Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm
Parameter estimation of photovoltaic cells is essential to establish reliable photovoltaic models, upon which studies on photovoltaic systems can be more effectively undertaken, such as performance evaluation, maximum output power harvest, optimal design, and so on. However, inherent high nonlineari...
        Saved in:
      
    
          | Published in | Energy conversion and management Vol. 236; p. 114051 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        15.05.2021
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0196-8904 1879-2227  | 
| DOI | 10.1016/j.enconman.2021.114051 | 
Cover
| Abstract | Parameter estimation of photovoltaic cells is essential to establish reliable photovoltaic models, upon which studies on photovoltaic systems can be more effectively undertaken, such as performance evaluation, maximum output power harvest, optimal design, and so on. However, inherent high nonlinearity characteristics and insufficient current–voltage data provided by manufacturers make such problem extremely thorny for conventional optimization techniques. In particular, inadequate measured data might save computational resources, while numerous data is also lost which might significantly decrease simulation accuracy. To solve this problem, this paper aims to employ powerful data-processing tools, for instance, neural networks to enrich datasets of photovoltaic cells based on measured current–voltage data. Hence, a novel improved equilibrium optimizer is proposed in this paper to solve the parameters identification problems of three different photovoltaic cell models, namely, single diode model, double diode model, and three diode model. Compared with original equilibrium optimizer, improved equilibrium optimizer employs a back propagation neural network to predict more output data of photovoltaic cell, thus it can implement a more efficient optimization with a more reasonable fitness function. Besides, different equilibrium candidates of improved equilibrium optimizer are allocated by different selection probabilities according to their fitness values instead of a random selection by equilibrium optimizer, which can achieve a deeper exploitation. Comprehensive case studies and analysis indicate that improved equilibrium optimizer can achieve more desirable optimization performance, for example, it can achieve the minimum root mean square error under all three different diode models compare to equilibrium optimizer and several other advanced algorithms. In general, the proposed improved equilibrium optimizer can obtain a highly competitive performance compared with other state-of-the-state algorithms, which can efficiently improve both optimization precision and reliability for estimating photovoltaic cell parameters. | 
    
|---|---|
| AbstractList | Parameter estimation of photovoltaic cells is essential to establish reliable photovoltaic models, upon which studies on photovoltaic systems can be more effectively undertaken, such as performance evaluation, maximum output power harvest, optimal design, and so on. However, inherent high nonlinearity characteristics and insufficient current–voltage data provided by manufacturers make such problem extremely thorny for conventional optimization techniques. In particular, inadequate measured data might save computational resources, while numerous data is also lost which might significantly decrease simulation accuracy. To solve this problem, this paper aims to employ powerful data-processing tools, for instance, neural networks to enrich datasets of photovoltaic cells based on measured current–voltage data. Hence, a novel improved equilibrium optimizer is proposed in this paper to solve the parameters identification problems of three different photovoltaic cell models, namely, single diode model, double diode model, and three diode model. Compared with original equilibrium optimizer, improved equilibrium optimizer employs a back propagation neural network to predict more output data of photovoltaic cell, thus it can implement a more efficient optimization with a more reasonable fitness function. Besides, different equilibrium candidates of improved equilibrium optimizer are allocated by different selection probabilities according to their fitness values instead of a random selection by equilibrium optimizer, which can achieve a deeper exploitation. Comprehensive case studies and analysis indicate that improved equilibrium optimizer can achieve more desirable optimization performance, for example, it can achieve the minimum root mean square error under all three different diode models compare to equilibrium optimizer and several other advanced algorithms. In general, the proposed improved equilibrium optimizer can obtain a highly competitive performance compared with other state-of-the-state algorithms, which can efficiently improve both optimization precision and reliability for estimating photovoltaic cell parameters. | 
    
| ArticleNumber | 114051 | 
    
| Author | Li, Danyang Shu, Hongchun Tan, Tian Wang, Jingbo Chen, Yijun Yang, Bo Zeng, Chunyuan Zhang, Xiaoshun Guo, Zhengxun Yu, Tao  | 
    
| Author_xml | – sequence: 1 givenname: Jingbo surname: Wang fullname: Wang, Jingbo organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 2 givenname: Bo orcidid: 0000-0002-5453-0707 surname: Yang fullname: Yang, Bo email: yangbo_ac@outlook.com organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 3 givenname: Danyang surname: Li fullname: Li, Danyang organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 4 givenname: Chunyuan surname: Zeng fullname: Zeng, Chunyuan organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 5 givenname: Yijun surname: Chen fullname: Chen, Yijun organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 6 givenname: Zhengxun surname: Guo fullname: Guo, Zhengxun organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 7 givenname: Xiaoshun surname: Zhang fullname: Zhang, Xiaoshun organization: College of Engineering, Shantou University, 515063 Shantou, China – sequence: 8 givenname: Tian surname: Tan fullname: Tan, Tian organization: College of Engineering, Shantou University, 515063 Shantou, China – sequence: 9 givenname: Hongchun surname: Shu fullname: Shu, Hongchun organization: Faculty of Electric Power Engineering, Kunming University of Science and Technology, 650500 Kunming, China – sequence: 10 givenname: Tao surname: Yu fullname: Yu, Tao organization: College of Electric Power, South China University of Technology, 510640 Guangzhou, China  | 
    
| BookMark | eNqFkD1PwzAQhi1UJErhL6BILCwp_ojjVGIAVXxJlWDowGY5zoW6SuLWdirBr8clsHTpdDc87-m95xyNOtsBQlcETwkm-e16Cp22Xau6KcWUTAnJMCcnaEwKMUsppWKExpjM8rSY4ewMnXu_xhgzjvMx-nhf2WB3tgnK6ERD0yQb5VQLAVwCPphWBWO7pFQeqiQupt04u4s7bHvTmNKZvk3sJoLmO0ZU82mdCav2Ap3WqvFw-TcnaPn0uJy_pIu359f5wyLVTLCQAmG8rMpMg9AC6xpzqBkvSMVZUQtBc5arWU2FygouQBWiIrVS8U2qc4CCTdDNcDa22vaxsGyN37-hOrC9l5TTjApMMY_o9QG6tr3rYrlIMUpxrLKn7gZKO-u9g1pqE34dBKdMIwmWe-tyLf-ty711OViP8fwgvnHRofs6HrwfghBl7Qw46bWJJFTGgQ6ysubYiR9KxqPX | 
    
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_134931 crossref_primary_10_1016_j_enconman_2024_119468 crossref_primary_10_1016_j_apenergy_2022_118877 crossref_primary_10_1016_j_ijhydene_2024_08_048 crossref_primary_10_1155_2024_9777345 crossref_primary_10_1002_ep_14242 crossref_primary_10_1007_s11082_023_05304_8 crossref_primary_10_1007_s11831_023_09923_y crossref_primary_10_1007_s10489_023_04761_8 crossref_primary_10_1016_j_solener_2023_112197 crossref_primary_10_1016_j_enconman_2023_116712 crossref_primary_10_1016_j_epsr_2024_110565 crossref_primary_10_1007_s11227_024_05986_1 crossref_primary_10_1155_2022_6546357 crossref_primary_10_32604_cmc_2023_039883 crossref_primary_10_1016_j_heliyon_2023_e16815 crossref_primary_10_1016_j_comnet_2024_110842 crossref_primary_10_3390_su151411089 crossref_primary_10_1016_j_compeleceng_2025_110276 crossref_primary_10_1049_rpg2_12451 crossref_primary_10_3390_electronics14030456 crossref_primary_10_46904_eea_23_71_3_1108003 crossref_primary_10_34248_bsengineering_1490859 crossref_primary_10_1016_j_bbe_2024_06_006 crossref_primary_10_1016_j_energy_2024_133356 crossref_primary_10_1016_j_est_2022_106203 crossref_primary_10_1016_j_solener_2022_06_043 crossref_primary_10_1016_j_engappai_2023_107149 crossref_primary_10_1016_j_eswa_2024_124777 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_1007_s11227_024_06916_x crossref_primary_10_1016_j_egyr_2022_10_386 crossref_primary_10_1016_j_adapen_2022_100118 crossref_primary_10_1080_15325008_2023_2283843 crossref_primary_10_1016_j_enconman_2024_118705 crossref_primary_10_3389_fenrg_2022_883856 crossref_primary_10_1016_j_apenergy_2023_122032 crossref_primary_10_1016_j_solener_2022_04_056 crossref_primary_10_1016_j_solener_2022_06_046 crossref_primary_10_1109_ACCESS_2022_3208089 crossref_primary_10_1016_j_egyr_2022_01_008 crossref_primary_10_1016_j_asej_2022_101824 crossref_primary_10_1016_j_rineng_2025_104268 crossref_primary_10_53370_001c_117411 crossref_primary_10_3390_en14185735 crossref_primary_10_3390_healthcare11091204 crossref_primary_10_3390_pr11061606 crossref_primary_10_1109_ACCESS_2022_3140287 crossref_primary_10_1016_j_epsr_2023_109195 crossref_primary_10_54097_hset_v73i_12832 crossref_primary_10_1016_j_renene_2025_122764 crossref_primary_10_1016_j_renene_2024_120388 crossref_primary_10_1007_s11042_023_16764_1 crossref_primary_10_1016_j_apenergy_2022_120495 crossref_primary_10_1155_2023_4831209 crossref_primary_10_1007_s10825_024_02153_w crossref_primary_10_1016_j_enconman_2022_115911 crossref_primary_10_1016_j_est_2024_110791 crossref_primary_10_1109_ACCESS_2022_3174222 crossref_primary_10_3389_fenrg_2022_950524 crossref_primary_10_1016_j_ijleo_2023_170900 crossref_primary_10_1016_j_solener_2023_02_036 crossref_primary_10_1016_j_egyr_2021_08_188 crossref_primary_10_1155_2023_6156333 crossref_primary_10_3390_su15129839 crossref_primary_10_3389_fenrg_2022_913817 crossref_primary_10_3389_fenrg_2022_1028816 crossref_primary_10_1002_2050_7038_13244 crossref_primary_10_1080_15325008_2023_2296964 crossref_primary_10_3390_en16062806 crossref_primary_10_1109_ACCESS_2021_3094801 crossref_primary_10_1038_s41598_024_80849_6 crossref_primary_10_1016_j_energy_2024_130345 crossref_primary_10_3390_en15062221 crossref_primary_10_1038_s41598_024_80424_z crossref_primary_10_1155_2022_7372984 crossref_primary_10_1007_s10825_022_01969_8 crossref_primary_10_1016_j_energy_2022_125522 crossref_primary_10_1016_j_ijleo_2022_169379 crossref_primary_10_1016_j_ijleo_2022_169731 crossref_primary_10_1109_ACCESS_2021_3103146 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1016_j_solener_2022_07_029 crossref_primary_10_1109_TIM_2024_3488138 crossref_primary_10_1016_j_ijleo_2023_171465 crossref_primary_10_1080_00051144_2023_2288489 crossref_primary_10_1016_j_ijleo_2023_171467  | 
    
| Cites_doi | 10.1016/j.jclepro.2020.122363 10.1016/j.enconman.2018.09.054 10.1109/TPWRS.2019.2935739 10.1016/j.solener.2011.06.025 10.1016/j.energy.2014.05.011 10.1109/TPEL.2009.2013862 10.1016/j.apenergy.2019.03.064 10.1016/j.enconman.2020.112595 10.1016/j.enconman.2020.113474 10.1016/j.ijepes.2015.07.036 10.1016/j.solener.2011.04.015 10.1016/j.apenergy.2019.05.013 10.1016/0038-1101(86)90212-1 10.1016/j.renene.2014.12.072 10.1016/j.enconman.2020.113784 10.1002/we.2564 10.1016/j.solener.2013.03.018 10.1016/j.enconman.2018.10.069 10.1016/j.enconman.2018.10.040 10.1016/j.rser.2015.11.051 10.35833/MPCE.2019.000467 10.1016/j.rser.2015.12.137 10.1016/j.enconman.2018.10.074 10.1016/j.enconman.2016.09.005 10.1088/0957-0233/12/11/322 10.1016/j.enconman.2015.05.027 10.1016/j.enconman.2017.06.064 10.1016/j.jclepro.2019.01.150 10.1016/j.egypro.2018.04.070 10.1016/j.rser.2017.07.039 10.1016/j.apenergy.2015.05.035 10.1016/j.apenergy.2017.08.027 10.1016/j.energy.2020.117480 10.1016/j.solener.2019.01.026 10.1109/TSTE.2019.2897596 10.1016/j.egyr.2021.01.093 10.1016/j.enconman.2016.06.052 10.1016/j.rser.2018.03.011 10.1016/j.apenergy.2018.06.010 10.1016/j.knosys.2019.105190 10.1016/j.enconman.2018.08.053 10.1016/j.renene.2018.09.017 10.1016/j.renene.2017.12.047 10.1016/j.rser.2017.10.107 10.1016/j.solener.2019.01.025 10.1016/j.rser.2016.03.049 10.1016/j.enconman.2016.10.062 10.1016/j.renene.2020.04.010 10.1016/j.solener.2019.07.005 10.1016/j.egyr.2020.03.014 10.1063/1.3122082 10.1016/j.ref.2019.04.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. May 15, 2021  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 15, 2021  | 
    
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6  | 
    
| DOI | 10.1016/j.enconman.2021.114051 | 
    
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Aerospace Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1879-2227 | 
    
| ExternalDocumentID | 10_1016_j_enconman_2021_114051 S0196890421002272  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c373t-e135bdb4ce7c70cf05ef3581d538f772636a9f27a4857ea87d1faa0212c6ee83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0196-8904 | 
    
| IngestDate | Sun Sep 28 11:54:21 EDT 2025 Wed Aug 13 06:17:23 EDT 2025 Thu Oct 09 00:39:08 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Fri Feb 23 02:41:27 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Parameter estimation Back propagation neural network Improved equilibrium optimizer Photovoltaic cell  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c373t-e135bdb4ce7c70cf05ef3581d538f772636a9f27a4857ea87d1faa0212c6ee83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-5453-0707 | 
    
| PQID | 2532201355 | 
    
| PQPubID | 2047472 | 
    
| ParticipantIDs | proquest_miscellaneous_2524270205 proquest_journals_2532201355 crossref_citationtrail_10_1016_j_enconman_2021_114051 crossref_primary_10_1016_j_enconman_2021_114051 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114051  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-15 | 
    
| PublicationDateYYYYMMDD | 2021-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Energy conversion and management | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd  | 
    
| References | Cai, Li, Maleki, Pourfayaz, Rosen, Nazari (b0075) 2020; 201 Yang, Yu, Zhang, Li, Shu, Sang (b0110) 2019; 179 Qais, Hasanien, Alghuwainem (b0095) 2019; 250 Pourmousa, Ebrahimi, Malekzadeh, Alizadeh (b0125) 2019; 180 Gao, Cui, Hu, Xu, Yu (b0145) 2016; 127 Faramarzi, Heidarinejad, Stephens, Mirjalili (b0235) 2020; 191 Ishaque, Salam (b0190) 2011; 85 Chaibi, Allouhi, Malvoni, Salhi, Saadani (b0245) 2019; 188 Abbassi, Abbassi, Heidari, Mirjalili (b0265) 2019; 179 Humada, Hojabri, Mekhilef, Hamada (b0270) 2016; 56 Yang, Yu, Shu, Dong, Jiang (b0030) 2018; 210 Mahmoudi, Maleki, Ochbelagh (b0060) 2020; 113723 Chin, Salam, Ishaque (b0120) 2015; 154 Torabi, Eddine, Obbadi, Errami, Rmaily, Sahnoun (b0135) 2017; 148 Xiong, Zhang, Shi, He (b0085) 2018; 174 El-Fergany (b0150) 2021; 7 Maleki, Nazari, Pourfayaz (b0070) 2020; 6 Pillai, Rajasekar (b0165) 2018; 82 Yang, Wang, Zhang, Yu, Yao, Shu (b0180) 2020; 208 Ram, Manghani, Pillai, Babu, Miyatake, Rajasekara (b0275) 2018; 81 Yang, Jiang, Wang, Yao, Wu (b0055) 2016; 74 Song, Chang, Zheng, Yang, Yang, Joo (b0020) 2021; 9 Yang, Zhang, Yu, Shu, Fang (b0170) 2017; 133 Zhang, Shi, Maleki, Rosen (b0065) 2020; 156 Villalva, Gazoli, Filho (b0140) 2009; 24 Yang, Yu, Shu, Zhang, Chen, Sang (b0005) 2018; 119 He, Chu, Qiu, Ai, Ling, Zhang (b0010) 2020; 35 Yang, Fang, Song, Su, Yang, Huang (b0025) 2021; 24 Ishaque, Salam, Taheri, Shamsudin (b0255) 2011; 85 Murty, Kumar (b0040) 2020; 5 Jervase, Bourdoucen, Al-lawati (b0185) 2001; 12 Chen, Han, Wu, Yu, Cheng, Lin (b0105) 2018; 178 Chaibi, Allouhi, Salhi (b0155) 2020; 269 Jordehi (b0080) 2016; 61 Chen, Yu (b0220) 2019; 180 Liu, Yao, Wen, Fang, Jiang, He (b0045) 2020; 11 Muangkote, Sunat, Chiewchanwattana, Kaiwinit (b0250) 2019; 134 Barukčić, Ćorluka, Mikloševic (b0260) 2015; 101 Zhang, Lu, Hu, Wang, Dong, Zhang (b0035) 2019; 242 Chan, Phillips, Phang (b0160) 1986; 29 Allam, Yousri, Eteiba (b0210) 2016; 123 Dasu, Sivakumar, Srinivasarao (b0175) 2019; 4 Kamali, Rahim, Mokhlis, Tyagi (b0285) 2016; 57 Huang, Fang, Deng (b0050) 2020; 5 Li, Lin, Zhou, Chen, Wu, Cheng (b0100) 2018; 145 Yang, Zhong, Yu, Li, Zhang, Shu (b0115) 2019; 215 Achouby, Zaimi, Ibral, Assaid (b0240) 2018; 177 Li, Gong, Wang, Yan, Hu (b0230) 2020; 225 Khanna, Das, Bisht, Vandana, Singh (b0280) 2015; 78 Abbassi, Abbassi, Jemli, Chebbi (b0090) 2018; 90 Oliva, Cuevas, Pajares (b0200) 2014; 72 Wolf, Benda (b0130) 2013; 93 Yu, Liang, Qu, Cheng, Wang (b0205) 2018; 226 Sun, Yao, Fang, Ai, Wen, Cheng (b0015) 2019 Ye, Wang, Xu (b0195) 2009; 105 Gao, Wang, Tao, Jin, Dai, Cheng (b0225) 2021; 230 Nayak, Mohapatra, Mohanty (b0215) 2019; 30 Achouby (10.1016/j.enconman.2021.114051_b0240) 2018; 177 Kamali (10.1016/j.enconman.2021.114051_b0285) 2016; 57 Chin (10.1016/j.enconman.2021.114051_b0120) 2015; 154 Gao (10.1016/j.enconman.2021.114051_b0145) 2016; 127 Sun (10.1016/j.enconman.2021.114051_b0015) 2019 El-Fergany (10.1016/j.enconman.2021.114051_b0150) 2021; 7 Li (10.1016/j.enconman.2021.114051_b0230) 2020; 225 Yang (10.1016/j.enconman.2021.114051_b0030) 2018; 210 Khanna (10.1016/j.enconman.2021.114051_b0280) 2015; 78 Pillai (10.1016/j.enconman.2021.114051_b0165) 2018; 82 Chaibi (10.1016/j.enconman.2021.114051_b0155) 2020; 269 Chaibi (10.1016/j.enconman.2021.114051_b0245) 2019; 188 Zhang (10.1016/j.enconman.2021.114051_b0065) 2020; 156 Chen (10.1016/j.enconman.2021.114051_b0105) 2018; 178 Gao (10.1016/j.enconman.2021.114051_b0225) 2021; 230 Yu (10.1016/j.enconman.2021.114051_b0205) 2018; 226 Murty (10.1016/j.enconman.2021.114051_b0040) 2020; 5 Dasu (10.1016/j.enconman.2021.114051_b0175) 2019; 4 Ishaque (10.1016/j.enconman.2021.114051_b0255) 2011; 85 Mahmoudi (10.1016/j.enconman.2021.114051_b0060) 2020; 113723 Humada (10.1016/j.enconman.2021.114051_b0270) 2016; 56 Jervase (10.1016/j.enconman.2021.114051_b0185) 2001; 12 Yang (10.1016/j.enconman.2021.114051_b0110) 2019; 179 Qais (10.1016/j.enconman.2021.114051_b0095) 2019; 250 Muangkote (10.1016/j.enconman.2021.114051_b0250) 2019; 134 Yang (10.1016/j.enconman.2021.114051_b0025) 2021; 24 Oliva (10.1016/j.enconman.2021.114051_b0200) 2014; 72 Barukčić (10.1016/j.enconman.2021.114051_b0260) 2015; 101 Huang (10.1016/j.enconman.2021.114051_b0050) 2020; 5 Liu (10.1016/j.enconman.2021.114051_b0045) 2020; 11 Villalva (10.1016/j.enconman.2021.114051_b0140) 2009; 24 Nayak (10.1016/j.enconman.2021.114051_b0215) 2019; 30 Li (10.1016/j.enconman.2021.114051_b0100) 2018; 145 Pourmousa (10.1016/j.enconman.2021.114051_b0125) 2019; 180 Torabi (10.1016/j.enconman.2021.114051_b0135) 2017; 148 He (10.1016/j.enconman.2021.114051_b0010) 2020; 35 Xiong (10.1016/j.enconman.2021.114051_b0085) 2018; 174 Wolf (10.1016/j.enconman.2021.114051_b0130) 2013; 93 Jordehi (10.1016/j.enconman.2021.114051_b0080) 2016; 61 Ram (10.1016/j.enconman.2021.114051_b0275) 2018; 81 Maleki (10.1016/j.enconman.2021.114051_b0070) 2020; 6 Cai (10.1016/j.enconman.2021.114051_b0075) 2020; 201 Ishaque (10.1016/j.enconman.2021.114051_b0190) 2011; 85 Yang (10.1016/j.enconman.2021.114051_b0170) 2017; 133 Yang (10.1016/j.enconman.2021.114051_b0005) 2018; 119 Abbassi (10.1016/j.enconman.2021.114051_b0265) 2019; 179 Abbassi (10.1016/j.enconman.2021.114051_b0090) 2018; 90 Yang (10.1016/j.enconman.2021.114051_b0180) 2020; 208 Faramarzi (10.1016/j.enconman.2021.114051_b0235) 2020; 191 Chan (10.1016/j.enconman.2021.114051_b0160) 1986; 29 Allam (10.1016/j.enconman.2021.114051_b0210) 2016; 123 Song (10.1016/j.enconman.2021.114051_b0020) 2021; 9 Yang (10.1016/j.enconman.2021.114051_b0115) 2019; 215 Ye (10.1016/j.enconman.2021.114051_b0195) 2009; 105 Zhang (10.1016/j.enconman.2021.114051_b0035) 2019; 242 Chen (10.1016/j.enconman.2021.114051_b0220) 2019; 180 Yang (10.1016/j.enconman.2021.114051_b0055) 2016; 74  | 
    
| References_xml | – volume: 30 start-page: 1 year: 2019 end-page: 12 ident: b0215 article-title: Parameter estimation of single diode PV module based on GWO algorithm publication-title: Renewable Energy Focus – volume: 72 start-page: 93 year: 2014 end-page: 102 ident: b0200 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Eenergy – volume: 188 start-page: 1102 year: 2019 end-page: 1110 ident: b0245 article-title: Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models publication-title: Sol Energy – volume: 101 start-page: 229 year: 2015 end-page: 238 ident: b0260 article-title: The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances publication-title: Energy Convers Manage – volume: 9 start-page: 219 year: 2021 end-page: 224 ident: b0020 article-title: Adaptive model predictive control for yaw system of variable-speed wind turbines publication-title: J Mod Power Syst Clean Energy – volume: 5 start-page: 48 year: 2020 end-page: 55 ident: b0050 article-title: Multi-objective optimization strategy for distribution network considering V2G enabled electric vehicles in building integrated energy system publication-title: Protect Contrl Modern Power Syst – volume: 61 start-page: 354 year: 2016 end-page: 371 ident: b0080 article-title: Parameter estimation of solar photovoltaic (PV) cells: a review publication-title: Renew Sustain Energy Rev – volume: 210 start-page: 711 year: 2018 end-page: 723 ident: b0030 article-title: Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers publication-title: Appl Energy – volume: 123 start-page: 535 year: 2016 end-page: 548 ident: b0210 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame optimization algorithm publication-title: Energy Convers Manage – volume: 74 start-page: 429 year: 2016 end-page: 436 ident: b0055 article-title: Nonlinear maximum power point tracking control and model analysis of DFIG based wind turbine publication-title: Int J Electr Power Energy Syst – volume: 6 start-page: 102 year: 2020 end-page: 111 ident: b0070 article-title: Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit publication-title: Energy Rep – volume: 180 start-page: 192 year: 2019 end-page: 206 ident: b0220 article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters publication-title: Sol Energy – volume: 119 start-page: 577 year: 2018 end-page: 589 ident: b0005 article-title: Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine publication-title: Renewable Energy – volume: 24 start-page: 1198 year: 2009 end-page: 1208 ident: b0140 article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays publication-title: IEEE Trans Power Electron – volume: 78 start-page: 105 year: 2015 end-page: 113 ident: b0280 article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm publication-title: Renewable Energy – volume: 24 start-page: 97 year: 2021 end-page: 115 ident: b0025 article-title: Review of control strategy of large horizontal-axis wind turbines yaw system publication-title: Wind Energy – volume: 12 start-page: 1922 year: 2001 end-page: 1925 ident: b0185 article-title: Solar cell parameter extraction using genetic algorithms publication-title: Meas Sci Technol – volume: 113723 year: 2020 ident: b0060 article-title: Optimization of a hybrid energy system with/without considering back-up system by a new technique based on fuzzy logic controller publication-title: Energy Convers Manage – volume: 180 start-page: 180 year: 2019 end-page: 191 ident: b0125 article-title: Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization algorithm publication-title: Sol Energy – volume: 56 start-page: 494 year: 2016 end-page: 509 ident: b0270 article-title: Solar cell parameters extraction based on single and double-diode models: A review publication-title: Renew Sustain Energy Rev – volume: 179 start-page: 362 year: 2019 end-page: 372 ident: b0265 article-title: An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models publication-title: Energy Convers Manage – year: 2019 ident: b0015 article-title: Impedance modeling and stability analysis of grid-connected DFIG-based wind farm with a VSC-HVDC publication-title: IEEE J Emerg Select Top Power Electron – volume: 201 year: 2020 ident: b0075 article-title: Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology publication-title: Energy – volume: 145 start-page: 427 year: 2018 end-page: 433 ident: b0100 article-title: On-line monitoring system based on open source platform for photovoltaic array publication-title: Energy Proc – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: b0085 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers Manage – volume: 148 start-page: 1041 year: 2017 end-page: 1054 ident: b0135 article-title: Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study publication-title: Energy Convers Manage – volume: 154 start-page: 500 year: 2015 end-page: 519 ident: b0120 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl Energy – volume: 85 start-page: 2349 year: 2011 end-page: 2359 ident: b0190 article-title: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) publication-title: Sol Energy – volume: 215 start-page: 1203 year: 2019 end-page: 1222 ident: b0115 article-title: Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition publication-title: J Cleaner Prod – volume: 7 start-page: 875 year: 2021 end-page: 887 ident: b0150 article-title: Parameters identification of PV model using improved slime mould optimizer and Lambert W-function publication-title: Energy Rep – volume: 127 start-page: 443 year: 2016 end-page: 460 ident: b0145 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers Manage – volume: 156 start-page: 1203 year: 2020 end-page: 1214 ident: b0065 article-title: Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach publication-title: Renewable Energy – volume: 230 year: 2021 ident: b0225 article-title: A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models publication-title: Energy Convers Manage – volume: 208 year: 2020 ident: b0180 article-title: Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification publication-title: Energy Convers Manage – volume: 35 start-page: 1846 year: 2020 end-page: 1855 ident: b0010 article-title: Invisible units detection and estimation based on random matrix theory publication-title: IEEE Trans Power Syst – volume: 133 start-page: 427 year: 2017 end-page: 443 ident: b0170 article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine publication-title: Energy Convers Manage – volume: 11 start-page: 545 year: 2020 end-page: 557 ident: b0045 article-title: Impact of power grid strength and PLL parameters on stability of grid-connected DFIG wind farm publication-title: IEEE Trans Sustainable Energy – volume: 242 start-page: 883 year: 2019 end-page: 896 ident: b0035 article-title: Coordinated optimal operation of hydro-wind-solar integrated systems publication-title: Appl Energy – volume: 93 start-page: 151 year: 2013 end-page: 157 ident: b0130 article-title: Identification of PV solar cells and modules parameters by combining statistical and analytical methods publication-title: Sol Energy – volume: 82 start-page: 3503 year: 2018 end-page: 3525 ident: b0165 article-title: Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems publication-title: Renew Sustain Energy Rev – volume: 81 start-page: 149 year: 2018 end-page: 160 ident: b0275 article-title: Analysis on solar PV emulators: A review publication-title: Renew Sustain Energy Rev – volume: 29 start-page: 329 year: 1986 end-page: 337 ident: b0160 article-title: A comparative study of extraction methods for solar cell model parameters publication-title: Solid State Electron – volume: 85 start-page: 1768 year: 2011 end-page: 1779 ident: b0255 article-title: A critical evaluation of EA computational methods for photovoltaic cell parameter extraction based on two diode model publication-title: Sol Energy – volume: 5 start-page: 1 year: 2020 end-page: 20 ident: b0040 article-title: Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems publication-title: Protect Control Modern Power Syst – volume: 178 start-page: 250 year: 2018 end-page: 264 ident: b0105 article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents publication-title: Energy Convers Manage – volume: 179 start-page: 286 year: 2019 end-page: 303 ident: b0110 article-title: Dynamic leader based collective intelligence for maximum power point tracking of PV systems affected by partial shading condition publication-title: Energy Convers Manage – volume: 191 year: 2020 ident: b0235 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl-Based Syst – volume: 225 year: 2020 ident: b0230 article-title: A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers Manage – volume: 4 start-page: 13 year: 2019 end-page: 23 ident: b0175 article-title: Interconnected multi-machine power system stabilizer design using whale optimization algorithm publication-title: Protect Control Modern Power Syst – volume: 90 start-page: 453 year: 2018 end-page: 474 ident: b0090 article-title: Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches publication-title: Renew Sustain Energy Rev – volume: 269 year: 2020 ident: b0155 article-title: A simple iterative method to determine the electrical parameters of photovoltaic cell publication-title: J Cleaner Prod – volume: 134 start-page: 1129 year: 2019 end-page: 1147 ident: b0250 article-title: An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models publication-title: Renewable Energy – volume: 105 year: 2009 ident: b0195 article-title: Parameter extraction of solar cells using particle swarm optimization publication-title: J Appl Phys – volume: 57 start-page: 131 year: 2016 end-page: 172 ident: b0285 article-title: Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review publication-title: Renew Sustain Energy Rev – volume: 177 start-page: 258 year: 2018 end-page: 271 ident: b0240 article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module publication-title: Energy Convers Manage – volume: 250 start-page: 109 year: 2019 end-page: 117 ident: b0095 article-title: Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm publication-title: Appl Energy – volume: 226 start-page: 408 year: 2018 end-page: 422 ident: b0205 article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models publication-title: Appl Energy – volume: 269 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0155 article-title: A simple iterative method to determine the electrical parameters of photovoltaic cell publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2020.122363 – volume: 177 start-page: 258 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0240 article-title: New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.09.054 – volume: 35 start-page: 1846 issue: 3 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0010 article-title: Invisible units detection and estimation based on random matrix theory publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2935739 – volume: 85 start-page: 2349 issue: 9 year: 2011 ident: 10.1016/j.enconman.2021.114051_b0190 article-title: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) publication-title: Sol Energy doi: 10.1016/j.solener.2011.06.025 – volume: 72 start-page: 93 year: 2014 ident: 10.1016/j.enconman.2021.114051_b0200 article-title: Parameter identification of solar cells using artificial bee colony optimization publication-title: Eenergy doi: 10.1016/j.energy.2014.05.011 – volume: 24 start-page: 1198 year: 2009 ident: 10.1016/j.enconman.2021.114051_b0140 article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2009.2013862 – volume: 242 start-page: 883 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0035 article-title: Coordinated optimal operation of hydro-wind-solar integrated systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.064 – volume: 208 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0180 article-title: Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112595 – volume: 225 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0230 article-title: A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113474 – volume: 74 start-page: 429 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0055 article-title: Nonlinear maximum power point tracking control and model analysis of DFIG based wind turbine publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.07.036 – volume: 85 start-page: 1768 issue: 9 year: 2011 ident: 10.1016/j.enconman.2021.114051_b0255 article-title: A critical evaluation of EA computational methods for photovoltaic cell parameter extraction based on two diode model publication-title: Sol Energy doi: 10.1016/j.solener.2011.04.015 – volume: 250 start-page: 109 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0095 article-title: Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.05.013 – volume: 29 start-page: 329 issue: 3 year: 1986 ident: 10.1016/j.enconman.2021.114051_b0160 article-title: A comparative study of extraction methods for solar cell model parameters publication-title: Solid State Electron doi: 10.1016/0038-1101(86)90212-1 – volume: 78 start-page: 105 year: 2015 ident: 10.1016/j.enconman.2021.114051_b0280 article-title: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm publication-title: Renewable Energy doi: 10.1016/j.renene.2014.12.072 – year: 2019 ident: 10.1016/j.enconman.2021.114051_b0015 article-title: Impedance modeling and stability analysis of grid-connected DFIG-based wind farm with a VSC-HVDC publication-title: IEEE J Emerg Select Top Power Electron – volume: 230 year: 2021 ident: 10.1016/j.enconman.2021.114051_b0225 article-title: A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.113784 – volume: 24 start-page: 97 issue: 2 year: 2021 ident: 10.1016/j.enconman.2021.114051_b0025 article-title: Review of control strategy of large horizontal-axis wind turbines yaw system publication-title: Wind Energy doi: 10.1002/we.2564 – volume: 113723 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0060 article-title: Optimization of a hybrid energy system with/without considering back-up system by a new technique based on fuzzy logic controller publication-title: Energy Convers Manage – volume: 93 start-page: 151 year: 2013 ident: 10.1016/j.enconman.2021.114051_b0130 article-title: Identification of PV solar cells and modules parameters by combining statistical and analytical methods publication-title: Sol Energy doi: 10.1016/j.solener.2013.03.018 – volume: 179 start-page: 362 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0265 article-title: An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.069 – volume: 178 start-page: 250 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0105 article-title: Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.040 – volume: 56 start-page: 494 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0270 article-title: Solar cell parameters extraction based on single and double-diode models: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.11.051 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0040 article-title: Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems publication-title: Protect Control Modern Power Syst – volume: 9 start-page: 219 issue: 1 year: 2021 ident: 10.1016/j.enconman.2021.114051_b0020 article-title: Adaptive model predictive control for yaw system of variable-speed wind turbines publication-title: J Mod Power Syst Clean Energy doi: 10.35833/MPCE.2019.000467 – volume: 57 start-page: 131 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0285 article-title: Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.137 – volume: 179 start-page: 286 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0110 article-title: Dynamic leader based collective intelligence for maximum power point tracking of PV systems affected by partial shading condition publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.074 – volume: 127 start-page: 443 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0145 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.09.005 – volume: 12 start-page: 1922 year: 2001 ident: 10.1016/j.enconman.2021.114051_b0185 article-title: Solar cell parameter extraction using genetic algorithms publication-title: Meas Sci Technol doi: 10.1088/0957-0233/12/11/322 – volume: 101 start-page: 229 year: 2015 ident: 10.1016/j.enconman.2021.114051_b0260 article-title: The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.05.027 – volume: 148 start-page: 1041 year: 2017 ident: 10.1016/j.enconman.2021.114051_b0135 article-title: Parameters estimation of the single and double diode photovoltaic models using a Gauss-Seidel algorithm and analytical method: A comparative study publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.06.064 – volume: 215 start-page: 1203 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0115 article-title: Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2019.01.150 – volume: 145 start-page: 427 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0100 article-title: On-line monitoring system based on open source platform for photovoltaic array publication-title: Energy Proc doi: 10.1016/j.egypro.2018.04.070 – volume: 81 start-page: 149 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0275 article-title: Analysis on solar PV emulators: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.07.039 – volume: 154 start-page: 500 year: 2015 ident: 10.1016/j.enconman.2021.114051_b0120 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.035 – volume: 210 start-page: 711 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0030 article-title: Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.027 – volume: 201 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0075 article-title: Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology publication-title: Energy doi: 10.1016/j.energy.2020.117480 – volume: 180 start-page: 180 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0125 article-title: Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2019.01.026 – volume: 11 start-page: 545 issue: 1 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0045 article-title: Impact of power grid strength and PLL parameters on stability of grid-connected DFIG wind farm publication-title: IEEE Trans Sustainable Energy doi: 10.1109/TSTE.2019.2897596 – volume: 4 start-page: 13 issue: 4 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0175 article-title: Interconnected multi-machine power system stabilizer design using whale optimization algorithm publication-title: Protect Control Modern Power Syst – volume: 7 start-page: 875 year: 2021 ident: 10.1016/j.enconman.2021.114051_b0150 article-title: Parameters identification of PV model using improved slime mould optimizer and Lambert W-function publication-title: Energy Rep doi: 10.1016/j.egyr.2021.01.093 – volume: 123 start-page: 535 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0210 article-title: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame optimization algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.06.052 – volume: 90 start-page: 453 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0090 article-title: Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.011 – volume: 226 start-page: 408 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0205 article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.06.010 – volume: 191 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0235 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105190 – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0085 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.08.053 – volume: 5 start-page: 48 issue: 5 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0050 article-title: Multi-objective optimization strategy for distribution network considering V2G enabled electric vehicles in building integrated energy system publication-title: Protect Contrl Modern Power Syst – volume: 134 start-page: 1129 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0250 article-title: An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models publication-title: Renewable Energy doi: 10.1016/j.renene.2018.09.017 – volume: 119 start-page: 577 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0005 article-title: Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine publication-title: Renewable Energy doi: 10.1016/j.renene.2017.12.047 – volume: 82 start-page: 3503 issue: 3 year: 2018 ident: 10.1016/j.enconman.2021.114051_b0165 article-title: Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.10.107 – volume: 180 start-page: 192 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0220 article-title: Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters publication-title: Sol Energy doi: 10.1016/j.solener.2019.01.025 – volume: 61 start-page: 354 year: 2016 ident: 10.1016/j.enconman.2021.114051_b0080 article-title: Parameter estimation of solar photovoltaic (PV) cells: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.03.049 – volume: 133 start-page: 427 year: 2017 ident: 10.1016/j.enconman.2021.114051_b0170 article-title: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.10.062 – volume: 156 start-page: 1203 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0065 article-title: Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach publication-title: Renewable Energy doi: 10.1016/j.renene.2020.04.010 – volume: 188 start-page: 1102 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0245 article-title: Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models publication-title: Sol Energy doi: 10.1016/j.solener.2019.07.005 – volume: 6 start-page: 102 year: 2020 ident: 10.1016/j.enconman.2021.114051_b0070 article-title: Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit publication-title: Energy Rep doi: 10.1016/j.egyr.2020.03.014 – volume: 105 issue: 9 year: 2009 ident: 10.1016/j.enconman.2021.114051_b0195 article-title: Parameter extraction of solar cells using particle swarm optimization publication-title: J Appl Phys doi: 10.1063/1.3122082 – volume: 30 start-page: 1 year: 2019 ident: 10.1016/j.enconman.2021.114051_b0215 article-title: Parameter estimation of single diode PV module based on GWO algorithm publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2019.04.003  | 
    
| SSID | ssj0003506 | 
    
| Score | 2.6155066 | 
    
| Snippet | Parameter estimation of photovoltaic cells is essential to establish reliable photovoltaic models, upon which studies on photovoltaic systems can be more... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 114051 | 
    
| SubjectTerms | administrative management Algorithms Back propagation networks Back propagation neural network Cell culture Computer applications data collection Data processing diodes Electric potential energy conversion Equilibrium Fitness Improved equilibrium optimizer Information processing Mathematical models Neural networks Nonlinear systems Optimization Optimization techniques Parameter estimation Parameter identification Performance evaluation Photovoltaic cell Photovoltaic cells Photovoltaics System effectiveness Voltage  | 
    
| Title | Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.enconman.2021.114051 https://www.proquest.com/docview/2532201355 https://www.proquest.com/docview/2524270205  | 
    
| Volume | 236 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muMAB8RTjMRWJa7c-kiY7ThPTADEhMaTdoixNoIi2A7oLB347dh-8JMSBWx-xWtnJFzuyPxNyGllhrY2MGwc6hgBFGXdOdeDqOTV-bDXlFuudrybR-JZezNisRYZNLQymVdbYX2F6idb1k16tzd4iSXo3yOwi-jDp_JIHD3GYUo5dDLpvn2keISv7a-JgF0d_qRJ-6CJXZJYq5EENfKTN9Zj_2wb1A6rL_We0STZqx9EZVP-2RVom2ybrX-gEd8js-j4vcsAbCPe1g0fyDjJ7p5jx4iCbRlWm6ODOFTtwkZQnCnBtnpZJmfy_TJ0cQCRNXkFEPd7lz0lxn-6S6ehsOhy7decEV4c8LFzjh2weg9IN19zT1mPGItFZDPBmwZ-Owkj1bcAVFYwbJXjsW6WQ7V1Hxohwj6xkeWb2iSME88BuEEVySqmGeNCYUHtM2FBzoVWbsEZbUtes4tjc4lE26WMPstGyRC3LSstt0vuQW1S8Gn9K9BtjyG8zRAL4_yl71FhP1mv0RQYMwAw8YMba5OTjNawutI_KTL7EMeDCcHCp2cE_Pn9I1vAOkw58dkRWiuelOQZfpph3ysnaIauD88vx5B1t3va1 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LHtSD-MT1WcFr3T6SJnsUUVbdFcEV9hayaaJdbOuje_Hgb3emj_UB4sFbSDK0zCRfZsLMF0KOIiustZFx40DHEKAo446pDlw9psaPrabcYr3z4Drq3dHLERu1yGlTC4NplTX2V5heonXd06m12XlKks4tMruILiw6v-TBAxyepyzgGIEdv3_meYSsfGATZ7s4_UuZ8OQYySKzVCERauAjb67H_N9OqB9YXR5A5ytkufYcnZPq51ZJy2RrZOkLn-A6Gd085EUOgAPxvnbwTt5Bau8UU14cpNOo6hQdPLpiBxpJeaUAbfM8Tcrs_2nq5IAiafIGIurxPn9Jiod0gwzPz4anPbd-OsHVIQ8L1_ghG8egdcM197T1mLHIdBYDvllwqKMwUl0bcEUF40YJHvtWKaR715ExItwkc1memS3iCME8MByEkZxSqiEgNCbUHhM21Fxo1Sas0ZbUNa04vm7xKJv8sYlstCxRy7LScpt0ZnJPFbHGnxLdxhjy2xKRgP5_yu421pP1Jn2VAQM0AxeYsTY5nA3D9kL7qMzkU5wDPgwHn5pt_-PzB2ShNxz0Zf_i-mqHLOIIZiD4bJfMFS9TsweOTTHeLxfuByCS-Eo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+cell+parameter+estimation+based+on+improved+equilibrium+optimizer+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Wang%2C+Jingbo&rft.au=Yang%2C+Bo&rft.au=Li%2C+Danyang&rft.au=Zeng%2C+Chunyuan&rft.date=2021-05-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=236&rft_id=info:doi/10.1016%2Fj.enconman.2021.114051&rft.externalDocID=S0196890421002272 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |