Comparative analysis of two-step GA-based PV array reconfiguration technique and other reconfiguration techniques
•Dynamic reconfiguration with GA for TCT PV array to disperse the shading effect.•The new technique obtains the optimal configuration and improve the generated power.•The proposed technique is applied for different sizes of PV array.•The proposed technique overcomes the issue of scaling to larger ap...
Saved in:
| Published in | Energy conversion and management Vol. 230; p. 113806 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.02.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2020.113806 |
Cover
| Abstract | •Dynamic reconfiguration with GA for TCT PV array to disperse the shading effect.•The new technique obtains the optimal configuration and improve the generated power.•The proposed technique is applied for different sizes of PV array.•The proposed technique overcomes the issue of scaling to larger applications.
Photovoltaic (PV) plants can be exposed to partial shading, which reduces the energy production and causes multi-peaks to form in the Power-Voltage (P-V) curve. As a result, the row currents of the PV modules will not be constant. Several techniques have been proposed to overcome partial shading, such as the static and dynamic reconfiguration techniques, with both aiming to reduce the difference in the row currents to improve energy production. Minimization of the row current via static techniques requires laborious work and extra wiring. On the other hand, dynamic techniques require an extensive monitoring system to support different tasks. Therefore, to improve the power generated from the PV array, this paper suggests a new reconfiguration technique for PV panels using Genetic algorithm (GA) and two main reconfigurable steps based on a switching matrix. In this technique, only the electrical connections of the PV panels are changed while its physical location remains unchanged. To verify the effectiveness of the proposed reconfiguration technique, the system was simulated and tested using MATLAB/SIMULINK software, with four shading patterns. The results were compared with other reconfiguration techniques, namely TCT configuration, competence square (CS), SuDoKu, two-phase array reconfiguration, Genetic algorithm (GA), Particle Swarm Optimization (PSO), and Modified Harris Hawks Optimization (MHHO). The performance of each shading case was also analyzed. Also, a comparative study on performance analysis in real-time application was carried out for each shading pattern. The results prove the superiority of the proposed technique over other techniques for overcoming partial shading. |
|---|---|
| AbstractList | Photovoltaic (PV) plants can be exposed to partial shading, which reduces the energy production and causes multi-peaks to form in the Power-Voltage (P-V) curve. As a result, the row currents of the PV modules will not be constant. Several techniques have been proposed to overcome partial shading, such as the static and dynamic reconfiguration techniques, with both aiming to reduce the difference in the row currents to improve energy production. Minimization of the row current via static techniques requires laborious work and extra wiring. On the other hand, dynamic techniques require an extensive monitoring system to support different tasks. Therefore, to improve the power generated from the PV array, this paper suggests a new reconfiguration technique for PV panels using Genetic algorithm (GA) and two main reconfigurable steps based on a switching matrix. In this technique, only the electrical connections of the PV panels are changed while its physical location remains unchanged. To verify the effectiveness of the proposed reconfiguration technique, the system was simulated and tested using MATLAB/SIMULINK software, with four shading patterns. The results were compared with other reconfiguration techniques, namely TCT configuration, competence square (CS), SuDoKu, two-phase array reconfiguration, Genetic algorithm (GA), Particle Swarm Optimization (PSO), and Modified Harris Hawks Optimization (MHHO). The performance of each shading case was also analyzed. Also, a comparative study on performance analysis in real-time application was carried out for each shading pattern. The results prove the superiority of the proposed technique over other techniques for overcoming partial shading. •Dynamic reconfiguration with GA for TCT PV array to disperse the shading effect.•The new technique obtains the optimal configuration and improve the generated power.•The proposed technique is applied for different sizes of PV array.•The proposed technique overcomes the issue of scaling to larger applications. Photovoltaic (PV) plants can be exposed to partial shading, which reduces the energy production and causes multi-peaks to form in the Power-Voltage (P-V) curve. As a result, the row currents of the PV modules will not be constant. Several techniques have been proposed to overcome partial shading, such as the static and dynamic reconfiguration techniques, with both aiming to reduce the difference in the row currents to improve energy production. Minimization of the row current via static techniques requires laborious work and extra wiring. On the other hand, dynamic techniques require an extensive monitoring system to support different tasks. Therefore, to improve the power generated from the PV array, this paper suggests a new reconfiguration technique for PV panels using Genetic algorithm (GA) and two main reconfigurable steps based on a switching matrix. In this technique, only the electrical connections of the PV panels are changed while its physical location remains unchanged. To verify the effectiveness of the proposed reconfiguration technique, the system was simulated and tested using MATLAB/SIMULINK software, with four shading patterns. The results were compared with other reconfiguration techniques, namely TCT configuration, competence square (CS), SuDoKu, two-phase array reconfiguration, Genetic algorithm (GA), Particle Swarm Optimization (PSO), and Modified Harris Hawks Optimization (MHHO). The performance of each shading case was also analyzed. Also, a comparative study on performance analysis in real-time application was carried out for each shading pattern. The results prove the superiority of the proposed technique over other techniques for overcoming partial shading. |
| ArticleNumber | 113806 |
| Author | Muhammad Ajmal, Aidha Ekanayake, Janaka B. Ramachandaramurthy, Vigna K. Naderipour, Amirreza |
| Author_xml | – sequence: 1 givenname: Aidha surname: Muhammad Ajmal fullname: Muhammad Ajmal, Aidha email: aida_khan_1@yahoo.com organization: Institute of Power Engineering, Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga National, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia – sequence: 2 givenname: Vigna K. surname: Ramachandaramurthy fullname: Ramachandaramurthy, Vigna K. organization: Institute of Power Engineering, Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga National, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia – sequence: 3 givenname: Amirreza surname: Naderipour fullname: Naderipour, Amirreza organization: Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia – sequence: 4 givenname: Janaka B. orcidid: 0000-0003-0362-3767 surname: Ekanayake fullname: Ekanayake, Janaka B. organization: Department of Electrical and Electronic Engineering, University of Peradeniya, Galaha Rd, 20400, Sri Lanka |
| BookMark | eNqFkU1rGzEURUVJIU7av1AE3XQzjj480gx00WDapBBoF0m34knzppEZS44kJ_jfV1M3m0DJSiDOuQ_uPSMnIQYk5ANnS864utgsMbgYthCWgon6yWXH1Buy4J3uGyGEPiELxnvVdD1bnZKznDeMMdkytSAP67jdQYLiH5FCgOmQfaZxpOUpNrngjl5dNhYyDvTnLwopwYEmrOdG_3s_azHQgu4--If9HDDQWO4x_Z_J78jbEaaM7_-95-Tu29fb9XVz8-Pq-_rypnFSy9JYO2oL0ilt2341OAF9r7EfVg6s1KiVtOgQJYBVYIcOh9ZqtXLcCad1q-Q5-XTM3aU43y1m67PDaYKAcZ-NaDnn1RC6oh9foJu4T7WMmWJcKKY7WSl1pFyKOScczS75LaSD4czMS5iNeV7CzEuY4xJV_PxCdL78raUk8NPr-pejjrWtR4_JZOcriYOvLRczRP9axB9Ozq5f |
| CitedBy_id | crossref_primary_10_3233_JIFS_224137 crossref_primary_10_1007_s40430_024_05056_w crossref_primary_10_3390_su17010329 crossref_primary_10_1080_15567036_2023_2197853 crossref_primary_10_1016_j_enconman_2023_117519 crossref_primary_10_1016_j_seta_2021_101627 crossref_primary_10_1088_1402_4896_ad2a2b crossref_primary_10_1115_1_4054506 crossref_primary_10_1016_j_aej_2022_06_009 crossref_primary_10_3390_en15186821 crossref_primary_10_3390_electronics10030257 crossref_primary_10_1016_j_energy_2022_126483 crossref_primary_10_3389_fenrg_2023_1304055 crossref_primary_10_1016_j_enconman_2023_117315 crossref_primary_10_1002_cta_3629 crossref_primary_10_1002_cta_3914 crossref_primary_10_3390_su14052937 crossref_primary_10_1016_j_ecmx_2022_100320 crossref_primary_10_1002_2050_7038_13192 crossref_primary_10_1016_j_seta_2021_101878 crossref_primary_10_1016_j_solener_2024_112309 crossref_primary_10_1016_j_ijleo_2023_170559 crossref_primary_10_1080_03772063_2021_1944333 crossref_primary_10_1016_j_energy_2023_129129 crossref_primary_10_1016_j_enconman_2024_119151 crossref_primary_10_1049_rpg2_12945 crossref_primary_10_1080_15567036_2021_1945710 crossref_primary_10_1016_j_enconman_2022_116099 crossref_primary_10_1016_j_apenergy_2024_124185 crossref_primary_10_1080_00207217_2022_2148292 crossref_primary_10_1080_15567036_2022_2052383 crossref_primary_10_1186_s41601_022_00254_x crossref_primary_10_1080_01430750_2024_2393232 crossref_primary_10_3390_sym13081479 crossref_primary_10_3390_en17010181 crossref_primary_10_1049_rpg2_12275 crossref_primary_10_1080_02286203_2024_2403008 crossref_primary_10_1016_j_jclepro_2023_139744 crossref_primary_10_1109_JSYST_2021_3065131 crossref_primary_10_1080_15435075_2023_2201620 crossref_primary_10_1016_j_solener_2023_112141 crossref_primary_10_1016_j_enconman_2022_115728 crossref_primary_10_3390_su14073764 crossref_primary_10_1016_j_solener_2024_112969 crossref_primary_10_1007_s40866_023_00163_4 crossref_primary_10_1080_15567036_2024_2387243 crossref_primary_10_1080_15567036_2023_2243860 crossref_primary_10_1002_ente_202300380 crossref_primary_10_1007_s00202_024_02840_8 crossref_primary_10_32604_cmc_2023_034320 crossref_primary_10_1049_gtd2_13223 crossref_primary_10_1049_rpg2_12683 crossref_primary_10_1002_cta_3452 |
| Cites_doi | 10.1016/j.enconman.2016.09.005 10.1016/j.solener.2018.11.063 10.1016/j.rser.2014.01.070 10.1016/j.enconman.2018.10.020 10.1109/TIE.2009.2024664 10.1016/j.solener.2018.06.067 10.1016/j.energy.2020.117120 10.1016/j.rser.2017.06.100 10.1109/PVSC.2010.5614462 10.13044/j.sdewes.2013.01.0017 10.1016/j.rser.2019.04.037 10.1016/j.solener.2017.01.011 10.1016/j.solener.2016.05.045 10.1063/1.4972285 10.14710/ijred.6.3.203-212 10.1016/j.solener.2017.12.004 10.1016/j.enconman.2020.113115 10.1080/18756891.2016.1150004 10.1109/TIE.2008.924169 10.1016/j.renene.2014.12.055 10.1016/j.solener.2019.01.076 10.1016/j.enconman.2020.112470 10.1016/j.jclepro.2018.11.015 10.1016/j.rser.2014.10.098 10.1109/TSTE.2012.2208128 10.1016/j.enconman.2017.10.080 10.1016/j.enconman.2018.05.008 10.1016/j.solener.2016.01.056 10.1016/j.enconman.2019.05.086 10.1016/j.egypro.2018.11.284 10.1049/cp.2016.0577 10.1016/j.solener.2018.07.014 10.1109/ICRERA.2014.7016462 10.1016/j.egyr.2020.01.012 10.1016/j.ijepes.2014.06.042 10.1007/s11708-016-0405-y 10.1109/TEC.2011.2175928 10.1109/TEC.2007.914308 10.1016/j.energy.2018.05.131 10.17485/ijst/2015/v8i35/87397 10.1016/S0038-092X(01)00085-8 10.1016/j.solener.2015.09.016 10.1016/j.enconman.2018.08.077 10.1109/TSTE.2017.2714905 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 15, 2021 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2020.113806 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2020_113806 S0196890420313297 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-bbf7ba3c67b594dc2a997e9d4cab37e763becee3aab6abd8ed5b764c1c2c77563 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Sat Sep 27 22:48:29 EDT 2025 Wed Aug 13 04:38:19 EDT 2025 Thu Apr 24 23:16:21 EDT 2025 Thu Oct 09 00:24:59 EDT 2025 Fri Feb 23 02:45:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Array reconfiguration Photovoltaic Genetic algorithm Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-bbf7ba3c67b594dc2a997e9d4cab37e763becee3aab6abd8ed5b764c1c2c77563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0362-3767 |
| PQID | 2501260783 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2511176427 proquest_journals_2501260783 crossref_primary_10_1016_j_enconman_2020_113806 crossref_citationtrail_10_1016_j_enconman_2020_113806 elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113806 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Ajmal, Thanikanti, Ramachandaramurthy, Ekanayake, Tariq (b0030) 2019 Ajmal, Babu, Ramachandaramurthy, Yousri, Ekanayake (b0005) 2020; 40 Nguyen, Lehman (b0200) 2008 Pachauri, Singh, Gehlot, Samakaria, Choudhury (b0170) 2019; 22 Patel, Hiren, and Vivek Agarwal. MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, Mar.20018, 23, (1), pp. 302-310. Yadav, Pachauri, Chauhan (b0125) 2016; 129 Matam, Barry (b0135) 2018; 168 Samikannu, Namani, Subramaniam (b0095) 2016 Maki, Valkealahti (b0020) 2012; 27 Cherukuri, Rayapudi (b0225) 2017; 6 Alkahtani, Zuyu, Kuka, Alahammad, Ni (b0180) 2020; 3 181 (2019): 519-529.https://doi.org/10.1016/j.solener.2019.01.076. Yadav, Karan, Bhavnesh Kumar, and D. Swaroop. Mitigation of Mismatch Power Losses of PV Array under Partial Shading Condition using novel Odd Even Configuration. Energy Reports Akrami, Pourhossein (b0185) 2018; 173 Deshkar, Dhale, Mukherjee, Babu, Rajasekar (b0205) 2015; 43 Fathy (b0215) 2018; 171 Yadav, Pachauri, Chauhan, Choudhury, Singh (b0085) 2017; 144 Dhanalakshmi, Rajasekar (b0075) 2018; 156 Velasco-Quesada, Guinjoan-Gispert, Piqué-López, Román-Lumbreras, Conesa-Roca (b0255) 2009; 56 6 (2020): 427-437.https://doi.org/10.1016/j.egyr.2020.01.012. Satpathy, Sharma (b0115) 2018 Fathy (b0230) 2020; 220 Karakose, Baygin, Murat, Baygin, Akin (b0140) 2016; 9 Krishna, Moger (b0060) 2019; 109 Solar Energy Mahmoud, El-Saadany (b0165) 2017 Malathy, Ramaprabha (b0045) 2018; 81 Dhanalakshmi, Rajasekar (b0080) 2018; 174 Pillai, Rajasekar, Prasanth Ram, Chinnaiyan (b0120) 2018 Meerimatha, Loveswara Rao (b0070) 2020; 196 La Manna, Vigni, Sanseverino, Di Dio, Romano (b0250) 2014; 33 Iysaouy, Lahcen, Oumnad (b0100) 2019 Bingöl, Özkaya (b0025) 2018; 160 Mostafaee, Ghandehari (b0175) 2020; 4 122 (2015): 347-358. El-Dein, Kazerani, Salama (b0190) 2012; 4 Baka, Manganiello, Soudris, Catthoor (b0015) 2019; 178 Parlak (b0160) 2014; 63 Yousri, Allam, Eteiba (b0220) 2020; 206 Nasiruddin, Ibraheem, Shahida Khatoon, Mohd Faisal Jalil, and R. C. Bansal. Shade diffusion of partial shaded PV array by using odd-even structure. Solar Energy M. Karakose, M. Baygin, and K. S. Parlak, “A new real-time reconfiguration approach based on neural network in partial shading for PV arrays,” 2014. Vijayalekshmy, Bindu, Iyer (b0050) 2015; 8 Babu, Ram, Dragičević, Miyatake, Blaabjerg, Rajasekar (b0210) 2018; 9 Potnuru, Pattabiraman, Ganesan, Chilakapati (b0055) 2015; 78 Almaktar, Rahman, Hassan (b0035) 2012 Chaibi, Malvoni, Chouder, Boussetta, Salhi (b0010) 2019; 196 Gautamand, Kaushika (b0040) 2002; 72 Gao, Cui, Hu, Xu, Yu (b0240) 2016 H. M. Hasanien, A. Al-Durra, S. M. Muyeen, “Gravitational search algorithm-based photovoltaic array reconfiguration for partial shading losses reduction”, 5th IET International Conference on Renewable Power Generation (RPG), London, UK, 21-23 Sept. 2016. https://doi.org/10.1049/cp.2016.0577. Chaouachi Aymen, Rashad MKamel, Nagasaka Ken. Microgrid efficiency enhancement based on neuro-fuzzy MPPT control for photovoltaic generator. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 002889– 002894. IEEE. Sanseverino, Eleonora Riva, Thanh Ngo Ngoc, Marzia Cardinale, Vincenzo Li Vigni, Domenico Musso, Pietro Romano, and Fabio Viola. “Dynamic programming and Munkres algorithm for optimal photovoltaic arrays reconfiguration.” Romano, Candela, Cardinale, Vigni, Musso, Sanseverino (b0260) 2013; 1 N. Rakesh and T. V. Madhavaram, “Performance enhancement of partially shaded solar PV array using novel shade dispersion technique,” Front. Energy, vol. 10, no. 2, pp. 227–239, 2016.https://doi.org/10.1007/s11708-016-0405-y. dos Santos, Vicente, Ribeiro (b0150) 2011 Vijayalekshmy, Bindu, Iyer (b0130) 2016; 135 Tatabhatla, Ram, Kanumuri (b0065) 2019; 213 Vijayalekshmy (10.1016/j.enconman.2020.113806_b0050) 2015; 8 Bingöl (10.1016/j.enconman.2020.113806_b0025) 2018; 160 Velasco-Quesada (10.1016/j.enconman.2020.113806_b0255) 2009; 56 Dhanalakshmi (10.1016/j.enconman.2020.113806_b0075) 2018; 156 10.1016/j.enconman.2020.113806_b0145 Gao (10.1016/j.enconman.2020.113806_b0240) 2016 Baka (10.1016/j.enconman.2020.113806_b0015) 2019; 178 10.1016/j.enconman.2020.113806_b0105 Romano (10.1016/j.enconman.2020.113806_b0260) 2013; 1 Potnuru (10.1016/j.enconman.2020.113806_b0055) 2015; 78 Yousri (10.1016/j.enconman.2020.113806_b0220) 2020; 206 Maki (10.1016/j.enconman.2020.113806_b0020) 2012; 27 Pachauri (10.1016/j.enconman.2020.113806_b0170) 2019; 22 Akrami (10.1016/j.enconman.2020.113806_b0185) 2018; 173 Karakose (10.1016/j.enconman.2020.113806_b0140) 2016; 9 Deshkar (10.1016/j.enconman.2020.113806_b0205) 2015; 43 Ajmal (10.1016/j.enconman.2020.113806_b0030) 2019 10.1016/j.enconman.2020.113806_b0195 Malathy (10.1016/j.enconman.2020.113806_b0045) 2018; 81 Iysaouy (10.1016/j.enconman.2020.113806_b0100) 2019 10.1016/j.enconman.2020.113806_b0110 Yadav (10.1016/j.enconman.2020.113806_b0125) 2016; 129 10.1016/j.enconman.2020.113806_b0155 Meerimatha (10.1016/j.enconman.2020.113806_b0070) 2020; 196 10.1016/j.enconman.2020.113806_b0235 Vijayalekshmy (10.1016/j.enconman.2020.113806_b0130) 2016; 135 Nguyen (10.1016/j.enconman.2020.113806_b0200) 2008 Pillai (10.1016/j.enconman.2020.113806_b0120) 2018 Alkahtani (10.1016/j.enconman.2020.113806_b0180) 2020; 3 Babu (10.1016/j.enconman.2020.113806_b0210) 2018; 9 El-Dein (10.1016/j.enconman.2020.113806_b0190) 2012; 4 Dhanalakshmi (10.1016/j.enconman.2020.113806_b0080) 2018; 174 Chaibi (10.1016/j.enconman.2020.113806_b0010) 2019; 196 Ajmal (10.1016/j.enconman.2020.113806_b0005) 2020; 40 dos Santos (10.1016/j.enconman.2020.113806_b0150) 2011 Fathy (10.1016/j.enconman.2020.113806_b0230) 2020; 220 Krishna (10.1016/j.enconman.2020.113806_b0060) 2019; 109 Mahmoud (10.1016/j.enconman.2020.113806_b0165) 2017 10.1016/j.enconman.2020.113806_b0245 Matam (10.1016/j.enconman.2020.113806_b0135) 2018; 168 Mostafaee (10.1016/j.enconman.2020.113806_b0175) 2020; 4 Almaktar (10.1016/j.enconman.2020.113806_b0035) 2012 Samikannu (10.1016/j.enconman.2020.113806_b0095) 2016 10.1016/j.enconman.2020.113806_b0090 La Manna (10.1016/j.enconman.2020.113806_b0250) 2014; 33 Satpathy (10.1016/j.enconman.2020.113806_b0115) 2018 Yadav (10.1016/j.enconman.2020.113806_b0085) 2017; 144 Cherukuri (10.1016/j.enconman.2020.113806_b0225) 2017; 6 Fathy (10.1016/j.enconman.2020.113806_b0215) 2018; 171 Gautamand (10.1016/j.enconman.2020.113806_b0040) 2002; 72 Parlak (10.1016/j.enconman.2020.113806_b0160) 2014; 63 Tatabhatla (10.1016/j.enconman.2020.113806_b0065) 2019; 213 |
| References_xml | – volume: 56 start-page: 4319 year: 2009 end-page: 4331 ident: b0255 article-title: Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems publication-title: IEEE Trans Ind Electron – reference: Nasiruddin, Ibraheem, Shahida Khatoon, Mohd Faisal Jalil, and R. C. Bansal. Shade diffusion of partial shaded PV array by using odd-even structure. Solar Energy – volume: 3 start-page: 32 year: 2020 end-page: 53 ident: b0180 article-title: A novel PV array reconfiguration algorithm approach to optimising power generation across non-uniformly aged PV arrays by merely repositioning publication-title: J—Multidiscip Sci J – reference: H. M. Hasanien, A. Al-Durra, S. M. Muyeen, “Gravitational search algorithm-based photovoltaic array reconfiguration for partial shading losses reduction”, 5th IET International Conference on Renewable Power Generation (RPG), London, UK, 21-23 Sept. 2016. https://doi.org/10.1049/cp.2016.0577. – start-page: 569 year: 2018 end-page: 585 ident: b0115 article-title: Power loss reduction in partially shaded PV arrays by a static SDP technique publication-title: Energy – volume: 171 start-page: 638 year: 2018 end-page: 651 ident: b0215 article-title: Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array publication-title: Sol Energy – volume: 9 start-page: 74 year: 2018 end-page: 85 ident: b0210 article-title: Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions publication-title: IEEE Trans Sustain Energy – reference: Yadav, Karan, Bhavnesh Kumar, and D. Swaroop. Mitigation of Mismatch Power Losses of PV Array under Partial Shading Condition using novel Odd Even Configuration. Energy Reports – volume: 206 year: 2020 ident: b0220 article-title: Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer publication-title: Energy Convers. Manage. – volume: 63 start-page: 713 year: 2014 end-page: 721 ident: b0160 article-title: PV array reconfiguration method under partial shading conditions publication-title: Int. J. Electric. Power Energy System. – reference: Sanseverino, Eleonora Riva, Thanh Ngo Ngoc, Marzia Cardinale, Vincenzo Li Vigni, Domenico Musso, Pietro Romano, and Fabio Viola. “Dynamic programming and Munkres algorithm for optimal photovoltaic arrays reconfiguration.” – volume: 144 start-page: 780 year: 2017 end-page: 797 ident: b0085 article-title: Performance enhancement of partially shaded PV array using novel shade dispersion effect on magic-square puzzle configuration publication-title: Sol. Energy – volume: 168 start-page: 639 year: 2018 end-page: 650 ident: b0135 article-title: Improved performance of dynamic photovoltaic array under repeating shade conditions publication-title: Energy Convers. Manage. – year: 2008 ident: b0200 article-title: An adaptive solar photovoltaic array using model-based reconfiguration algorithm publication-title: IEEE Trans. Ind. Electron. – volume: 173 start-page: 110 year: 2018 end-page: 119 ident: b0185 article-title: A novel reconfiguration procedure to extract maximum power from partially-shaded photovoltaic arrays publication-title: Sol. Energy – start-page: 360 year: 2012 end-page: 365 ident: b0035 article-title: Effect of losses resistances, module temperature variation, and partial shading on PV output power publication-title: Proceedings of IEEE International Conference on Power & Energy – volume: 27 start-page: 173 year: 2012 end-page: 183 ident: b0020 article-title: Power losses in long string and parallelconnected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions publication-title: IEEE Trans. Energy Convers. – volume: 178 start-page: 69 year: 2019 end-page: 78 ident: b0015 article-title: A cost-benefit analysis for reconfigurable PV modules under shading publication-title: Sol Energy – volume: 196 start-page: 330 year: 2019 end-page: 343 ident: b0010 article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems publication-title: Energy Convers Manage – reference: M. Karakose, M. Baygin, and K. S. Parlak, “A new real-time reconfiguration approach based on neural network in partial shading for PV arrays,” 2014. – volume: 109 start-page: 333 year: 2019 end-page: 348 ident: b0060 article-title: Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2017 end-page: 5 ident: b0165 article-title: Fast reconfiguration algorithm for improving the efficiency of PV systems publication-title: Renewable Energy Congress (IREC), 2017 8 – reference: Solar Energy – volume: 72 start-page: 129 year: 2002 end-page: 141 ident: b0040 article-title: Reliability evaluation of solar photovoltaic arrays publication-title: Sol. Energy – volume: 135 start-page: 92 year: 2016 end-page: 102 ident: b0130 article-title: A novel Zig-Zag scheme for power enhancement of partially shaded solar arrays publication-title: Sol. Energy – volume: 160 start-page: 336 year: 2018 end-page: 343 ident: b0025 article-title: Analysis and comparison of different PV array configurations under partial shading conditions publication-title: Sol. Energy – volume: 4 start-page: 145 year: 2012 end-page: 153 ident: b0190 article-title: Optimal photovoltaic array reconfiguration to reduce partial shading losses publication-title: IEEE Trans Sustain Energy – volume: 43 start-page: 102 year: 2015 end-page: 110 ident: b0205 article-title: Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm publication-title: Renew Sustain Energy Rev – volume: 78 start-page: 264 year: 2015 end-page: 275 ident: b0055 article-title: Positioning of PV panels for reduction in line losses and mismatch losses in PV array publication-title: Renewable Energy – volume: 213 start-page: 462 year: 2019 end-page: 479 ident: b0065 article-title: Performance enhancement by shade dispersion of Solar Photo-Voltaic array under continuous dynamic partial shading conditions publication-title: J. Cleaner Prod. – start-page: 700 year: 2011 end-page: 706 ident: b0150 article-title: Reconfiguration methodology of shaded photovoltaic panels to maximize the produced energy publication-title: XI Brazilian power electronics conference – volume: 22 start-page: 109 year: 2019 end-page: 130 ident: b0170 article-title: Experimental analysis to extract maximum power from PV array reconfiguration under partial shading conditions publication-title: Eng Sci Technol Int J – reference: Chaouachi Aymen, Rashad MKamel, Nagasaka Ken. Microgrid efficiency enhancement based on neuro-fuzzy MPPT control for photovoltaic generator. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 002889– 002894. IEEE. – reference: 122 (2015): 347-358. – volume: 9 start-page: 202 year: 2016 end-page: 212 ident: b0140 article-title: Fuzzy based reconfiguration method using intelligent partial shadow detection in PV arrays publication-title: Int J Comput Intell Syst – volume: 1 start-page: 227 year: 2013 end-page: 236 ident: b0260 article-title: Optimization of photovoltaic energy production through an efficient switching matrix publication-title: J. Sustain Develop Energy Water Environ Syst – start-page: 1 year: 2019 end-page: 6 ident: b0030 publication-title: December. Effect of Partial Shading and Performance Analysis on Various Array Configurations of Photovoltaic System – volume: 4 start-page: 46 year: 2020 end-page: 51 ident: b0175 article-title: Power enhancement of photovoltaic arrays under partial shading conditions by a new dynamic reconfiguration method publication-title: Journal of Energy Management and Technology – volume: 81 start-page: 2922 year: 2018 end-page: 2934 ident: b0045 article-title: Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions publication-title: Renew Sustain Energy Rev – start-page: 1182 year: 2019 end-page: 1190 ident: b0100 article-title: A novel magic square view topology of a PV system under partial shading condition publication-title: Energy Proc – volume: 40 year: 2020 ident: b0005 article-title: Static and dynamic reconfiguration approaches for mitigation of partial shading influence in photovoltaic arrays publication-title: Sustain Energy Technol Assess – volume: 196 year: 2020 ident: b0070 article-title: Novel reconfiguration approach to reduce line losses of the photovoltaic array under various shading conditions publication-title: Energy – volume: 33 start-page: 412 year: 2014 end-page: 426 ident: b0250 article-title: Reconfigurable electrical interconnection strategies for photovoltaic arrays: a review publication-title: Renew Sustain Energy Rev – year: 2016 ident: b0240 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers. Manage. – start-page: 92 year: 2018 end-page: 110 ident: b0120 article-title: Design and testing of two phase array reconfiguration procedure for maximizing power in solar PV systems under partial shade conditions (PSC) publication-title: Energy Convers Manage – volume: 129 start-page: 256 year: 2016 end-page: 285 ident: b0125 article-title: Comprehensive investigation of PV arrays with puzzle shade dispersion for improved performance publication-title: Sol. Energy – volume: 6 start-page: 203 year: 2017 ident: b0225 article-title: Enhanced grey wolf optimizer based MPPT algorithm of PV system under partial shaded condition publication-title: Int J Renew Energy Develop – volume: 220 year: 2020 ident: b0230 article-title: Butterfly optimization algorithm based methodology for enhancing the shaded photovoltaic array extracted power via reconfiguration process publication-title: Energy Convers. Manage. – reference: N. Rakesh and T. V. Madhavaram, “Performance enhancement of partially shaded solar PV array using novel shade dispersion technique,” Front. Energy, vol. 10, no. 2, pp. 227–239, 2016.https://doi.org/10.1007/s11708-016-0405-y. – year: 2016 ident: b0095 article-title: Power enhancement of partially shaded PV arrays through shade dispersion using magic square configuration publication-title: J. Renew. Sustain Energy – volume: 156 start-page: 84 year: 2018 end-page: 102 ident: b0075 article-title: Dominance square based array reconfiguration scheme for power loss reduction in solar photovoltaic (PV) systems publication-title: Energy Convers. Manage. – reference: 181 (2019): 519-529.https://doi.org/10.1016/j.solener.2019.01.076. – volume: 8 year: 2015 ident: b0050 article-title: Analysis of various photovoltaic array configurations under shade dispersion by Su Do Ku arrangement during passing cloud conditions publication-title: Indian J Sci Technol – reference: 6 (2020): 427-437.https://doi.org/10.1016/j.egyr.2020.01.012. – volume: 174 start-page: 897 year: 2018 end-page: 912 ident: b0080 article-title: A novel competence square based PV array reconfiguration technique for solar PV maximum power extraction publication-title: Energy Convers Manage – reference: Patel, Hiren, and Vivek Agarwal. MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE transactions on energy conversion, Mar.20018, 23, (1), pp. 302-310. – year: 2016 ident: 10.1016/j.enconman.2020.113806_b0240 article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.09.005 – volume: 4 start-page: 46 issue: 1 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0175 article-title: Power enhancement of photovoltaic arrays under partial shading conditions by a new dynamic reconfiguration method publication-title: Journal of Energy Management and Technology – volume: 178 start-page: 69 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0015 article-title: A cost-benefit analysis for reconfigurable PV modules under shading publication-title: Sol Energy doi: 10.1016/j.solener.2018.11.063 – volume: 33 start-page: 412 year: 2014 ident: 10.1016/j.enconman.2020.113806_b0250 article-title: Reconfigurable electrical interconnection strategies for photovoltaic arrays: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.01.070 – start-page: 92 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0120 article-title: Design and testing of two phase array reconfiguration procedure for maximizing power in solar PV systems under partial shade conditions (PSC) publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.10.020 – volume: 56 start-page: 4319 year: 2009 ident: 10.1016/j.enconman.2020.113806_b0255 article-title: Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2009.2024664 – volume: 173 start-page: 110 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0185 article-title: A novel reconfiguration procedure to extract maximum power from partially-shaded photovoltaic arrays publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.067 – volume: 196 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0070 article-title: Novel reconfiguration approach to reduce line losses of the photovoltaic array under various shading conditions publication-title: Energy doi: 10.1016/j.energy.2020.117120 – volume: 81 start-page: 2922 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0045 article-title: Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.06.100 – ident: 10.1016/j.enconman.2020.113806_b0145 doi: 10.1109/PVSC.2010.5614462 – volume: 1 start-page: 227 issue: 3 year: 2013 ident: 10.1016/j.enconman.2020.113806_b0260 article-title: Optimization of photovoltaic energy production through an efficient switching matrix publication-title: J. Sustain Develop Energy Water Environ Syst doi: 10.13044/j.sdewes.2013.01.0017 – volume: 109 start-page: 333 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0060 article-title: Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.037 – volume: 144 start-page: 780 year: 2017 ident: 10.1016/j.enconman.2020.113806_b0085 article-title: Performance enhancement of partially shaded PV array using novel shade dispersion effect on magic-square puzzle configuration publication-title: Sol. Energy doi: 10.1016/j.solener.2017.01.011 – volume: 135 start-page: 92 year: 2016 ident: 10.1016/j.enconman.2020.113806_b0130 article-title: A novel Zig-Zag scheme for power enhancement of partially shaded solar arrays publication-title: Sol. Energy doi: 10.1016/j.solener.2016.05.045 – volume: 40 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0005 article-title: Static and dynamic reconfiguration approaches for mitigation of partial shading influence in photovoltaic arrays publication-title: Sustain Energy Technol Assess – year: 2016 ident: 10.1016/j.enconman.2020.113806_b0095 article-title: Power enhancement of partially shaded PV arrays through shade dispersion using magic square configuration publication-title: J. Renew. Sustain Energy doi: 10.1063/1.4972285 – volume: 22 start-page: 109 issue: 1 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0170 article-title: Experimental analysis to extract maximum power from PV array reconfiguration under partial shading conditions publication-title: Eng Sci Technol Int J – volume: 6 start-page: 203 issue: 3 year: 2017 ident: 10.1016/j.enconman.2020.113806_b0225 article-title: Enhanced grey wolf optimizer based MPPT algorithm of PV system under partial shaded condition publication-title: Int J Renew Energy Develop doi: 10.14710/ijred.6.3.203-212 – volume: 160 start-page: 336 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0025 article-title: Analysis and comparison of different PV array configurations under partial shading conditions publication-title: Sol. Energy doi: 10.1016/j.solener.2017.12.004 – start-page: 1 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0030 – volume: 220 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0230 article-title: Butterfly optimization algorithm based methodology for enhancing the shaded photovoltaic array extracted power via reconfiguration process publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113115 – volume: 9 start-page: 202 year: 2016 ident: 10.1016/j.enconman.2020.113806_b0140 article-title: Fuzzy based reconfiguration method using intelligent partial shadow detection in PV arrays publication-title: Int J Comput Intell Syst doi: 10.1080/18756891.2016.1150004 – start-page: 700 year: 2011 ident: 10.1016/j.enconman.2020.113806_b0150 article-title: Reconfiguration methodology of shaded photovoltaic panels to maximize the produced energy – start-page: 1 year: 2017 ident: 10.1016/j.enconman.2020.113806_b0165 article-title: Fast reconfiguration algorithm for improving the efficiency of PV systems – year: 2008 ident: 10.1016/j.enconman.2020.113806_b0200 article-title: An adaptive solar photovoltaic array using model-based reconfiguration algorithm publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.924169 – volume: 78 start-page: 264 year: 2015 ident: 10.1016/j.enconman.2020.113806_b0055 article-title: Positioning of PV panels for reduction in line losses and mismatch losses in PV array publication-title: Renewable Energy doi: 10.1016/j.renene.2014.12.055 – ident: 10.1016/j.enconman.2020.113806_b0105 doi: 10.1016/j.solener.2019.01.076 – volume: 206 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0220 article-title: Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.112470 – volume: 213 start-page: 462 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0065 article-title: Performance enhancement by shade dispersion of Solar Photo-Voltaic array under continuous dynamic partial shading conditions publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.11.015 – volume: 43 start-page: 102 year: 2015 ident: 10.1016/j.enconman.2020.113806_b0205 article-title: Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.098 – volume: 4 start-page: 145 year: 2012 ident: 10.1016/j.enconman.2020.113806_b0190 article-title: Optimal photovoltaic array reconfiguration to reduce partial shading losses publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2012.2208128 – volume: 156 start-page: 84 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0075 article-title: Dominance square based array reconfiguration scheme for power loss reduction in solar photovoltaic (PV) systems publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.10.080 – volume: 168 start-page: 639 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0135 article-title: Improved performance of dynamic photovoltaic array under repeating shade conditions publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.05.008 – volume: 3 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.enconman.2020.113806_b0180 article-title: A novel PV array reconfiguration algorithm approach to optimising power generation across non-uniformly aged PV arrays by merely repositioning publication-title: J—Multidiscip Sci J – volume: 129 start-page: 256 year: 2016 ident: 10.1016/j.enconman.2020.113806_b0125 article-title: Comprehensive investigation of PV arrays with puzzle shade dispersion for improved performance publication-title: Sol. Energy doi: 10.1016/j.solener.2016.01.056 – volume: 196 start-page: 330 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0010 article-title: Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.086 – start-page: 1182 year: 2019 ident: 10.1016/j.enconman.2020.113806_b0100 article-title: A novel magic square view topology of a PV system under partial shading condition publication-title: Energy Proc doi: 10.1016/j.egypro.2018.11.284 – ident: 10.1016/j.enconman.2020.113806_b0235 doi: 10.1049/cp.2016.0577 – volume: 171 start-page: 638 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0215 article-title: Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array publication-title: Sol Energy doi: 10.1016/j.solener.2018.07.014 – ident: 10.1016/j.enconman.2020.113806_b0195 doi: 10.1109/ICRERA.2014.7016462 – ident: 10.1016/j.enconman.2020.113806_b0110 doi: 10.1016/j.egyr.2020.01.012 – volume: 63 start-page: 713 year: 2014 ident: 10.1016/j.enconman.2020.113806_b0160 article-title: PV array reconfiguration method under partial shading conditions publication-title: Int. J. Electric. Power Energy System. doi: 10.1016/j.ijepes.2014.06.042 – ident: 10.1016/j.enconman.2020.113806_b0090 doi: 10.1007/s11708-016-0405-y – volume: 27 start-page: 173 issue: 1 year: 2012 ident: 10.1016/j.enconman.2020.113806_b0020 article-title: Power losses in long string and parallelconnected short strings of series-connected silicon-based photovoltaic modules due to partial shading conditions publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2011.2175928 – ident: 10.1016/j.enconman.2020.113806_b0245 doi: 10.1109/TEC.2007.914308 – start-page: 569 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0115 article-title: Power loss reduction in partially shaded PV arrays by a static SDP technique publication-title: Energy doi: 10.1016/j.energy.2018.05.131 – volume: 8 year: 2015 ident: 10.1016/j.enconman.2020.113806_b0050 article-title: Analysis of various photovoltaic array configurations under shade dispersion by Su Do Ku arrangement during passing cloud conditions publication-title: Indian J Sci Technol doi: 10.17485/ijst/2015/v8i35/87397 – volume: 72 start-page: 129 issue: 2 year: 2002 ident: 10.1016/j.enconman.2020.113806_b0040 article-title: Reliability evaluation of solar photovoltaic arrays publication-title: Sol. Energy doi: 10.1016/S0038-092X(01)00085-8 – ident: 10.1016/j.enconman.2020.113806_b0155 doi: 10.1016/j.solener.2015.09.016 – volume: 174 start-page: 897 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0080 article-title: A novel competence square based PV array reconfiguration technique for solar PV maximum power extraction publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.08.077 – volume: 9 start-page: 74 issue: 1 year: 2018 ident: 10.1016/j.enconman.2020.113806_b0210 article-title: Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2714905 – start-page: 360 year: 2012 ident: 10.1016/j.enconman.2020.113806_b0035 article-title: Effect of losses resistances, module temperature variation, and partial shading on PV output power |
| SSID | ssj0003506 |
| Score | 2.588636 |
| Snippet | •Dynamic reconfiguration with GA for TCT PV array to disperse the shading effect.•The new technique obtains the optimal configuration and improve the generated... Photovoltaic (PV) plants can be exposed to partial shading, which reduces the energy production and causes multi-peaks to form in the Power-Voltage (P-V)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113806 |
| SubjectTerms | administrative management Algorithms Array reconfiguration Arrays Comparative analysis Comparative studies comparative study computer software energy conversion Genetic algorithm Genetic algorithms monitoring Optimization Panels Particle swarm optimization Photovoltaic Photovoltaic cells Photovoltaics Reconfiguration shade Shading solar collectors Wiring |
| Title | Comparative analysis of two-step GA-based PV array reconfiguration technique and other reconfiguration techniques |
| URI | https://dx.doi.org/10.1016/j.enconman.2020.113806 https://www.proquest.com/docview/2501260783 https://www.proquest.com/docview/2511176427 |
| Volume | 230 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrBQEHiWgbNw-1xmhgDxITEQ9yiJE3REHRjDyEu_HbiPsZAIA5cW7utbMd2GvszIQdJ6tMII_GPO_CAs9QvKQ06gITLKOLMshQ3ipdd2bnl5_fifo60ql4YLKssfX_h03NvXV5plNJsDHq9xjUiu0SxN7ocfjDGjnLOAacYHL5_lnkwkc_XROIAqWe6hB8PESsye9aIgxrm400inHz0c4D65qrz-NNeIctl4kibxbetkjmXrZGlGTjBdfLS-oTyprpEG6H9lI5f-4HX5oCeNgMMWwm9uqN6ONRvNN8Qp72HSWEJdIrp6h-Q0Lw963ea0Qa5bZ_ctDpBOVIhsAzYODAmBaOZlWBEzBMb6jgGFyfcasPAeWfjdeoc09pIbZLIJcKA5PbYhhZASLZJ5rN-5rYIhSMf6oXQzoWGR9Jp4NI5K46Mw8NsqBFRyVHZEm8cx148qaqw7FFV8lcof1XIv0YaU75BgbjxJ0dcqUl9sR3lw8KfvPVKr6pcvSPl08Jjv8-DiNXI_vS2X3d4mKIz158gjY8SXjQhbP_j9TtkMcQiGZwwI-pkfjycuF2f5YzNXm7Ge2SheXbR6X4A8sf_ZA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQ9ICggtrxcqdewED8mOaIVsDyFBFTcLNtx0CKa3S67Qlz47XjyWKACceCazCTRzHge8fgbgN9ZHtIIq-iPO4pI8DwsKYMmwkyoJBHc8ZwKxZNT1b0Uh1fyago6zVkYaqusfX_l00tvXV9p19JsD3q99jkhuyRpMLoSfjDFLzAjZIxUgW0-Pvd5cFkO2CTqiMhfHBO-2SSwyOKvISDUuJxvktDoo7cj1H--ugxAe3MwW2eObKf6uHmY8sUP-P4CT3AB_nWesbyZqeFGWD9no_t-FNQ5YPs7EcWtjJ39YWY4NA-srIjz3vW4MgU2AXUND8hYeT7rfZq7Rbjc273odKN6pkLkOPJRZG2O1nCn0MpUZC42aYo-zYQzlqMP3iYo1XtujFXGZonPpEUl3LaLHaJUfAmmi37hl4HhVoj1UhrvYysS5Q0K5b2TW9bTbja2QDZy1K4GHKe5F7e66Sy70Y38NclfV_JvQXvCN6ggNz7kSBs16VfGo0Nc-JB3tdGrrpfvnQ554XYo9DDhLfg1uR0WHu2mmML3x0QTwkQQTYw_P_H6DfjavTg51scHp0cr8C2mjhkaNyNXYXo0HPu1kPKM7Hpp0k_MKAEI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+two-step+GA-based+PV+array+reconfiguration+technique+and+other+reconfiguration+techniques&rft.jtitle=Energy+conversion+and+management&rft.au=Muhammad+Ajmal%2C+Aidha&rft.au=Ramachandaramurthy%2C+Vigna+K.&rft.au=Naderipour%2C+Amirreza&rft.au=Ekanayake%2C+Janaka+B.&rft.date=2021-02-15&rft.issn=0196-8904&rft.volume=230&rft.spage=113806&rft_id=info:doi/10.1016%2Fj.enconman.2020.113806&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2020_113806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |