Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations
•An algorithm for retrieving soil moisture at plateau scale from the combination of L-band active and passive observations is developed.•The performance of the developed retrieval algorithm is compared with existing soil moisture products in a footprint scale.•The spatial distribution and seasonal d...
Saved in:
| Published in | International journal of applied earth observation and geoinformation Vol. 77; pp. 108 - 118 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1569-8432 1872-826X 1872-826X |
| DOI | 10.1016/j.jag.2019.01.005 |
Cover
| Abstract | •An algorithm for retrieving soil moisture at plateau scale from the combination of L-band active and passive observations is developed.•The performance of the developed retrieval algorithm is compared with existing soil moisture products in a footprint scale.•The spatial distribution and seasonal dynamic of the retrieved soil moisture product is analyzed for Tibetan Plateau.
An algorithm is developed for retrieving soil moisture at plateau scale by combined usage of Aquarius active and passive L-band observations. In this algorithm, Look-Up-Tables (LUTs) are established for bare soil and vegetated areas by using the physical based Tor Vergata discrete electromagnetic model (hereafter, TV-DEM). In the case of vegetated area, the LUT is built based on simulations with varying soil moisture and Leaf Area Index (LAI). Only soil moisture is variable for the bare soil case, and values calibrated in previous works are adopted for the other TV-DEM parameters. Soil moisture is then retrieved by minimizing a squared difference object function based on the emissivity and backscatter coefficient observed by Aquarius and the corresponding TV-DEM simulations included in the LUT. The soil moisture retrievals are assessed at Aquarius footprint scale using in-situ measurements collected at three regional scale networks spread across the Tibetan Plateau. The unbiased root mean squared differences (ubRMSDs) from the three networks vary from 0.016 to 0.050 m3 m−3 and coefficients of determination (R2) are from 0.274 to 0.499 (-). This ubRMSD and R2 is in the same order of the passive-only official Aquarius product, Metop-A Advanced SCATterometer (ASCAT) L2 soil moisture product (hereafter ASCAT) as well as reanalysis data generated by European Centre for Medium-Range Weather Forecasts (hereafter, ERA-Interim). At Plateau-scale, all four soil moisture products capture the seasonal trend, whereby the dynamic range during the monsoon season captured by the ERA-Interim product is relatively small. Further, the northwest-southeast dry-wet gradient due to precipitation and evapotranspiration is well captured by the soil moisture spatial distributions produced by TV-DEM Aquarius, official Aquarius and ASCAT products, but less pronounced in the ERA-Interim product. This study demonstrates that the TV-DEM based algorithm can be used to retrieve soil moisture over a Plateau scale with robust results in terms of error statistics (e.g. bias, R2 and ubRMSD) and can generate realistic spatial patterns for soil moisture at Plateau-scale. |
|---|---|
| AbstractList | •An algorithm for retrieving soil moisture at plateau scale from the combination of L-band active and passive observations is developed.•The performance of the developed retrieval algorithm is compared with existing soil moisture products in a footprint scale.•The spatial distribution and seasonal dynamic of the retrieved soil moisture product is analyzed for Tibetan Plateau.
An algorithm is developed for retrieving soil moisture at plateau scale by combined usage of Aquarius active and passive L-band observations. In this algorithm, Look-Up-Tables (LUTs) are established for bare soil and vegetated areas by using the physical based Tor Vergata discrete electromagnetic model (hereafter, TV-DEM). In the case of vegetated area, the LUT is built based on simulations with varying soil moisture and Leaf Area Index (LAI). Only soil moisture is variable for the bare soil case, and values calibrated in previous works are adopted for the other TV-DEM parameters. Soil moisture is then retrieved by minimizing a squared difference object function based on the emissivity and backscatter coefficient observed by Aquarius and the corresponding TV-DEM simulations included in the LUT. The soil moisture retrievals are assessed at Aquarius footprint scale using in-situ measurements collected at three regional scale networks spread across the Tibetan Plateau. The unbiased root mean squared differences (ubRMSDs) from the three networks vary from 0.016 to 0.050 m3 m−3 and coefficients of determination (R2) are from 0.274 to 0.499 (-). This ubRMSD and R2 is in the same order of the passive-only official Aquarius product, Metop-A Advanced SCATterometer (ASCAT) L2 soil moisture product (hereafter ASCAT) as well as reanalysis data generated by European Centre for Medium-Range Weather Forecasts (hereafter, ERA-Interim). At Plateau-scale, all four soil moisture products capture the seasonal trend, whereby the dynamic range during the monsoon season captured by the ERA-Interim product is relatively small. Further, the northwest-southeast dry-wet gradient due to precipitation and evapotranspiration is well captured by the soil moisture spatial distributions produced by TV-DEM Aquarius, official Aquarius and ASCAT products, but less pronounced in the ERA-Interim product. This study demonstrates that the TV-DEM based algorithm can be used to retrieve soil moisture over a Plateau scale with robust results in terms of error statistics (e.g. bias, R2 and ubRMSD) and can generate realistic spatial patterns for soil moisture at Plateau-scale. An algorithm is developed for retrieving soil moisture at plateau scale by combined usage of Aquarius active and passive L-band observations. In this algorithm, Look-Up-Tables (LUTs) are established for bare soil and vegetated areas by using the physical based Tor Vergata discrete electromagnetic model (hereafter, TV-DEM). In the case of vegetated area, the LUT is built based on simulations with varying soil moisture and Leaf Area Index (LAI). Only soil moisture is variable for the bare soil case, and values calibrated in previous works are adopted for the other TV-DEM parameters. Soil moisture is then retrieved by minimizing a squared difference object function based on the emissivity and backscatter coefficient observed by Aquarius and the corresponding TV-DEM simulations included in the LUT. The soil moisture retrievals are assessed at Aquarius footprint scale using in-situ measurements collected at three regional scale networks spread across the Tibetan Plateau. The unbiased root mean squared differences (ubRMSDs) from the three networks vary from 0.016 to 0.050 m³ m⁻³ and coefficients of determination (R²) are from 0.274 to 0.499 (-). This ubRMSD and R² is in the same order of the passive-only official Aquarius product, Metop-A Advanced SCATterometer (ASCAT) L2 soil moisture product (hereafter ASCAT) as well as reanalysis data generated by European Centre for Medium-Range Weather Forecasts (hereafter, ERA-Interim). At Plateau-scale, all four soil moisture products capture the seasonal trend, whereby the dynamic range during the monsoon season captured by the ERA-Interim product is relatively small. Further, the northwest-southeast dry-wet gradient due to precipitation and evapotranspiration is well captured by the soil moisture spatial distributions produced by TV-DEM Aquarius, official Aquarius and ASCAT products, but less pronounced in the ERA-Interim product. This study demonstrates that the TV-DEM based algorithm can be used to retrieve soil moisture over a Plateau scale with robust results in terms of error statistics (e.g. bias, R² and ubRMSD) and can generate realistic spatial patterns for soil moisture at Plateau-scale. |
| Author | Wang, Qiang Ferrazzoli, Paolo van der Velde, Rogier Su, Zhongbo Bai, Xiaojing Chen, Xuelong |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0002-8006-9950 surname: Wang fullname: Wang, Qiang email: q.wang@utwente.nl organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands – sequence: 2 givenname: Rogier surname: van der Velde fullname: van der Velde, Rogier email: r.vandervelde@utwente.nl organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands – sequence: 3 givenname: Paolo surname: Ferrazzoli fullname: Ferrazzoli, Paolo email: ferrazzo@uniroma2.it organization: Dipartimento di Ingegneria Civile e Ingegneria Informatica, University of Rome Tor Vergata, Rome, Italy – sequence: 4 givenname: Xuelong surname: Chen fullname: Chen, Xuelong email: x.chen@itpcas.ac.cn organization: Institute of Tibetan Plateau research, Chinese Academy of Science, Beijing 100101, China – sequence: 5 givenname: Xiaojing surname: Bai fullname: Bai, Xiaojing email: xiaojingbai@nuist.edu.cn organization: School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing 210044, China – sequence: 6 givenname: Zhongbo surname: Su fullname: Su, Zhongbo email: z.su@utwente.nl organization: Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands |
| BookMark | eNqNkLtu3DAQRYnABuJHPiAdyzSSSVEiKaQyjDwMbJAUDpCOGFGzDhdcSiapXfjvQ3lTpTBSzZ3BnFucS3IWpoCEvOes5ozLm129g8e6YbyvGa8Z696QC65VU-lG_joruZN9pVvRvCWXKe0Y40pJfUGO32CeXXikaXKe7ieX8hKRgo1TSjT_RvrgBswQ6A8PGWGhswcXEl3SSt0-LRDdkgqQ3aFwYaQzpLTmTTWs696VriOUwzQkjAfIbgrpmpxvwSd893dekZ-fPz3cfa0237_c391uKiuUyNW4HXg34Nj2nRyFQsaFGFD3upctMtVohK4RndwOneQcW8atVWOvobWdlqwRV6Q59S5hhucjeG_m6PYQnw1nZlVndqaoM6s6w7gp6gr04QTNcXpaMGWzd8mi9xBwWpJphNZK9VKw8spPry_CIm7_q179w1iXX7TkCM6_Sn48kViUHRxGk6zDYHF0EW024-Reof8ASNKrDQ |
| CitedBy_id | crossref_primary_10_1080_01431161_2020_1820616 crossref_primary_10_1109_JSTARS_2021_3111606 crossref_primary_10_3389_fenvs_2023_1130448 crossref_primary_10_1109_JSTARS_2022_3216267 crossref_primary_10_34133_2022_9754341 crossref_primary_10_1109_JSTARS_2023_3296455 crossref_primary_10_1080_2150704X_2020_1730469 crossref_primary_10_1109_TGRS_2021_3115140 crossref_primary_10_1080_10095020_2024_2307931 crossref_primary_10_1175_JHM_D_21_0077_1 crossref_primary_10_1109_JSTARS_2023_3298946 |
| Cites_doi | 10.3390/s120809965 10.1109/TGRS.2010.2051035 10.1016/j.rse.2017.10.044 10.1109/LGRS.2014.2364151 10.1029/95WR03638 10.1109/36.285200 10.1016/j.rse.2017.01.021 10.1002/2015JD024131 10.1109/LGRS.2014.2326890 10.1127/0941-2948/2013/0399 10.1016/j.rse.2011.11.017 10.1016/j.rse.2007.03.001 10.1016/j.rse.2011.05.029 10.1109/36.485121 10.1103/PhysRev.67.351 10.1007/BF01030061 10.1038/sdata.2015.66 10.2166/nh.2007.029 10.1016/j.rse.2014.08.031 10.1109/TGRS.2013.2252468 10.1109/TGRS.2012.2184548 10.1175/JHM-D-17-0009.1 10.1016/j.rse.2010.06.009 10.1016/0034-4257(95)00151-4 10.1002/joc.5723 10.1080/01431169608949001 10.1002/2015WR017115 10.1175/JHM-D-11-0133.1 10.1016/S0034-4257(99)00036-X 10.1175/BAMS-D-12-00203.1 10.1109/36.134085 10.1109/TGRS.2008.2011631 10.1016/0034-4257(84)90030-0 10.1002/hyp.3360070205 10.5194/acp-14-13097-2014 10.1109/36.298024 10.1002/jgrd.50468 10.1109/TGRS.2014.2373972 10.1002/qj.828 10.1175/JAMC-D-12-056.1 10.5194/hess-6-85-2002 10.1109/TGRS.2011.2168533 10.5194/hess-15-2303-2011 10.1016/0034-4257(90)90038-N 10.1109/TGRS.1989.1398244 10.1175/2008JHM1051.1 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.jag.2019.01.005 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Statistics |
| EISSN | 1872-826X |
| EndPage | 118 |
| ExternalDocumentID | 10.1016/j.jag.2019.01.005 10_1016_j_jag_2019_01_005 S0303243418310523 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29J 4.4 5GY AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN AITUG ANKPU APXCP CITATION EFJIC EFKBS 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c373t-dfb15bed4956d37e0133be898964e0728ea52356fb5611e401cc7d98a4c586023 |
| IEDL.DBID | UNPAY |
| ISSN | 1569-8432 1872-826X |
| IngestDate | Sun Oct 26 04:10:05 EDT 2025 Sat Sep 27 19:30:57 EDT 2025 Thu Oct 09 00:35:14 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Fri Feb 23 02:39:59 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combined active/passive microwave remote sensing Discrete electromagnetic model Soil moisture Aquarius |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-dfb15bed4956d37e0133be898964e0728ea52356fb5611e401cc7d98a4c586023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8006-9950 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0303243418310523?via%3Dihub |
| PQID | 2388779630 |
| PQPubID | 24069 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jag_2019_01_005 proquest_miscellaneous_2388779630 crossref_primary_10_1016_j_jag_2019_01_005 crossref_citationtrail_10_1016_j_jag_2019_01_005 elsevier_sciencedirect_doi_10_1016_j_jag_2019_01_005 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Colliander, Jackson, Bindlish (bib0060) 2017; 191 Mironov, Kosolapova, Fomin (bib0145) 2009; 47 Dente, Ferrazzoli, Su (bib0080) 2014; 155 Yang, Qin, Zhao (bib0235) 2013; 94 Bindlish, Jackson (bib0025) 2015 Osborn (bib0155) 1945; 67 Wang, van der Velde, Su (bib0220) 2018; 205 Chen, Su, Ma (bib0055) 2017; 18 Ferrazzoli, Luzi, Paloscia (bib0095) 1989; 27 Wagner, Blöschl, Pampaloni (bib0205) 2007; 38 Fung, Li, Chen (bib0100) 1992; 30 Dente, Vekerdy, Wen (bib0075) 2012; 17 Zhou, Wen, Liu (bib0260) 2018; 38 Albergel, De Rosnay, Gruhier (bib0010) 2012; 118 Verhoef, Menenti, Azzali (bib0195) 1996; 17 Jackson, Cosh, Bindlish (bib0120) 2010; 48 Zeng, Li, Chen (bib0240) 2015; 12 Dente, Su, Wen (bib0070) 2012; 12 Zheng, Van der Velde, Su (bib0250) 2015; 51 Su, Rosnay, Wen (bib0180) 2013; 118 Leroux, Kerr, Bitar (bib0135) 2014; 52 Matzler (bib0140) 1994; 32 van der Velde, Su, van Oevelen (bib0185) 2012; 120 Guerriero, Ferrazzoli, Vittucci (bib0110) 2016; 9 Chen, Su, Ma (bib0050) 2014 Jackson (bib0115) 1993; 7 Akbar, Moghaddam (bib0005) 2015; 53 Altese, Bolognani, Mancini (bib0015) 1996; 32 Wang, van der Velde, Su (bib0215) 2016; 45 Saatchi, Le Vine, Lang (bib0160) 1994; 32 Brocca, Melone, Moramarco (bib0040) 2010; 114 Wegmüller (bib0225) 1990; 33 Bracaglia, Ferrazzoli, Guerriero (bib0035) 1995; 54 Su, Wen, Dente (bib0175) 2011; 15 Naeimi, Bartalis, Wagner (bib0150) 2008; 10 Wagner, Lemoine, Rott (bib0200) 1999; 70 Su (bib0170) 2002; 6 Schmugge, Jackson (bib0165) 1994; 54 Zheng, Van der Velde, Su (bib0255) 2015; 51 Kerr, Waldteufel, Richaume (bib0130) 2012; 50 Bi, Ma, Zheng (bib0020) 2016; 121 Funk, Peterson, Landsfeld (bib0105) 2015; 2 Weiss, Baret, Garrigues (bib0230) 2007; 110 Wagner, Hahn, Kidd (bib0210) 2013; 22 Bindlish, Jackson, Cosh (bib0030) 2015; 12 Chen, Su, Ma (bib0045) 2013; 52 Ferrazzoli, Guerriero (bib0090) 1996; 34 Zeng, Li, Chen (bib0245) 2015; 12 Dee, Uppala, Simmons (bib0065) 2011; 137 Jackson, Bindlish, Cosh (bib0125) 2012; 50 Eom, Fung (bib0085) 1984; 15 van der Velde, Salama, van Helvoirt (bib0190) 2012; 13 Wagner (10.1016/j.jag.2019.01.005_bib0200) 1999; 70 Dente (10.1016/j.jag.2019.01.005_bib0070) 2012; 12 Matzler (10.1016/j.jag.2019.01.005_bib0140) 1994; 32 Su (10.1016/j.jag.2019.01.005_bib0170) 2002; 6 Fung (10.1016/j.jag.2019.01.005_bib0100) 1992; 30 Wegmüller (10.1016/j.jag.2019.01.005_bib0225) 1990; 33 Leroux (10.1016/j.jag.2019.01.005_bib0135) 2014; 52 Wagner (10.1016/j.jag.2019.01.005_bib0205) 2007; 38 Akbar (10.1016/j.jag.2019.01.005_bib0005) 2015; 53 Yang (10.1016/j.jag.2019.01.005_bib0235) 2013; 94 Bindlish (10.1016/j.jag.2019.01.005_bib0025) 2015 Zhou (10.1016/j.jag.2019.01.005_bib0260) 2018; 38 Weiss (10.1016/j.jag.2019.01.005_bib0230) 2007; 110 Colliander (10.1016/j.jag.2019.01.005_bib0060) 2017; 191 Zheng (10.1016/j.jag.2019.01.005_bib0255) 2015; 51 Saatchi (10.1016/j.jag.2019.01.005_bib0160) 1994; 32 Zeng (10.1016/j.jag.2019.01.005_bib0240) 2015; 12 Brocca (10.1016/j.jag.2019.01.005_bib0040) 2010; 114 Chen (10.1016/j.jag.2019.01.005_bib0055) 2017; 18 Verhoef (10.1016/j.jag.2019.01.005_bib0195) 1996; 17 Zeng (10.1016/j.jag.2019.01.005_bib0245) 2015; 12 Ferrazzoli (10.1016/j.jag.2019.01.005_bib0095) 1989; 27 Dee (10.1016/j.jag.2019.01.005_bib0065) 2011; 137 Jackson (10.1016/j.jag.2019.01.005_bib0120) 2010; 48 Dente (10.1016/j.jag.2019.01.005_bib0080) 2014; 155 Kerr (10.1016/j.jag.2019.01.005_bib0130) 2012; 50 Schmugge (10.1016/j.jag.2019.01.005_bib0165) 1994; 54 Altese (10.1016/j.jag.2019.01.005_bib0015) 1996; 32 Su (10.1016/j.jag.2019.01.005_bib0175) 2011; 15 Bracaglia (10.1016/j.jag.2019.01.005_bib0035) 1995; 54 van der Velde (10.1016/j.jag.2019.01.005_bib0185) 2012; 120 Bindlish (10.1016/j.jag.2019.01.005_bib0030) 2015; 12 Ferrazzoli (10.1016/j.jag.2019.01.005_bib0090) 1996; 34 Jackson (10.1016/j.jag.2019.01.005_bib0115) 1993; 7 Wang (10.1016/j.jag.2019.01.005_bib0220) 2018; 205 Wagner (10.1016/j.jag.2019.01.005_bib0210) 2013; 22 Funk (10.1016/j.jag.2019.01.005_bib0105) 2015; 2 Zheng (10.1016/j.jag.2019.01.005_bib0250) 2015; 51 Albergel (10.1016/j.jag.2019.01.005_bib0010) 2012; 118 Eom (10.1016/j.jag.2019.01.005_bib0085) 1984; 15 Chen (10.1016/j.jag.2019.01.005_bib0050) 2014 Chen (10.1016/j.jag.2019.01.005_bib0045) 2013; 52 Guerriero (10.1016/j.jag.2019.01.005_bib0110) 2016; 9 Osborn (10.1016/j.jag.2019.01.005_bib0155) 1945; 67 Dente (10.1016/j.jag.2019.01.005_bib0075) 2012; 17 Naeimi (10.1016/j.jag.2019.01.005_bib0150) 2008; 10 Jackson (10.1016/j.jag.2019.01.005_bib0125) 2012; 50 Su (10.1016/j.jag.2019.01.005_bib0180) 2013; 118 Bi (10.1016/j.jag.2019.01.005_bib0020) 2016; 121 Mironov (10.1016/j.jag.2019.01.005_bib0145) 2009; 47 van der Velde (10.1016/j.jag.2019.01.005_bib0190) 2012; 13 Wang (10.1016/j.jag.2019.01.005_bib0215) 2016; 45 |
| References_xml | – volume: 10 start-page: 555 year: 2008 end-page: 563 ident: bib0150 article-title: ASCAT soil moisture: an assessment of the data quality and consistency with the ERS scatterometer heritage publication-title: J. Hydrometeorol. – volume: 70 start-page: 191 year: 1999 end-page: 207 ident: bib0200 article-title: A method for estimating soil moisture from ERS scatterometer and soil data publication-title: Remote Sens. Environ. – volume: 191 start-page: 215 year: 2017 end-page: 231 ident: bib0060 article-title: Validation of SMAP surface soil moisture products with core validation sites publication-title: Remote Sens. Environ. – volume: 54 start-page: 170 year: 1995 end-page: 179 ident: bib0035 article-title: A fully polarimetric multiple scattering model for crops publication-title: Sens. Environ. – volume: 155 start-page: 222 year: 2014 end-page: 238 ident: bib0080 article-title: Combined use of active and passive microwave satellite data to constrain a discrete scattering model publication-title: Remote Sens. Environ. – volume: 22 start-page: 5 year: 2013 end-page: 33 ident: bib0210 article-title: The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications publication-title: Meteorologische Zeitschrift – volume: 12 start-page: 97 year: 2015 end-page: 101 ident: bib0240 article-title: Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 205 start-page: 434 year: 2018 end-page: 452 ident: bib0220 article-title: Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive observations and soil moisture retrieval publication-title: Remote Sens. Environ. – volume: 120 start-page: 175 year: 2012 end-page: 187 ident: bib0185 article-title: Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images publication-title: Remote Sens. Environ. – volume: 137 start-page: 553 year: 2011 end-page: 597 ident: bib0065 article-title: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. – volume: 27 start-page: 772 year: 1989 end-page: 778 ident: bib0095 article-title: Comparison between the microwave emissivity and backscatter coefficient of crops publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 32 start-page: 947 year: 1994 end-page: 949 ident: bib0140 article-title: Microwave (1-100 GHZ) dielectric model of leaves publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 50 start-page: 1530 year: 2012 end-page: 1543 ident: bib0125 article-title: Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the US publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 15 start-page: 2303 year: 2011 end-page: 2316 ident: bib0175 article-title: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 114 start-page: 2745 year: 2010 end-page: 2755 ident: bib0040 article-title: ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy publication-title: Remote Sens. Environ. – volume: 6 start-page: 85 year: 2002 end-page: 99 ident: bib0170 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. – volume: 53 start-page: 3312 year: 2015 end-page: 3324 ident: bib0005 article-title: A combined active–passive soil moisture estimation algorithm with adaptive regularization in support of SMAP publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 12 start-page: 923 year: 2015 end-page: 927 ident: bib0030 article-title: Global soil moisture from the Aquarius/SAC-D satellite: description and initial assessment publication-title: Ieee Geosci. Remote. Sens. Lett. – volume: 38 start-page: 1 year: 2007 end-page: 20 ident: bib0205 article-title: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications publication-title: Nord. Hydrol. – volume: 33 start-page: 123 year: 1990 end-page: 135 ident: bib0225 article-title: The effect of freezing and thawing on the microwave signatures of bare soil publication-title: Remote Sens. Environ. – volume: 118 start-page: 5304 year: 2013 end-page: 5318 ident: bib0180 article-title: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau publication-title: J. Geophys. Res.-Atmos. – volume: 32 start-page: 653 year: 1996 end-page: 661 ident: bib0015 article-title: Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data publication-title: Water Resour. Res. – volume: 52 start-page: 1562 year: 2014 end-page: 1571 ident: bib0135 article-title: Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 50 start-page: 1367 year: 2012 end-page: 1383 ident: bib0130 article-title: The SMOS soil moisture retrieval algorithm publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 5735 year: 2015 end-page: 5755 ident: bib0250 article-title: Under‐canopy turbulence and root water uptake of a Tibetan meadow ecosystem modelled by Noah‐MP publication-title: Water Resour. Res. – volume: 94 start-page: 1907 year: 2013 end-page: 1916 ident: bib0235 article-title: A multiscale soil moisture and freeze–thaw monitoring network on the third pole publication-title: B Am. Meteorol. Soc. – volume: 110 start-page: 317 year: 2007 end-page: 331 ident: bib0230 article-title: LAI, FAPAR and FCOVERCYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products publication-title: Remote Sens. Environ. – volume: 12 start-page: 9965 year: 2012 end-page: 9986 ident: bib0070 article-title: Validation of SMOS soil moisture products over the Maqu and Twente regions publication-title: Sensors – start-page: 13097 year: 2014 end-page: 13117 ident: bib0050 article-title: Development of a 10-year (2001-2010) 0.1 data set of land-surface energy balance for mainland China publication-title: Atmos. Chem. Phys. – volume: 2 year: 2015 ident: bib0105 article-title: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes publication-title: Sci. Data – volume: 45 start-page: 165 year: 2016 end-page: 177 ident: bib0215 article-title: Aquarius L-band scatterometer and radiometer observations over a Tibetan Plateau site publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 17 start-page: 55 year: 2012 end-page: 65 ident: bib0075 article-title: Maqu network for validation of satellite-derived soil moisture products publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 2520 year: 2016 end-page: 2531 ident: bib0110 article-title: L-band passive and active signatures of vegetated soil: simulations with a unified model publication-title: IEEE J-STARS – volume: 17 start-page: 231 year: 1996 end-page: 235 ident: bib0195 article-title: Cover A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981-1992) publication-title: Int. J. Remote Sens. – volume: 118 start-page: 215 year: 2012 end-page: 226 ident: bib0010 article-title: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations publication-title: Remote Sens. Environ. – volume: 15 start-page: 185 year: 1984 end-page: 200 ident: bib0085 article-title: A scatter model for vegetation up to Ku-band publication-title: Remote Sens. Environ. – volume: 30 start-page: 356 year: 1992 end-page: 369 ident: bib0100 article-title: Backscattering from a randomly rough dielectric surface publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 47 start-page: 2059 year: 2009 end-page: 2070 ident: bib0145 article-title: Physically and mineralogically based spectroscopic dielectric model for moist soils publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 67 start-page: 351 year: 1945 ident: bib0155 article-title: Demagnetizing factors of the general ellipsoid publication-title: Phys. Rev. – volume: 52 start-page: 607 year: 2013 end-page: 622 ident: bib0045 article-title: An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau publication-title: J. Appl. Meteorol. Climatol. – volume: 7 start-page: 139 year: 1993 end-page: 152 ident: bib0115 article-title: III. Measuring surface soil moisture using passive microwave remote sensing publication-title: Hydrol. Process – volume: 34 start-page: 433 year: 1996 end-page: 443 ident: bib0090 article-title: Passive microwave remote sensing of forests: a model investigation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 48 start-page: 4256 year: 2010 end-page: 4272 ident: bib0120 article-title: Validation of advanced microwave scanning radiometer soil moisture products publication-title: Ieee Trans. Geosci. Remote. Sens. – volume: 12 start-page: 97 year: 2015 end-page: 101 ident: bib0245 article-title: Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 51 start-page: 5735 year: 2015 end-page: 5755 ident: bib0255 article-title: Under‐canopy turbulence and root water uptake of a Tibetan meadow ecosystem modelled by Noah‐MP publication-title: Water Resour. Res. – year: 2015 ident: bib0025 article-title: Aquarius L3 Gridded 1-Degree Daily Soil Moisture, Version 4 – volume: 121 start-page: 2658 year: 2016 end-page: 2678 ident: bib0020 article-title: Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau publication-title: J. Geophys. Res. Atmos. – volume: 18 start-page: 2827 year: 2017 end-page: 2847 ident: bib0055 article-title: An accurate estimate of monthly mean land surface temperatures from MODIS clear-sky retrievals publication-title: J. Hydrometeorol. – volume: 32 start-page: 177 year: 1994 end-page: 186 ident: bib0160 article-title: Microwave backscattering and emission model for grass canopies publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 1925 year: 2012 end-page: 1938 ident: bib0190 article-title: Decomposition of uncertainties between coarse MM5–Noah-simulated and fine ASAR-retrieved soil moisture over central Tibet publication-title: J. Hydrometeorol. – volume: 54 start-page: 213 year: 1994 end-page: 223 ident: bib0165 article-title: Mapping surface soil moisture with microwave radiometers publication-title: Meteorol. Atmos. Phys. – volume: 38 start-page: 4597 year: 2018 end-page: 4609 ident: bib0260 article-title: Late spring soil moisture variation over the Tibetan Plateau and its influences on the plateau summer monsoon publication-title: Int. J. Climatol. – volume: 12 start-page: 9965 issue: 8 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0070 article-title: Validation of SMOS soil moisture products over the Maqu and Twente regions publication-title: Sensors doi: 10.3390/s120809965 – volume: 48 start-page: 4256 issue: 12 year: 2010 ident: 10.1016/j.jag.2019.01.005_bib0120 article-title: Validation of advanced microwave scanning radiometer soil moisture products publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2010.2051035 – volume: 205 start-page: 434 year: 2018 ident: 10.1016/j.jag.2019.01.005_bib0220 article-title: Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive observations and soil moisture retrieval publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.044 – volume: 12 start-page: 923 issue: 5 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0030 article-title: Global soil moisture from the Aquarius/SAC-D satellite: description and initial assessment publication-title: Ieee Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2014.2364151 – volume: 32 start-page: 653 issue: 3 year: 1996 ident: 10.1016/j.jag.2019.01.005_bib0015 article-title: Retrieving soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering model and field data publication-title: Water Resour. Res. doi: 10.1029/95WR03638 – volume: 32 start-page: 177 issue: 1 year: 1994 ident: 10.1016/j.jag.2019.01.005_bib0160 article-title: Microwave backscattering and emission model for grass canopies publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.285200 – volume: 191 start-page: 215 year: 2017 ident: 10.1016/j.jag.2019.01.005_bib0060 article-title: Validation of SMAP surface soil moisture products with core validation sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.021 – volume: 121 start-page: 2658 issue: 6 year: 2016 ident: 10.1016/j.jag.2019.01.005_bib0020 article-title: Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD024131 – volume: 12 start-page: 97 issue: 1 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0245 article-title: Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2326890 – volume: 22 start-page: 5 issue: 1 year: 2013 ident: 10.1016/j.jag.2019.01.005_bib0210 article-title: The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications publication-title: Meteorologische Zeitschrift doi: 10.1127/0941-2948/2013/0399 – volume: 118 start-page: 215 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0010 article-title: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.017 – volume: 110 start-page: 317 year: 2007 ident: 10.1016/j.jag.2019.01.005_bib0230 article-title: LAI, FAPAR and FCOVERCYCLOPES global products derived from VEGETATION. Part 2: validation and comparison with MODIS collection 4 products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.001 – volume: 120 start-page: 175 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0185 article-title: Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.029 – volume: 34 start-page: 433 issue: 2 year: 1996 ident: 10.1016/j.jag.2019.01.005_bib0090 article-title: Passive microwave remote sensing of forests: a model investigation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.485121 – volume: 67 start-page: 351 issue: 11-12 year: 1945 ident: 10.1016/j.jag.2019.01.005_bib0155 article-title: Demagnetizing factors of the general ellipsoid publication-title: Phys. Rev. doi: 10.1103/PhysRev.67.351 – volume: 54 start-page: 213 issue: 1-4 year: 1994 ident: 10.1016/j.jag.2019.01.005_bib0165 article-title: Mapping surface soil moisture with microwave radiometers publication-title: Meteorol. Atmos. Phys. doi: 10.1007/BF01030061 – volume: 2 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0105 article-title: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes publication-title: Sci. Data doi: 10.1038/sdata.2015.66 – volume: 38 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.jag.2019.01.005_bib0205 article-title: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications publication-title: Nord. Hydrol. doi: 10.2166/nh.2007.029 – volume: 155 start-page: 222 year: 2014 ident: 10.1016/j.jag.2019.01.005_bib0080 article-title: Combined use of active and passive microwave satellite data to constrain a discrete scattering model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.031 – volume: 52 start-page: 1562 issue: 3 year: 2014 ident: 10.1016/j.jag.2019.01.005_bib0135 article-title: Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2252468 – volume: 50 start-page: 1367 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0130 article-title: The SMOS soil moisture retrieval algorithm publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2184548 – year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0025 – volume: 18 start-page: 2827 year: 2017 ident: 10.1016/j.jag.2019.01.005_bib0055 article-title: An accurate estimate of monthly mean land surface temperatures from MODIS clear-sky retrievals publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0009.1 – volume: 114 start-page: 2745 issue: 11 year: 2010 ident: 10.1016/j.jag.2019.01.005_bib0040 article-title: ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.06.009 – volume: 54 start-page: 170 year: 1995 ident: 10.1016/j.jag.2019.01.005_bib0035 article-title: A fully polarimetric multiple scattering model for crops publication-title: Sens. Environ. doi: 10.1016/0034-4257(95)00151-4 – volume: 38 start-page: 4597 year: 2018 ident: 10.1016/j.jag.2019.01.005_bib0260 article-title: Late spring soil moisture variation over the Tibetan Plateau and its influences on the plateau summer monsoon publication-title: Int. J. Climatol. doi: 10.1002/joc.5723 – volume: 17 start-page: 231 issue: 2 year: 1996 ident: 10.1016/j.jag.2019.01.005_bib0195 article-title: Cover A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981-1992) publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949001 – volume: 51 start-page: 5735 issue: 7 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0255 article-title: Under‐canopy turbulence and root water uptake of a Tibetan meadow ecosystem modelled by Noah‐MP publication-title: Water Resour. Res. doi: 10.1002/2015WR017115 – volume: 13 start-page: 1925 issue: 6 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0190 article-title: Decomposition of uncertainties between coarse MM5–Noah-simulated and fine ASAR-retrieved soil moisture over central Tibet publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-11-0133.1 – volume: 70 start-page: 191 issue: 2 year: 1999 ident: 10.1016/j.jag.2019.01.005_bib0200 article-title: A method for estimating soil moisture from ERS scatterometer and soil data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00036-X – volume: 51 start-page: 5735 issue: 7 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0250 article-title: Under‐canopy turbulence and root water uptake of a Tibetan meadow ecosystem modelled by Noah‐MP publication-title: Water Resour. Res. doi: 10.1002/2015WR017115 – volume: 94 start-page: 1907 issue: 12 year: 2013 ident: 10.1016/j.jag.2019.01.005_bib0235 article-title: A multiscale soil moisture and freeze–thaw monitoring network on the third pole publication-title: B Am. Meteorol. Soc. doi: 10.1175/BAMS-D-12-00203.1 – volume: 30 start-page: 356 issue: 2 year: 1992 ident: 10.1016/j.jag.2019.01.005_bib0100 article-title: Backscattering from a randomly rough dielectric surface publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134085 – volume: 47 start-page: 2059 issue: 7 year: 2009 ident: 10.1016/j.jag.2019.01.005_bib0145 article-title: Physically and mineralogically based spectroscopic dielectric model for moist soils publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2011631 – volume: 9 start-page: 2520 issue: 6 year: 2016 ident: 10.1016/j.jag.2019.01.005_bib0110 article-title: L-band passive and active signatures of vegetated soil: simulations with a unified model publication-title: IEEE J-STARS – volume: 15 start-page: 185 issue: 3 year: 1984 ident: 10.1016/j.jag.2019.01.005_bib0085 article-title: A scatter model for vegetation up to Ku-band publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90030-0 – volume: 7 start-page: 139 issue: 2 year: 1993 ident: 10.1016/j.jag.2019.01.005_bib0115 article-title: III. Measuring surface soil moisture using passive microwave remote sensing publication-title: Hydrol. Process doi: 10.1002/hyp.3360070205 – start-page: 13097 issue: 14 year: 2014 ident: 10.1016/j.jag.2019.01.005_bib0050 article-title: Development of a 10-year (2001-2010) 0.1 data set of land-surface energy balance for mainland China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-13097-2014 – volume: 32 start-page: 947 year: 1994 ident: 10.1016/j.jag.2019.01.005_bib0140 article-title: Microwave (1-100 GHZ) dielectric model of leaves publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.298024 – volume: 17 start-page: 55 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0075 article-title: Maqu network for validation of satellite-derived soil moisture products publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 118 start-page: 5304 issue: 11 year: 2013 ident: 10.1016/j.jag.2019.01.005_bib0180 article-title: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/jgrd.50468 – volume: 45 start-page: 165 year: 2016 ident: 10.1016/j.jag.2019.01.005_bib0215 article-title: Aquarius L-band scatterometer and radiometer observations over a Tibetan Plateau site publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 53 start-page: 3312 issue: 6 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0005 article-title: A combined active–passive soil moisture estimation algorithm with adaptive regularization in support of SMAP publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2014.2373972 – volume: 137 start-page: 553 issue: 656 year: 2011 ident: 10.1016/j.jag.2019.01.005_bib0065 article-title: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.828 – volume: 52 start-page: 607 issue: 3 year: 2013 ident: 10.1016/j.jag.2019.01.005_bib0045 article-title: An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-12-056.1 – volume: 6 start-page: 85 issue: 1 year: 2002 ident: 10.1016/j.jag.2019.01.005_bib0170 article-title: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. doi: 10.5194/hess-6-85-2002 – volume: 50 start-page: 1530 issue: 5 year: 2012 ident: 10.1016/j.jag.2019.01.005_bib0125 article-title: Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the US publication-title: Ieee Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2011.2168533 – volume: 15 start-page: 2303 issue: 7 year: 2011 ident: 10.1016/j.jag.2019.01.005_bib0175 article-title: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products publication-title: Hydrol. Earth Syst. Sci. Discuss. doi: 10.5194/hess-15-2303-2011 – volume: 33 start-page: 123 issue: 2 year: 1990 ident: 10.1016/j.jag.2019.01.005_bib0225 article-title: The effect of freezing and thawing on the microwave signatures of bare soil publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90038-N – volume: 27 start-page: 772 issue: 6 year: 1989 ident: 10.1016/j.jag.2019.01.005_bib0095 article-title: Comparison between the microwave emissivity and backscatter coefficient of crops publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1989.1398244 – volume: 12 start-page: 97 issue: 1 year: 2015 ident: 10.1016/j.jag.2019.01.005_bib0240 article-title: Method for soil moisture and surface temperature estimation in the tibetan plateau using spaceborne radiometer publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2326890 – volume: 10 start-page: 555 issue: 2 year: 2008 ident: 10.1016/j.jag.2019.01.005_bib0150 article-title: ASCAT soil moisture: an assessment of the data quality and consistency with the ERS scatterometer heritage publication-title: J. Hydrometeorol. doi: 10.1175/2008JHM1051.1 |
| SSID | ssj0017768 |
| Score | 2.2961285 |
| Snippet | •An algorithm for retrieving soil moisture at plateau scale from the combination of L-band active and passive observations is developed.•The performance of the... An algorithm is developed for retrieving soil moisture at plateau scale by combined usage of Aquarius active and passive L-band observations. In this... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108 |
| SubjectTerms | algorithms Aquarius China Combined active/passive microwave remote sensing Discrete electromagnetic model evapotranspiration leaf area index monsoon season Soil moisture soil water statistics weather forecasting |
| SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection Journals dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDBfd9WHrQ9m6lV4_hgd7ajGXnJM4eTxKy61by2At9M3Yie9ISZO0uXD0v6-Uj-sNRgd9i40NwpKlnyJZAviONs_zZWK4GGufo8VzOJVR504UC9czxhExRXQvr4LpjXdx699uwGn_FobSKjvd3-r0Rlt3M6PuNEdlmo7-oHgiGkAtTL2y0J96B5tof8JwAJuTHz-nV6tggpTtizg_iHjoiXEf3GzSvO70nBK8oqZ4JzWx-7d5WoOf7-u81E9LnWVrluj8I2x3EJJNWio_wYbNd2BrrbDgDuyevbxfw6XdBa4-w_JSU0GGOauKNGP3BTK5frRMN9QwBIPsOjUWASP7nSEK1TUrM53mFaP8-DmbPKBEpXXFdKMmmc4TViL8pu9f3NDwnjL8lhonCrP641t9gZvzs-vTKe96L_BYSLHgycy4vrEJ-U-JkBaRojCWek0GnnXkOLQaj9wPZgYBmGvRS4tjmUSh9mKf2lqJXRjkRW73gEnj2lmEyG6WxF6CAMmiC2gRl4WuDYJID8Hpj1zFXWFy6o-RqT4D7U4hlxRxSTmuQi4N4Xi1pWyrcry22Ov5qP4SLYVW47Vt33qeK7xyFEfRuS3qSpGUSYmayxnCyUoY_k_I_tsIOYAPNGqzLA9hsHis7REioYX52kn6M1a4BjY priority: 102 providerName: Elsevier |
| Title | Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations |
| URI | https://dx.doi.org/10.1016/j.jag.2019.01.005 https://www.proquest.com/docview/2388779630 https://www.sciencedirect.com/science/article/am/pii/S0303243418310523?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-826X dateEnd: 20191130 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: ACRLP dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-826X dateEnd: 20191130 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: AIKHN dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6N9gHxAGMwrQgmT4IXkNekTuLkCVX7oQJbVWCVypNlJ27JSJPQNFTw1--cJqUgNITEU37IluL4y9138fk7gOfo8xyXR4qynnQpejyLGhl1agUhsx2lLBaaFd3LoTcYO28n7mQH3jd7YUxaZW371za9stb1nW79Nrty3s3juPsREYqEAA2xKZeFIdXrb7F8wU7jz6W6A23PRXregvZ4OOp_qnRTvYD6TlW0zPY5WoKeN2lWOqucr2s5M9leQaXkaSra_dlXbXHRu2Way-8rmSRbbun8ASyaAa2zUb4cl0t1HP74Tevxv454F-7XJJb0170ewo5O9-DelrThHuyf_dxBh01rE1I8gtWlNJIQM1JkcULmGcKsXGgiq1dAkI6Sq1hppKxklCAPliXJExmnBTEZ-jPS_4qYjsuCyMpQE5lGJMcAwJxfUGUu5ybHcCXxRqY2_5yLxzA-P7s6GdC6-gMNGWdLGk2V7SodmQguYlwjV2VKm2qXnqMt3vO1xPG73lQhBbQ1xolhyKPAl07omsJabB9aaZbqAyBc2XoaILecRqETIUXTGIRqZIa-rT0vkB2wmnkWYS2Nbip0JKLJgbsWCA1hoCEsWyA0OvBy0yVf64Lc1thpwCN-mWqBfuu2bkcN0AR-9GYlR6Y6KwuBPMvnHG2n1YFXGwT-_UGe_FPrp9BaLkr9DFnXUh1Cu3_y4WJkjm_eDYaH9Xd1A0jBL_Y |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69qHbw9i6laXrNg32tGFiR7JlP4bSkq5JGCyFvgnJVoKLa7t1TNh_vzt_pBmMDvZmyxIcutPd73ynO4AvaPOELxPj8JH2HbR4rkNl1B03irknjHF5TBHd2TyYXIvvN_7NHpz1d2EorbLT_a1Ob7R1NzLsdnNYpunwJ4onogHUwtQrC_2pZ3AgfC7xdB6ML68m820wQcr2RpwfRE4o-KgPbjZpXrd6RQleUVO8k5rY_d087cDPwzov9a-NzrIdS3TxCl52EJKNWypfw57Nj-DFTmHBIzg-f7y_hlO7A1y9gc1MU0GGFauKNGN3BTK5frBMN9QwBINskRqLgJH9yBCF6pqVmU7zilF-_IqN71Gi0rpiulGTTOcJKxF-0_PUMfR6Rxl-G40Dhdn-8a3ewvXF-eJs4nS9F5yYS752kqXxfGMT8p8SLi0iRW4s9ZoMhHXlKLQat9wPlgYBmGfRS4tjmUShFrFPba34MeznRW7fAZPGs8sIkd0yiUWCAMmiC2gRl4WeDYJID8Dtt1zFXWFy6o-RqT4D7VYhlxRxSbmeQi4N4Ot2SdlW5Xhqsuj5qP4QLYVW46lln3ueKzxyFEfRuS3qSiHKCaVEzeUO4NtWGP5NyMn_EfIJDieL2VRNL-dX7-E5fWkzLk9hf_1Q2w-IitbmYyf1vwGmDgkX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5t3QPaAz8GE0UDGQlehrwmdRInT6iCTRNi0xCrVJ4s23G7lDTJmoYK_nrOaVLKhIYm7S2xbCl2Pt99F1--A3iDPs_zeawo60ufosdzqJVRp06kmesp5TBtT3TPzoPTofdp5I-24Ev7L4xNq2xs_8qm19a6aek1q9mTs16RJL2viFAkBGiIbbksDKne_0jkW_YxuarUNuwEPtLzDuwMzy8G32rd1CCioVcXLXNDjpagH4zak84652sqJzbbK6qVPG1Fu3_7qg0u-qDKCvlzKdN0wy2dPIJ5O6FVNsr3o2qhjvSvG1qP9zrjx_CwIbFksBr1BLZMtge7G9KGe7B__OcPOuzamJDyKSzPpJWEmJAyT1IyyxFm1dwQWS8BQTpKLhNlkLKSixR5sKxIkcokK4nN0J-QwTViOqlKImtDTWQWkwIDAHv9mSp7O7M5hkuJDblaf3Mun8Hw5Pjywyltqj9QzThb0HisXF-Z2EZwMeMGuSpTxla7DDzj8H5oJM7fD8YKKaBrME7UmsdRKD3t28JabB86WZ6Z50C4cs04Qm45jrUXI0UzGIQaZIaha4Igkl1w2vcsdCONbit0pKLNgZsKhIaw0BCOKxAaXThcDylWuiC3dfZa8Ii_XrVAv3XbsNct0ARuenuSIzOTV6VAnhVyjrbT6cK7NQL__yAv7tT7ADqLeWVeIutaqFfNPvoNZjEs0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+soil+moisture+across+the+Tibetan+Plateau+plains+using+Aquarius+active+and+passive+L-band+microwave+observations&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Wang%2C+Qiang&rft.au=van+der+Velde%2C+Rogier&rft.au=Ferrazzoli%2C+Paolo&rft.au=Chen%2C+Xuelong&rft.date=2019-05-01&rft.issn=1569-8432&rft.volume=77&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1016%2Fj.jag.2019.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jag_2019_01_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |