Dynamical Behavior of Solution in Integrable Nonlocal Lakshmanan–Porsezian–Daniel Equation
The integrable nonlocal Lakshmanan–Porsezian–Daniel(LPD) equation which has the higher-order terms(dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation,provide its Lax pair, and present its rational soliton solutions and self-potential...
Saved in:
Published in | Communications in theoretical physics Vol. 65; no. 6; pp. 671 - 676 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-6102 1572-9494 |
DOI | 10.1088/0253-6102/65/6/671 |
Cover
Abstract | The integrable nonlocal Lakshmanan–Porsezian–Daniel(LPD) equation which has the higher-order terms(dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation,provide its Lax pair, and present its rational soliton solutions and self-potential function by using the degenerate Darboux transformation. From the numerical plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution produced by δ are discussed. |
---|---|
AbstractList | The integrable nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation which has the higher-order terms (dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation, provide its Lax pair, and present its rational soliton solutions and self-potential function by using the degenerate Darboux transformation. From the numerical plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution produced by delta are discussed. The integrable nonlocal Lakshmanan–Porsezian–Daniel(LPD) equation which has the higher-order terms(dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation,provide its Lax pair, and present its rational soliton solutions and self-potential function by using the degenerate Darboux transformation. From the numerical plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution produced by δ are discussed. |
Author | 柳伟 邱德勤 吴志伟 贺劲松 |
AuthorAffiliation | School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China Department of Mathematics, Ningbo University, Ningbo 315211, China |
Author_xml | – sequence: 1 fullname: 柳伟 邱德勤 吴志伟 贺劲松 |
BookMark | eNp9kMtOGzEUQK2KSg2UH-hq1BWbIX6MPfayvJGitlLLttYd507i1rGJPUGCFf_AH_IlzQBiwYKV7-Kcq-uzS3ZiikjIF0YPGdV6SrkUtWKUT5Wcqqlq2QcyYbLltWlMs0Mmr8AnslvKX0opbxWbkD8ntxFW3kGojnAJNz7lKvXVrxQ2g0-x8rG6jAMuMnQBq-8phjSyM_hXliuIEB_vH36mXPDOP80nED2G6nS9gdH_TD72EAruv7x75Ors9PfxRT37cX55_G1WO9GKoXZGoAbRIRcgWN8pzsB0jvE5zHVv5g0yrUzTO6e5k32rOs6UcwxRGsYNij1y8Lz3Oqf1BstgV744DAEipk2xTHMpGyUl3aL6GXU5lZKxt84PT8cOGXywjNoxqR2L2bGYVdIqu026Vfkb9Tr7FeTb96WvL9IyxcXax8WrpbZ_0kZRJv4DS_WJ3A |
CitedBy_id | crossref_primary_10_1016_j_aml_2024_109030 crossref_primary_10_1007_s11071_022_07844_2 crossref_primary_10_1007_s11082_018_1740_5 crossref_primary_10_1007_s12346_024_00962_9 crossref_primary_10_1007_s11071_017_3812_7 crossref_primary_10_3934_dcdss_2020398 crossref_primary_10_1016_j_ijleo_2019_01_057 crossref_primary_10_1016_j_ijleo_2019_05_105 crossref_primary_10_1016_j_cnsns_2022_106940 crossref_primary_10_1016_j_physleta_2021_127706 crossref_primary_10_1142_S0218348X21500328 crossref_primary_10_1016_j_ijleo_2018_02_091 crossref_primary_10_1371_journal_pone_0192281 crossref_primary_10_1140_epjb_e2018_90234_2 crossref_primary_10_1016_j_ijleo_2021_167043 crossref_primary_10_1016_j_rinp_2022_106039 crossref_primary_10_1142_S0217984922500580 crossref_primary_10_1088_1361_6544_aac761 crossref_primary_10_1155_2022_7340373 crossref_primary_10_1016_j_ijleo_2017_09_112 crossref_primary_10_1016_j_ijleo_2018_06_021 crossref_primary_10_1016_j_ijleo_2017_12_190 crossref_primary_10_1016_j_physleta_2023_129117 crossref_primary_10_1140_epjp_i2017_11762_7 crossref_primary_10_1111_sapm_12178 crossref_primary_10_3934_math_2021459 crossref_primary_10_1016_j_ijleo_2018_01_121 crossref_primary_10_1016_j_ijleo_2018_12_172 crossref_primary_10_1063_1_5039901 crossref_primary_10_1016_j_ijleo_2022_170256 crossref_primary_10_1016_j_ijleo_2018_07_065 crossref_primary_10_1016_j_ijleo_2021_166385 crossref_primary_10_1088_1402_4896_ad3695 crossref_primary_10_1134_S0040577922030047 crossref_primary_10_1016_j_aml_2019_105998 crossref_primary_10_1007_s00033_023_02082_x crossref_primary_10_1140_epjp_s13360_020_00505_6 crossref_primary_10_1016_j_ijleo_2018_06_012 crossref_primary_10_1007_s11082_024_06568_4 crossref_primary_10_1016_j_ijleo_2018_01_114 crossref_primary_10_1002_mma_6179 crossref_primary_10_1007_s12043_022_02436_6 crossref_primary_10_1016_j_ijleo_2019_164135 crossref_primary_10_1016_j_ijleo_2023_170548 crossref_primary_10_1016_j_ijleo_2018_04_087 crossref_primary_10_1016_j_wavemoti_2017_10_012 crossref_primary_10_1016_j_ijleo_2018_06_013 crossref_primary_10_1088_1572_9494_ab770b crossref_primary_10_1016_j_ijleo_2019_163281 crossref_primary_10_1016_j_rio_2020_100017 crossref_primary_10_1016_j_ijleo_2018_06_040 crossref_primary_10_3934_dcdsb_2021259 crossref_primary_10_1016_j_ijleo_2018_01_100 crossref_primary_10_3934_math_2023138 crossref_primary_10_1002_mma_8465 crossref_primary_10_7566_JPSJ_85_124001 crossref_primary_10_3934_math_2025124 crossref_primary_10_1002_andp_202100545 crossref_primary_10_1007_s11082_024_07048_5 crossref_primary_10_1016_j_ijleo_2021_168462 crossref_primary_10_4213_tmf10194 crossref_primary_10_1016_j_ijleo_2017_06_102 crossref_primary_10_1007_s11082_023_05004_3 crossref_primary_10_1142_S0218127422501267 crossref_primary_10_1016_j_asej_2023_102513 crossref_primary_10_1016_j_wavemoti_2022_103036 |
Cites_doi | 10.1007/s11425-006-2025-1 10.1016/j.physleta.2015.06.034 10.1088/0253-6102/25/2/241 10.1016/0375-9601(88)90520-8 10.1126/science.1258480 10.1140/epjb/e2009-00356-3 10.1017/S0334270000003891 10.1143/JPSJ.32.1681 10.1103/PhysRevLett.80.5243 10.1103/PhysRevLett.103.123601 10.1103/PhysRevE.87.052914 10.1088/0253-6102/25/3/365 10.1103/PhysRevLett.110.064105 10.1063/1.529658 10.1088/0305-4470/36/25/312 10.1098/rsta.2012.0059 10.1364/OL.37.000764 10.1103/PhysRevE.87.053202 10.1143/JPSJ.34.1289 10.1103/PhysRevLett.110.233902 10.1103/PhysRevLett.89.270401 10.1103/PhysRevE.91.033202 10.1038/nphys1515 10.1103/PhysRevLett.103.093902 10.1103/PhysRevE.55.3785 10.1088/0034-4885/70/6/R03 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/0253-6102/65/6/671 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | Dynamical Behavior of Solution in Integrable Nonlocal Lakshmanan–Porsezian–Daniel Equation |
EISSN | 1572-9494 |
EndPage | 676 |
ExternalDocumentID | 10_1088_0253_6102_65_6_671 669489601 |
GroupedDBID | 02O 042 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ADEQX AOAED CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c373t-c93e8a3be23a31fb621a9bc12dad8f9d4e18694fcc82c5f76b216cc1ee59129e3 |
ISSN | 0253-6102 |
IngestDate | Tue Aug 05 11:07:08 EDT 2025 Tue Jul 01 01:36:01 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Feb 14 10:16:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-c93e8a3be23a31fb621a9bc12dad8f9d4e18694fcc82c5f76b216cc1ee59129e3 |
Notes | nonlocal Lakshmanan–Porsezian–Daniel equation parity-time-symmetry higher-order nonlinear effect refractive index profile gain-or-loss distribution The integrable nonlocal Lakshmanan–Porsezian–Daniel(LPD) equation which has the higher-order terms(dispersions and nonlinear effects) is first introduced. We demonstrate the integrability of the nonlocal LPD equation,provide its Lax pair, and present its rational soliton solutions and self-potential function by using the degenerate Darboux transformation. From the numerical plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution produced by δ are discussed. Wei Liu , De-Qin Qiu, Zhi-Wei Wu ,Jing-Song He (1.School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China; 2.Department of Mathematics, Ningbo University, Ningbo 315211, China) 11-2592/O3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825546550 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1825546550 crossref_citationtrail_10_1088_0253_6102_65_6_671 crossref_primary_10_1088_0253_6102_65_6_671 chongqing_primary_669489601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Communications in theoretical physics |
PublicationTitleAlternate | Communications in Theoretical Physics |
PublicationYear | 2016 |
References | 22 23 24 Kivshar Y.S. (3) 2003 Zakharov V.E. (1) 1972; 34 Wu Z.W. (25) 2016; 68 Mostafazadeh A. (17) 2003; 36 Lou S.Y. (29) 1996; 2 Lou S.Y. (28) 31 10 32 11 Song C.Q. (26) 13 14 15 16 18 19 Lou S.Y. (30) 1996; 3 2 Ma L.Y. (27) 4 5 6 7 8 9 Bender C.M. (12) 2007; 70 20 21 |
References_xml | – ident: 31 doi: 10.1007/s11425-006-2025-1 – ident: 14 doi: 10.1016/j.physleta.2015.06.034 – volume: 2 start-page: 241 year: 1996 ident: 29 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/25/2/241 – ident: 6 doi: 10.1016/0375-9601(88)90520-8 – ident: 23 doi: 10.1126/science.1258480 – volume: 34 start-page: 62 issn: 0038-5646 year: 1972 ident: 1 publication-title: Sov. Phys. JETP – ident: 9 doi: 10.1140/epjb/e2009-00356-3 – ident: 28 – ident: 2 doi: 10.1017/S0334270000003891 – ident: 4 doi: 10.1143/JPSJ.32.1681 – ident: 11 doi: 10.1103/PhysRevLett.80.5243 – ident: 19 doi: 10.1103/PhysRevLett.103.123601 – ident: 32 doi: 10.1103/PhysRevE.87.052914 – volume: 3 start-page: 365 year: 1996 ident: 30 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/25/3/365 – ident: 24 doi: 10.1103/PhysRevLett.110.064105 – ident: 27 – ident: 7 doi: 10.1063/1.529658 – volume: 36 start-page: 7081 issn: 0305-4470 year: 2003 ident: 17 publication-title: J. Phys. doi: 10.1088/0305-4470/36/25/312 – ident: 13 doi: 10.1098/rsta.2012.0059 – ident: 20 doi: 10.1364/OL.37.000764 – year: 2003 ident: 3 publication-title: Optical Solitons: From Fibers to Photonic Crystals – volume: 68 start-page: 79 issn: 1221-1451 year: 2016 ident: 25 publication-title: Rom. Rep. Phys. – ident: 10 doi: 10.1103/PhysRevE.87.053202 – ident: 26 – ident: 5 doi: 10.1143/JPSJ.34.1289 – ident: 22 doi: 10.1103/PhysRevLett.110.233902 – ident: 16 doi: 10.1103/PhysRevLett.89.270401 – ident: 15 doi: 10.1103/PhysRevE.91.033202 – ident: 18 doi: 10.1038/nphys1515 – ident: 21 doi: 10.1103/PhysRevLett.103.093902 – ident: 8 doi: 10.1103/PhysRevE.55.3785 – volume: 70 start-page: 947 issn: 0034-4885 year: 2007 ident: 12 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/6/R03 |
SSID | ssj0002761 |
Score | 2.3560092 |
Snippet | The integrable nonlocal Lakshmanan–Porsezian–Daniel(LPD) equation which has the higher-order terms(dispersions and nonlinear effects) is first introduced.... The integrable nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation which has the higher-order terms (dispersions and nonlinear effects) is first introduced. We... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 671 |
SubjectTerms | Compressing Darboux变换 Dispersions Lax对 Mathematical analysis Mathematical models Nonlinearity Refractive index Refractivity Transformations (mathematics) 动力学行为 压缩效果 可积性 折射率剖面 潜在功能 非线性效应 |
Title | Dynamical Behavior of Solution in Integrable Nonlocal Lakshmanan–Porsezian–Daniel Equation |
URI | http://lib.cqvip.com/qk/83837X/201606/669489601.html https://www.proquest.com/docview/1825546550 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1572-9494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002761 issn: 0253-6102 databaseCode: IOP dateStart: 19820101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIIXPgYT3QAZCfFSmTZfjvOIWKcOla6IVlR7sWLHYRVTsn7kZY_85Zxjx80EmgYvUWQltuTf5c53ubsfQu80KSGLw5zkwUCQMBQpYZmkhApwh_xEpKZd05cJHc3Dz4to0en8amUtVVvxQV7_ta7kf1CFMcBVV8n-A7JuUhiAe8AXroAwXO-E8bGhk4ddtm0O16YGxaypQxmnphuELo-alEVtuHrj9OfmQmetFmRarjfqGiSEmFLz3nBV7aBqGhi0a0g2NjHSVT-a0Ig7mY-XVZ22p5YupGpGjhX5unSS-L0eO79YktaTIxPPB2NKvpXWotqAhEd3iVNWb_lRAB7pwChZZfVq7JMkNHzGjeI1JBFWwNpalBpWFmuQqSGI-UPXg36s22LY1eCe6j4ZOhbhJmi3156c8ZP5eMxnw8Xs_dWKaOYx_Yfe0rDcQ_f9mFLNgnF6NnXWHMZq1sVmGVt4BYv33VifRn3ap7oNw0MwWsWPFezUzYPOTTtfH15mT9Fj63Xgj0aEnqGOKvbRE-uBYKvfN_vowdSg-RydO9nCjWzhMseNbOFlgXeyhRvZwrfIFm5k6wWanwxnn0bE8nAQGcTBlsgkUCwNhPKDNPByQX0vTYT0_CzNWJ5kodK8ZmEuJfNllMdU-B6V0lMqSuA4qYIDtFeUhXqJcOIzJsKMsQQ84SwZiCgLRexl8D5NmQq66MhtIL8y_VY4hckZeNpeF3nNlnJpW9hrJpVLXqdSMMY1JFxDwmnEKQdIuqjn3mkmvO3ptw1SHPSs_nmWFqqsNhz8cJ3QCQ794R2eOUKPdp_GK7S3XVfqNZxet-JNLV6_Aeh_mCU |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+Behavior+of+Solution+in+Integrable+Nonlocal+Lakshmanan-Porsezian-Daniel+Equation&rft.jtitle=Communications+in+theoretical+physics&rft.au=Liu%2C+Wei&rft.au=Qiu%2C+De-Qin&rft.au=Wu%2C+Zhi-Wei&rft.au=He%2C+Jing-Song&rft.date=2016-06-01&rft.issn=0253-6102&rft.eissn=1572-9494&rft.volume=65&rft.issue=6&rft.spage=671&rft.epage=676&rft_id=info:doi/10.1088%2F0253-6102%2F65%2F6%2F671&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |