVrLMMYchjTvehd7GjLL1y5XkEanxxFkqDv_HaD7B6xiTHF_e0oPOevnHfsYkZa378Cofn_VhdzCaXn3tN3_nE-Bb6ug |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAcUMuPuqWADyAkpKhJ7Pwdqiplu-zS7l7oot6MHdttEWTb3VSIW9-B9-hD9UmYyU8BIbj1kkMSJdZ4PPPN-PMMwMs4wUgWka7n60h56G-tp3QgMEpx1EU6DlRNxhxP4uFUvD-KjpbgqjsLQ7TKzibWhtrMCsqRb_GA6qiESSx2zs496hpFu6tdC41GLfbt928Ysi22R32c31dhONg7fDv02q4CXsETXnk2ck5zWtZxFlttAuN8bjTqLg5MC5sYWwQui_zYFToqMp1F3CCsVkLZDB0ox-_egRXBOScKYTp4d5PToRqbqR81m6ecZ_6WsujrMPi1aFJCjBayP9xf3SXgX76gdnCDVXjQIlOWN6q0Bku2fAj3f6tX-Ag-17SYomk44e2VJzV9gPE-61tqHEyZRpZ_OUa5VSdfGeJhNm4Ji2yaf1yw05J9oHFeX_7IT-d4pdRXadioK1ph2KThpT-G6a2I9Qksl7PSrgPTaSgwTrR0rlukwqbKuMQJg-gCwWfqevCmk6E8a2pySIxlSODyL4H3YJekfPMildOub8zmx7JdnVJrjmMKXBgog3_UChU7RaQT6yTkLvB78JrmSNKir-aqUO3ZBRwvlc-SeYrIiSrr8R5sdtMoW2uwkL90d-P_j1_A3eHh-EAejCb7T-FeiACqoc5swnI1v7DPEABV-nmtdQw-3baa_wSvbx60 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB4tRUJwQPwUsaW0PoCQKkWbxM7fAaHA7tKldFWpbNWbsWO7LSrZshuEuPEOvA2Pw5Mwk5_SCpVbLzkkUWKNxzPfjMffADyLE4xkEel6vo6Uh_7WekoHAqMUR12k40DVxZi703h7Jt4dRoc9-NWdhaGyys4m1obazAvKkQ94QDwqYRKLgWvLIvaG41dnXzzqIEU7rV07jUZFduz3bxi-LV9OhjjXz8NwPPrwZttrOwx4BU945dnIOc1picdZbLUJjPO50ajHOEgtbGJsEbgs8mNX6KjIdBZxgxBbCWUzdKYcv3sDbib4MWobkY7fnud3iG8z9aNmI5XzzB8oi34PA2GL5iXEyCG75ArrjgFX-YXa2Y3vwd0WpbK8Uav70LPlA7hzgbvwIXyqS2SKpvmENyqP61ICxodsaKmJMGUdWX56hHKrjj8zxMZsty1eZLP8YMlOSrZP4_z942d-ssArpcFKwyYdgYVh06ZGfRVm1yLWR7BSzkv7GJhOQ4Exo6Uz3iIVNlXGJU4YRBoIRFPXh61OhvKs4eeQGNeQwOU_Au_Da5Ly-YtErV3fmC-OZLtSpdYcxxS4MFAG_6gVKnmKqCfWSchd4PfhBc2RJANQLVSh2nMMOF6i0pJ5iiiKWPZ4H9a7aZStZVjKv3q89v_Hm3ALFVy-n0x3nsDtELFUU0WzDivV4qt9ilio0hu10jH4eN1a_gdw1SLn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity-Enhanced+3D+Deployment+Algorithm+for+Multiple+UAVs+in+Space%E2%80%93Air%E2%80%93Ground+Integrated+Network&rft.jtitle=Aerospace&rft.au=Guo%2C+Shaoxiong&rft.au=Zhou%2C+Li&rft.au=Liang%2C+Shijie&rft.au=Cao%2C+Kuo&rft.date=2024-12-01&rft.issn=2226-4310&rft.eissn=2226-4310&rft.volume=11&rft.issue=12&rft.spage=969&rft_id=info:doi/10.3390%2Faerospace11120969&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_aerospace11120969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-4310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-4310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-4310&client=summon |