The nexus between water, exergy, and economics in an optimal integrated desalination system with two configurations and four operation modes
[Display omitted] •A novel integrated system was proposed in 2 configurations and 4 operating modes.•Four new water-exergy nexus-based evaluation criteria were employed.•Some performance criteria improved by 3.7 times after many-objective optimization.•The robust double-compressor configuration is r...
Saved in:
| Published in | Energy conversion and management Vol. 251; p. 114966 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.2022
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2021.114966 |
Cover
| Abstract | [Display omitted]
•A novel integrated system was proposed in 2 configurations and 4 operating modes.•Four new water-exergy nexus-based evaluation criteria were employed.•Some performance criteria improved by 3.7 times after many-objective optimization.•The robust double-compressor configuration is recommended for hot and dry regions.•The single-compressor configuration is more adaptable to environmental fluctuations.
Numerous integrated desalination systems have been proposed to satisfy the growing global demand for freshwater. However, the responses of various optimal configurations have rarely been subject to advanced combined analyses. Here, a parallel-feed multi-effect evaporative desalination unit is integrated with a series double-effect water-lithium bromide absorption heat pump using thermo-mechanical components to propose a novel flexible system. The proposed hybrid multi-modal cooling-heating-desalination system can be configured as a single compressor or a double-compressor. Both configurations can operate in four modes, producing chilled and tap water (mode I); hot and tap water (mode II); tap water (mode III); or chilled, hot, and tap water (mode IV). The energy, exergy, and economics of the proposed system are modeled in an iterative nonlinear thermo-mathematical program. The base models are compared using exergoeconomic and novel water-exergy nexus-based evaluation criteria, their sensitivity is examined under each operation mode, and the optimal configurations are determined by solving a many-objective optimization model. A non-dominated sorting genetic algorithm generation III is employed to solve the many-objective optimization problem. Exergy for water, exergy efficiency, and total product exergy costs, respectively, improved by 3, 3.6, and 3.7 times, while total annual costs decreased by 17.8–50.3% after optimization. Considering the nexus between exergy, water, and economics, the optimal single compressor configuration was recommended for hot and dry regions and the robust double-compressor configuration was recommended for cold climates or general trigeneration. |
|---|---|
| AbstractList | [Display omitted]
•A novel integrated system was proposed in 2 configurations and 4 operating modes.•Four new water-exergy nexus-based evaluation criteria were employed.•Some performance criteria improved by 3.7 times after many-objective optimization.•The robust double-compressor configuration is recommended for hot and dry regions.•The single-compressor configuration is more adaptable to environmental fluctuations.
Numerous integrated desalination systems have been proposed to satisfy the growing global demand for freshwater. However, the responses of various optimal configurations have rarely been subject to advanced combined analyses. Here, a parallel-feed multi-effect evaporative desalination unit is integrated with a series double-effect water-lithium bromide absorption heat pump using thermo-mechanical components to propose a novel flexible system. The proposed hybrid multi-modal cooling-heating-desalination system can be configured as a single compressor or a double-compressor. Both configurations can operate in four modes, producing chilled and tap water (mode I); hot and tap water (mode II); tap water (mode III); or chilled, hot, and tap water (mode IV). The energy, exergy, and economics of the proposed system are modeled in an iterative nonlinear thermo-mathematical program. The base models are compared using exergoeconomic and novel water-exergy nexus-based evaluation criteria, their sensitivity is examined under each operation mode, and the optimal configurations are determined by solving a many-objective optimization model. A non-dominated sorting genetic algorithm generation III is employed to solve the many-objective optimization problem. Exergy for water, exergy efficiency, and total product exergy costs, respectively, improved by 3, 3.6, and 3.7 times, while total annual costs decreased by 17.8–50.3% after optimization. Considering the nexus between exergy, water, and economics, the optimal single compressor configuration was recommended for hot and dry regions and the robust double-compressor configuration was recommended for cold climates or general trigeneration. Numerous integrated desalination systems have been proposed to satisfy the growing global demand for freshwater. However, the responses of various optimal configurations have rarely been subject to advanced combined analyses. Here, a parallel-feed multi-effect evaporative desalination unit is integrated with a series double-effect water-lithium bromide absorption heat pump using thermo-mechanical components to propose a novel flexible system. The proposed hybrid multi-modal cooling-heating-desalination system can be configured as a single compressor or a double-compressor. Both configurations can operate in four modes, producing chilled and tap water (mode I); hot and tap water (mode II); tap water (mode III); or chilled, hot, and tap water (mode IV). The energy, exergy, and economics of the proposed system are modeled in an iterative nonlinear thermo-mathematical program. The base models are compared using exergoeconomic and novel water-exergy nexus-based evaluation criteria, their sensitivity is examined under each operation mode, and the optimal configurations are determined by solving a many-objective optimization model. A non-dominated sorting genetic algorithm generation III is employed to solve the many-objective optimization problem. Exergy for water, exergy efficiency, and total product exergy costs, respectively, improved by 3, 3.6, and 3.7 times, while total annual costs decreased by 17.8–50.3% after optimization. Considering the nexus between exergy, water, and economics, the optimal single compressor configuration was recommended for hot and dry regions and the robust double-compressor configuration was recommended for cold climates or general trigeneration. |
| ArticleNumber | 114966 |
| Author | Yoo, ChangKyoo Tayerani Charmchi, Amir Saman Ifaei, Pouya |
| Author_xml | – sequence: 1 givenname: Amir Saman surname: Tayerani Charmchi fullname: Tayerani Charmchi, Amir Saman – sequence: 2 givenname: Pouya surname: Ifaei fullname: Ifaei, Pouya – sequence: 3 givenname: ChangKyoo surname: Yoo fullname: Yoo, ChangKyoo email: ckyoo@khu.ac.kr |
| BookMark | eNqFkUFv1DAQhS1UJLaFv4AsceHQLB4ncRyJA6gCWqkSl3K2vPZk61ViL7bDdv9DfzTuBi699GR55ntPo_fOyZkPHgl5D2wNDMSn3Rq9CX7Sfs0ZhzVA0wvxiqxAdn3FOe_OyIpBLyrZs-YNOU9pxxirWyZW5PHuHqnHhznRDeYDoqcHnTFeUnzAuD1eUu0txeIfJmcSdb4MaNhnN-mx_DJuY-EttZj06LzOLniajinjRA8u39N8CLTIB7ed42mbTpZDmGPxwWVGp1AM3pLXgx4Tvvv3XpBf37_dXV1Xtz9_3Fx9va1M3dW5MmBkz4fBtlzqoRcNNj0gtI0wiFKjrXvTWgSNyDedrRsQrYW-w03HG1Pr-oJ8XHz3MfyeMWU1uWRwHLXHMCfFRS0a2bCOFfTDM3RXDvflukJxkBJAQqHEQpkYUoo4qH0sAcWjAqaeSlI79b8k9VSSWkoqws_PhMblUyI5aje-LP-yyLGk9cdhVMm4QqJ1EU1WNriXLP4Cw2K3tg |
| CitedBy_id | crossref_primary_10_2174_1573411018666220805112549 crossref_primary_10_1016_j_energy_2022_126432 crossref_primary_10_1016_j_enconman_2025_119717 crossref_primary_10_1016_j_enconman_2023_116960 crossref_primary_10_1016_j_enconman_2023_117746 crossref_primary_10_1016_j_jclepro_2023_137632 crossref_primary_10_1016_j_jclepro_2022_134465 crossref_primary_10_1016_j_enconman_2023_117802 crossref_primary_10_1016_j_rser_2022_112445 |
| Cites_doi | 10.1016/j.enconman.2010.06.071 10.1016/j.energy.2014.07.082 10.1016/j.energy.2010.09.028 10.5004/dwt.2019.23874 10.1126/science.1200488 10.1051/e3sconf/201911802021 10.1016/j.applthermaleng.2018.09.059 10.1016/j.rser.2014.03.036 10.1016/j.rser.2017.10.092 10.1016/j.enconman.2020.113105 10.1016/S0011-9164(04)00523-5 10.1063/1.1461829 10.1016/j.energy.2020.117341 10.1109/IRSEC.2018.8702999 10.1016/j.desal.2019.114144 10.1016/j.envsci.2020.11.012 10.1016/j.desal.2014.12.030 10.1007/s00231-017-2226-x 10.1016/j.enconman.2020.112705 10.1016/j.desal.2020.114448 10.1016/j.energy.2014.07.081 10.1016/j.enconman.2020.113622 10.1016/j.desal.2019.01.029 10.1016/j.desal.2018.10.003 10.1088/1748-9326/abbfc3 10.1016/j.desal.2017.06.008 10.1016/j.applthermaleng.2018.07.014 10.1007/s13369-020-04374-0 10.1016/j.desal.2019.114261 10.1016/j.enconman.2018.07.038 10.1016/j.desal.2015.06.003 10.1016/j.enconman.2016.06.030 10.1515/9783110535365 10.1016/j.apenergy.2020.116136 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 1, 2022 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2021.114966 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2021_114966 S0196890421011420 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-c1c892ffd528af964e491e1546cee8aed39c5de1aee2b7d34165d197eb724c3a3 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Sat Sep 27 18:26:08 EDT 2025 Wed Aug 13 04:21:56 EDT 2025 Thu Apr 24 22:54:34 EDT 2025 Thu Oct 09 00:19:52 EDT 2025 Fri Feb 23 02:41:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water-exergy nexus Multi-effect evaporation desalination Climate change Absorption heat pump Many-objective optimization Exergoeconomic analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-c1c892ffd528af964e491e1546cee8aed39c5de1aee2b7d34165d197eb724c3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2621881181 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2636484070 proquest_journals_2621881181 crossref_primary_10_1016_j_enconman_2021_114966 crossref_citationtrail_10_1016_j_enconman_2021_114966 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114966 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Arshi Banu, Sudharsan (b0185) 2018; 82 Wang, Lior (b0125) 2011; 36 Janghorban Esfahani, Lee, Yoo (b0115) 2015; 359 López-Zavala, Velázquez, González-Uribe, Quezada-Espinoza, Aguilar-Jiménez, Islas (b0070) 2019; 471 Salimi, Amidpour (b0050) 2017; 419 SDG Indicators n.d. https://unstats.un.org/sdgs/report/2020/goal-06/ (accessed April 9, 2021). Mohammadi, McGowan (b0080) 2018; 145 Klemeš JJ, Varbanov PS, Wan Alwi SR, Manan ZA. Sustainable process integration and intensification: saving energy, water and resources. Walter de Gruyter GmbH & Co KG; 2018. https://doi.org/10.1515/9783110535365. Wagner, Pruß (b0170) 2002; 31 van Vliet, Jones, Flörke, Franssen, Hanasaki, Wada (b0005) 2021; 16 Mayor (b0025) 2019; 457 Wang, Yang (b0110) 2018; 448 Parham, Khamooshi, Tematio, Yari, Atikol (b0055) 2014; 34 Ifaei, Safder, Tayerani Charmchi, Yoo (b0045) 2021; 227 Hamidi, Parham, Atikol, Shahbaz (b0095) 2015; 371 Shaaban, Antar, Khalifa, El-Shaarawi (b0140) 2020; 45 Zhang, Shen, Zhu, Weng, Weerasinghe, Wu (b0155) 2019; 118 Rostamzadeh, Ghiasirad, Amidpour, Amidpour (b0175) 2020; 477 Carballo, Bonilla, Roca, de la Calle, Palenzuela, Alarcón-Padilla (b0085) 2020; 210 CHEN, HUANG (b0060) 2004; 169 Abdelhay, Fath, Nada (b0090) 2020; 198 Wang, Morosuk, Yang, Cao (b0135) 2020; 485 Chorak, Palenzuela, Alarcón-Padilla, Ben (b0105) 2018; 142 Ghaebi, Abbaspour (b0150) 2018; 54 Herold, Radermacher, Klein (b0160) 2016 Elsaid K, Taha Sayed E, Yousef BAA, Kamal Hussien Rabaia M, Ali Abdelkareem M, Olabi AG. Recent progress on the utilization of waste heat for desalination: a review. Energy Convers Manag 2020;221:113105. https://doi.org/10.1016/j.enconman.2020.113105. Tayerani Charmchi, Ifaei, Yoo (b0040) 2021; 281 Katz (b0020) 2021; 116 Janghorban Esfahani, Kang, Yoo (b0165) 2014; 75 Wang, Lior (b0120) 2011; 52 Wang, Yang (b0130) 2019; 155 Mohammadi, Saghafifar, McGowan (b0145) 2018; 172 Haberl JS. Economic Calculations for ASHRAE handbook. Energy Syst Lab Rep EST-TR-93/04-07, Coll Station TX Texas A&M Univ 1993. Chorak A, Palenzuela P, Alarcón-Padilla D-C, Abdellah A Ben. Experimental characterization of a double-effect absorption heat pump-med system driven by parabolic trough collectors. Proc 2018 6th Int Renew Sustain Energy Conf IRSEC 2018 2018. https://doi.org/10.1109/IRSEC.2018.8702999. Elimelech, Phillip (b0010) 2011; 333 U.S. DoE. Industrial Heat Pumps for Steam and Fuel Savings. Ind Technol Progr 2003:17. Ifaei, Ataei, Yoo (b0190) 2016; 123 Janghorban Esfahani, Yoo (b0075) 2014; 75 López-Zavala (10.1016/j.enconman.2021.114966_b0070) 2019; 471 Ifaei (10.1016/j.enconman.2021.114966_b0045) 2021; 227 10.1016/j.enconman.2021.114966_b0015 Elimelech (10.1016/j.enconman.2021.114966_b0010) 2011; 333 Janghorban Esfahani (10.1016/j.enconman.2021.114966_b0115) 2015; 359 Ifaei (10.1016/j.enconman.2021.114966_b0190) 2016; 123 CHEN (10.1016/j.enconman.2021.114966_b0060) 2004; 169 Mohammadi (10.1016/j.enconman.2021.114966_b0080) 2018; 145 Katz (10.1016/j.enconman.2021.114966_b0020) 2021; 116 Tayerani Charmchi (10.1016/j.enconman.2021.114966_b0040) 2021; 281 Salimi (10.1016/j.enconman.2021.114966_b0050) 2017; 419 Shaaban (10.1016/j.enconman.2021.114966_b0140) 2020; 45 Carballo (10.1016/j.enconman.2021.114966_b0085) 2020; 210 Wang (10.1016/j.enconman.2021.114966_b0130) 2019; 155 Wang (10.1016/j.enconman.2021.114966_b0125) 2011; 36 Hamidi (10.1016/j.enconman.2021.114966_b0095) 2015; 371 10.1016/j.enconman.2021.114966_b0035 Wang (10.1016/j.enconman.2021.114966_b0120) 2011; 52 10.1016/j.enconman.2021.114966_b0030 Chorak (10.1016/j.enconman.2021.114966_b0105) 2018; 142 Mayor (10.1016/j.enconman.2021.114966_b0025) 2019; 457 Janghorban Esfahani (10.1016/j.enconman.2021.114966_b0075) 2014; 75 Abdelhay (10.1016/j.enconman.2021.114966_b0090) 2020; 198 Parham (10.1016/j.enconman.2021.114966_b0055) 2014; 34 van Vliet (10.1016/j.enconman.2021.114966_b0005) 2021; 16 Wagner (10.1016/j.enconman.2021.114966_b0170) 2002; 31 Zhang (10.1016/j.enconman.2021.114966_b0155) 2019; 118 Wang (10.1016/j.enconman.2021.114966_b0135) 2020; 485 Herold (10.1016/j.enconman.2021.114966_b0160) 2016 Wang (10.1016/j.enconman.2021.114966_b0110) 2018; 448 10.1016/j.enconman.2021.114966_b0180 Arshi Banu (10.1016/j.enconman.2021.114966_b0185) 2018; 82 Ghaebi (10.1016/j.enconman.2021.114966_b0150) 2018; 54 Mohammadi (10.1016/j.enconman.2021.114966_b0145) 2018; 172 10.1016/j.enconman.2021.114966_b0100 Janghorban Esfahani (10.1016/j.enconman.2021.114966_b0165) 2014; 75 Rostamzadeh (10.1016/j.enconman.2021.114966_b0175) 2020; 477 10.1016/j.enconman.2021.114966_b0065 |
| References_xml | – reference: Elsaid K, Taha Sayed E, Yousef BAA, Kamal Hussien Rabaia M, Ali Abdelkareem M, Olabi AG. Recent progress on the utilization of waste heat for desalination: a review. Energy Convers Manag 2020;221:113105. https://doi.org/10.1016/j.enconman.2020.113105. – volume: 118 start-page: 02021 year: 2019 ident: b0155 article-title: Economic analysis of solar refrigeration and desalination system publication-title: E3S Web Conf – volume: 448 start-page: 93 year: 2018 end-page: 102 ident: b0110 article-title: Proposal and thermodynamic analysis of a combined open-cycle absorption heat pump and thermal desalination system driven by high-humidity exhaust gas publication-title: Desalination – volume: 419 start-page: 49 year: 2017 end-page: 59 ident: b0050 article-title: Investigating the integration of desalination units into cogeneration systems utilizing R-curve tool publication-title: Desalination – volume: 34 start-page: 430 year: 2014 end-page: 452 ident: b0055 article-title: Absorption heat transformers – a comprehensive review publication-title: Renew Sustain Energy Rev – reference: U.S. DoE. Industrial Heat Pumps for Steam and Fuel Savings. Ind Technol Progr 2003:17. – volume: 36 start-page: 3878 year: 2011 end-page: 3887 ident: b0125 article-title: Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump publication-title: Energy – volume: 471 start-page: 114144 year: 2019 ident: b0070 article-title: Absorption cooling and desalination system with a novel internal energetic and mass integration that increases capacity and efficiency publication-title: Desalination – volume: 45 start-page: 5273 year: 2020 end-page: 5284 ident: b0140 article-title: Analysis of integrated H2O–LiBr absorption cooling and single-effect evaporation desalination system publication-title: Arab J Sci Eng – volume: 54 start-page: 1337 year: 2018 end-page: 1357 ident: b0150 article-title: Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG publication-title: Heat Mass Transf Und Stoffuebertragung – volume: 210 start-page: 112705 year: 2020 ident: b0085 article-title: Optimal operation of solar thermal desalination systems coupled to double-effect absorption heat pumps publication-title: Energy Convers Manag – volume: 123 start-page: 625 year: 2016 end-page: 642 ident: b0190 article-title: Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-Part 2: Thermoeconomic and environmental analysis publication-title: Energy Convers Manag – volume: 227 start-page: 113622 year: 2021 ident: b0045 article-title: An integrated steam jet ejector power plant for drought adaptation considering water-exergy nexus in an optimal platform publication-title: Energy Convers Manag – volume: 457 start-page: 75 year: 2019 end-page: 84 ident: b0025 article-title: Growth patterns in mature desalination technologies and analogies with the energy field publication-title: Desalination – reference: Chorak A, Palenzuela P, Alarcón-Padilla D-C, Abdellah A Ben. Experimental characterization of a double-effect absorption heat pump-med system driven by parabolic trough collectors. Proc 2018 6th Int Renew Sustain Energy Conf IRSEC 2018 2018. https://doi.org/10.1109/IRSEC.2018.8702999. – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: b0010 article-title: The future of seawater desalination: Energy, technology, and the environment publication-title: Science (80-) – reference: SDG Indicators n.d. https://unstats.un.org/sdgs/report/2020/goal-06/ (accessed April 9, 2021). – volume: 281 start-page: 116136 year: 2021 ident: b0040 article-title: Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: a hydropower pinch analysis publication-title: Appl Energy – volume: 116 start-page: 171 year: 2021 end-page: 180 ident: b0020 article-title: Desalination and hydrodiplomacy: refreshening transboundary water negotiations or adding salt to the wounds? publication-title: Environ Sci Policy – volume: 155 start-page: 370 year: 2019 end-page: 380 ident: b0130 article-title: Thermodynamic analysis of an absorption-assisted multi-effect thermal desalination system with an extended operating temperature range publication-title: Desalin Water Treat – volume: 31 start-page: 387 year: 2002 end-page: 535 ident: b0170 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J Phys Chem Ref Data – volume: 82 start-page: 3750 year: 2018 end-page: 3761 ident: b0185 article-title: Review of water based vapour absorption cooling systems using thermodynamic analysis publication-title: Renew Sustain Energy Rev – volume: 477 start-page: 114261 year: 2020 ident: b0175 article-title: Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles publication-title: Desalination – reference: Haberl JS. Economic Calculations for ASHRAE handbook. Energy Syst Lab Rep EST-TR-93/04-07, Coll Station TX Texas A&M Univ 1993. – volume: 16 start-page: 024020 year: 2021 ident: b0005 article-title: Global water scarcity including surface water quality and expansions of clean water technologies publication-title: Environ Res Lett – reference: Klemeš JJ, Varbanov PS, Wan Alwi SR, Manan ZA. Sustainable process integration and intensification: saving energy, water and resources. Walter de Gruyter GmbH & Co KG; 2018. https://doi.org/10.1515/9783110535365. – volume: 198 start-page: 117341 year: 2020 ident: b0090 article-title: Solar driven polygeneration system for power, desalination and cooling publication-title: Energy – volume: 75 start-page: 312 year: 2014 end-page: 326 ident: b0165 article-title: A high efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 1: energy and economic modeling and analysis publication-title: Energy – volume: 359 start-page: 92 year: 2015 end-page: 107 ident: b0115 article-title: Evaluation and optimization of a multi-effect evaporation-absorption heat pump desalination based conventional and advanced exergy and exergoeconomic analyses publication-title: Desalination – volume: 172 start-page: 619 year: 2018 end-page: 644 ident: b0145 article-title: Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle publication-title: Energy Convers Manag – volume: 145 start-page: 652 year: 2018 end-page: 666 ident: b0080 article-title: An efficient integrated trigeneration system for the production of dual temperature cooling and fresh water: thermoeconomic analysis and optimization publication-title: Appl Therm Eng – volume: 169 start-page: 161 year: 2004 end-page: 165 ident: b0060 article-title: A discussion of “Heat pumps as a source of heat energy for desalination of seawater” publication-title: Desalination – volume: 75 start-page: 327 year: 2014 end-page: 337 ident: b0075 article-title: A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: thermoeconomic and flexibility analysis publication-title: Energy – volume: 52 start-page: 220 year: 2011 end-page: 227 ident: b0120 article-title: Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr-H2O absorption cycle-Part 1: system configuration and mathematical model publication-title: Energy Convers Manag – volume: 371 start-page: 37 year: 2015 end-page: 45 ident: b0095 article-title: A parametric performance analysis of single and multi-effect distillation systems integrated with open-cycle absorption heat transformers publication-title: Desalination – volume: 142 start-page: 543 year: 2018 end-page: 554 ident: b0105 article-title: Energetic evaluation of a double-effect LiBr-H2O absorption heat pump coupled to a multi-effect distillation plant at nominal and off-design conditions publication-title: Appl Therm Eng – volume: 485 start-page: 114448 year: 2020 ident: b0135 article-title: A graphical method for evaluating the thermodynamic feasibility of absorption vapor compression multi-effect thermal desalination systems publication-title: Desalination – year: 2016 ident: b0160 publication-title: Absorption chillers and heat pumps – volume: 52 start-page: 220 year: 2011 ident: 10.1016/j.enconman.2021.114966_b0120 article-title: Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr-H2O absorption cycle-Part 1: system configuration and mathematical model publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.06.071 – ident: 10.1016/j.enconman.2021.114966_b0015 – ident: 10.1016/j.enconman.2021.114966_b0065 – year: 2016 ident: 10.1016/j.enconman.2021.114966_b0160 – volume: 75 start-page: 327 year: 2014 ident: 10.1016/j.enconman.2021.114966_b0075 article-title: A highly efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 2: thermoeconomic and flexibility analysis publication-title: Energy doi: 10.1016/j.energy.2014.07.082 – volume: 36 start-page: 3878 year: 2011 ident: 10.1016/j.enconman.2021.114966_b0125 article-title: Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump publication-title: Energy doi: 10.1016/j.energy.2010.09.028 – volume: 155 start-page: 370 year: 2019 ident: 10.1016/j.enconman.2021.114966_b0130 article-title: Thermodynamic analysis of an absorption-assisted multi-effect thermal desalination system with an extended operating temperature range publication-title: Desalin Water Treat doi: 10.5004/dwt.2019.23874 – volume: 333 start-page: 712 year: 2011 ident: 10.1016/j.enconman.2021.114966_b0010 article-title: The future of seawater desalination: Energy, technology, and the environment publication-title: Science (80-) doi: 10.1126/science.1200488 – volume: 118 start-page: 02021 year: 2019 ident: 10.1016/j.enconman.2021.114966_b0155 article-title: Economic analysis of solar refrigeration and desalination system publication-title: E3S Web Conf doi: 10.1051/e3sconf/201911802021 – volume: 145 start-page: 652 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0080 article-title: An efficient integrated trigeneration system for the production of dual temperature cooling and fresh water: thermoeconomic analysis and optimization publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.09.059 – volume: 34 start-page: 430 year: 2014 ident: 10.1016/j.enconman.2021.114966_b0055 article-title: Absorption heat transformers – a comprehensive review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.03.036 – volume: 82 start-page: 3750 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0185 article-title: Review of water based vapour absorption cooling systems using thermodynamic analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.10.092 – ident: 10.1016/j.enconman.2021.114966_b0030 doi: 10.1016/j.enconman.2020.113105 – volume: 169 start-page: 161 year: 2004 ident: 10.1016/j.enconman.2021.114966_b0060 article-title: A discussion of “Heat pumps as a source of heat energy for desalination of seawater” publication-title: Desalination doi: 10.1016/S0011-9164(04)00523-5 – volume: 31 start-page: 387 year: 2002 ident: 10.1016/j.enconman.2021.114966_b0170 article-title: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use publication-title: J Phys Chem Ref Data doi: 10.1063/1.1461829 – volume: 198 start-page: 117341 year: 2020 ident: 10.1016/j.enconman.2021.114966_b0090 article-title: Solar driven polygeneration system for power, desalination and cooling publication-title: Energy doi: 10.1016/j.energy.2020.117341 – ident: 10.1016/j.enconman.2021.114966_b0180 – ident: 10.1016/j.enconman.2021.114966_b0100 doi: 10.1109/IRSEC.2018.8702999 – volume: 471 start-page: 114144 year: 2019 ident: 10.1016/j.enconman.2021.114966_b0070 article-title: Absorption cooling and desalination system with a novel internal energetic and mass integration that increases capacity and efficiency publication-title: Desalination doi: 10.1016/j.desal.2019.114144 – volume: 116 start-page: 171 year: 2021 ident: 10.1016/j.enconman.2021.114966_b0020 article-title: Desalination and hydrodiplomacy: refreshening transboundary water negotiations or adding salt to the wounds? publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2020.11.012 – volume: 359 start-page: 92 year: 2015 ident: 10.1016/j.enconman.2021.114966_b0115 article-title: Evaluation and optimization of a multi-effect evaporation-absorption heat pump desalination based conventional and advanced exergy and exergoeconomic analyses publication-title: Desalination doi: 10.1016/j.desal.2014.12.030 – volume: 54 start-page: 1337 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0150 article-title: Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG publication-title: Heat Mass Transf Und Stoffuebertragung doi: 10.1007/s00231-017-2226-x – volume: 210 start-page: 112705 year: 2020 ident: 10.1016/j.enconman.2021.114966_b0085 article-title: Optimal operation of solar thermal desalination systems coupled to double-effect absorption heat pumps publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112705 – volume: 485 start-page: 114448 year: 2020 ident: 10.1016/j.enconman.2021.114966_b0135 article-title: A graphical method for evaluating the thermodynamic feasibility of absorption vapor compression multi-effect thermal desalination systems publication-title: Desalination doi: 10.1016/j.desal.2020.114448 – volume: 75 start-page: 312 year: 2014 ident: 10.1016/j.enconman.2021.114966_b0165 article-title: A high efficient combined multi-effect evaporation-absorption heat pump and vapor-compression refrigeration part 1: energy and economic modeling and analysis publication-title: Energy doi: 10.1016/j.energy.2014.07.081 – volume: 227 start-page: 113622 year: 2021 ident: 10.1016/j.enconman.2021.114966_b0045 article-title: An integrated steam jet ejector power plant for drought adaptation considering water-exergy nexus in an optimal platform publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113622 – volume: 457 start-page: 75 year: 2019 ident: 10.1016/j.enconman.2021.114966_b0025 article-title: Growth patterns in mature desalination technologies and analogies with the energy field publication-title: Desalination doi: 10.1016/j.desal.2019.01.029 – volume: 448 start-page: 93 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0110 article-title: Proposal and thermodynamic analysis of a combined open-cycle absorption heat pump and thermal desalination system driven by high-humidity exhaust gas publication-title: Desalination doi: 10.1016/j.desal.2018.10.003 – volume: 16 start-page: 024020 year: 2021 ident: 10.1016/j.enconman.2021.114966_b0005 article-title: Global water scarcity including surface water quality and expansions of clean water technologies publication-title: Environ Res Lett doi: 10.1088/1748-9326/abbfc3 – volume: 419 start-page: 49 year: 2017 ident: 10.1016/j.enconman.2021.114966_b0050 article-title: Investigating the integration of desalination units into cogeneration systems utilizing R-curve tool publication-title: Desalination doi: 10.1016/j.desal.2017.06.008 – volume: 142 start-page: 543 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0105 article-title: Energetic evaluation of a double-effect LiBr-H2O absorption heat pump coupled to a multi-effect distillation plant at nominal and off-design conditions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2018.07.014 – volume: 45 start-page: 5273 year: 2020 ident: 10.1016/j.enconman.2021.114966_b0140 article-title: Analysis of integrated H2O–LiBr absorption cooling and single-effect evaporation desalination system publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04374-0 – volume: 477 start-page: 114261 year: 2020 ident: 10.1016/j.enconman.2021.114966_b0175 article-title: Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles publication-title: Desalination doi: 10.1016/j.desal.2019.114261 – volume: 172 start-page: 619 year: 2018 ident: 10.1016/j.enconman.2021.114966_b0145 article-title: Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.07.038 – volume: 371 start-page: 37 year: 2015 ident: 10.1016/j.enconman.2021.114966_b0095 article-title: A parametric performance analysis of single and multi-effect distillation systems integrated with open-cycle absorption heat transformers publication-title: Desalination doi: 10.1016/j.desal.2015.06.003 – volume: 123 start-page: 625 year: 2016 ident: 10.1016/j.enconman.2021.114966_b0190 article-title: Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-Part 2: Thermoeconomic and environmental analysis publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.06.030 – ident: 10.1016/j.enconman.2021.114966_b0035 doi: 10.1515/9783110535365 – volume: 281 start-page: 116136 year: 2021 ident: 10.1016/j.enconman.2021.114966_b0040 article-title: Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: a hydropower pinch analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116136 |
| SSID | ssj0003506 |
| Score | 2.4321842 |
| Snippet | [Display omitted]
•A novel integrated system was proposed in 2 configurations and 4 operating modes.•Four new water-exergy nexus-based evaluation criteria were... Numerous integrated desalination systems have been proposed to satisfy the growing global demand for freshwater. However, the responses of various optimal... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114966 |
| SubjectTerms | absorption Absorption heat pump administrative management algorithms Climate change cold Cold weather Configurations Desalination Drinking water Economic models Economics Exergoeconomic analysis Exergy freshwater Genetic algorithms Heat exchangers Heat pumps Hybrid systems Iterative methods Lithium Many-objective optimization Mathematical models Mechanical components Multi-effect evaporation desalination Multiple objective analysis Optimization Robustness (mathematics) Sensitivity analysis Sorting algorithms system optimization tap water Thermodynamics Water-exergy nexus |
| Title | The nexus between water, exergy, and economics in an optimal integrated desalination system with two configurations and four operation modes |
| URI | https://dx.doi.org/10.1016/j.enconman.2021.114966 https://www.proquest.com/docview/2621881181 https://www.proquest.com/docview/2636484070 |
| Volume | 251 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXNoDKi2oy0uu1CNhE78SH1cr0LZVuRQkbpZjO2hRySKyK8qFX8CPZiZxlocqceDqZBzLY8-Mnfm-IeQ7l6nNtVWJtKlMRGnTBI5gHKFPNqtUqlmLSvt9oiZn4ue5PF8h4x4Lg2mV0fZ3Nr211rFlGGdzeD2dDv8gs0uhYdFlLSAUz-1C5FjF4PD-Kc0DBqM6yLRK8O1nKOHLQ-SKrK8s8qCyDGlzdcuW-F8H9cpUt_7n-BNZj4EjHXVj2yArof5MPj6jE_xCHkDntA7_Fg2N6Vf0FkLJmwOKhZUu7g6orT0NEYrc0GkNDXQGRuMKel4SR3jqQ2MRqItKox3XM8ULWzq_nVEQr6YXi27lNG2XFQwO-gldG8XqOs0mOTs-Oh1PklhtIXE85_PEZa7QrKq8ZIWttBJB6CxAhKXAjxY2eK6d9CGzIbAy9-D9lPSZzkOZM-G45VtktZ7V4SuhVe6lLktViKwSEG9pabUTwQnOrOOlHRDZT7FxkYocK2L8NX3O2aXpVWNQNaZTzYAMl3LXHRnHmxK616B5sawMeIw3ZXd7lZu4sRvDFMREBaJ1B-Tb8jFsSfzPYuswW-A7XAk4OOfp9js-v0M-MIRatNc9u2R1frMIexAAzcv9doXvk7XRj1-Tk0dU_Air |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQPUAPiEJRt9DWSD0SNvEr8bFCRdvyuBQkbpZjO2hRyaLNrhYu_QX90cwkzpaiShx6dTKO5bHn4fj7hpDPXKY211Yl0qYyEaVNE0jBOEKfbFapVLMWlXZ2rkaX4vuVvFohRz0WBq9VRtvf2fTWWseWYZzN4d14PPyBzC6FhkWXtYBQyNtfCclyzMAOf_255wGjUR1mWiX4-hOY8M0hkkXWtxaJUFmGvLm6pUv8p4d6ZqtbB3S8STZi5Ei_dIN7Q1ZCvUVeP-ET3Ca_Qem0Dvfzhsb7V3QBseT0gGJlpeuHA2prT0PEIjd0XEMDnYDVuIWel8wRnvrQWETqotZoR_ZM8cSWzhYTCuLV-HreLZ2m7bKCwUE_oWujWF6neUsuj79eHI2SWG4hcTzns8RlrtCsqrxkha20EkHoLECIpcCRFjZ4rp30IbMhsDL34P6U9JnOQ5kz4bjlO2S1ntThHaFV7qUuS1WIrBIQcGlptRPBCc6s46UdENlPsXGRixxLYvw0_aWzG9OrxqBqTKeaARku5e46No4XJXSvQfPXujLgMl6U3etVbuLObgxTEBQVCNcdkP3lY9iT-KPF1mEyx3e4EpA55-n7__j8J7I2ujg7Naffzk92yTpD3EV79rNHVmfTefgA0dCs_Niu9kdY9gpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nexus+between+water%2C+exergy%2C+and+economics+in+an+optimal+integrated+desalination+system+with+two+configurations+and+four+operation+modes&rft.jtitle=Energy+conversion+and+management&rft.au=Tayerani+Charmchi%2C+Amir+Saman&rft.au=Ifaei%2C+Pouya&rft.au=Yoo%2C+ChangKyoo&rft.date=2022-01-01&rft.issn=0196-8904&rft.volume=251+p.114966-&rft_id=info:doi/10.1016%2Fj.enconman.2021.114966&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |