Integration of generative machine learning with the heuristic crystal structure prediction code FUSE
The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algori...
Saved in:
| Published in | Faraday discussions Vol. 256; pp. 85 - 13 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Royal Society of Chemistry
14.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-6640 1364-5498 1364-5498 |
| DOI | 10.1039/d4fd00094c |
Cover
| Abstract | The prediction of new compounds
via
crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction
via
heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
We integrate generative machine learning with heuristic crystal structure prediction in FUSE. The combined result shows superior performance over both components, accelerating the pace at which we will be able to predict and discover new compounds. |
|---|---|
| AbstractList | The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. We integrate generative machine learning with heuristic crystal structure prediction in FUSE. The combined result shows superior performance over both components, accelerating the pace at which we will be able to predict and discover new compounds. The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. The prediction of new compounds crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. |
| Author | Claridge, John B Sayeed, Hasan M Sparks, Taylor D Rosseinsky, Matthew J Darling, George R Collins, Christopher M |
| AuthorAffiliation | Department of Chemistry University of Liverpool Leverhulme Research Centre for Functional Materials Design Materials Innovation Factory Department of Materials Science and Engineering University of Utah |
| AuthorAffiliation_xml | – name: University of Liverpool – name: University of Utah – name: Department of Chemistry – name: Materials Innovation Factory – name: Leverhulme Research Centre for Functional Materials Design – name: Department of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Christopher M surname: Collins fullname: Collins, Christopher M – sequence: 2 givenname: Hasan M surname: Sayeed fullname: Sayeed, Hasan M – sequence: 3 givenname: George R surname: Darling fullname: Darling, George R – sequence: 4 givenname: John B surname: Claridge fullname: Claridge, John B – sequence: 5 givenname: Taylor D surname: Sparks fullname: Sparks, Taylor D – sequence: 6 givenname: Matthew J surname: Rosseinsky fullname: Rosseinsky, Matthew J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39301819$$D View this record in MEDLINE/PubMed |
| BookMark | eNpd0EtPGzEQAGCroirPC3cqS70gqi127PWuj1UggITUQ-G88trjxGjjTW0vKP8eJ4FAc_Lrm_HMHKI933tA6JSSX5QweWm4NYQQyfUXdECZ4EXJZb232peyEIKTfXQY41M2Ir9-Q_tMMkJrKg-QufMJpkEl13vcWzwFD6vTM-C50jPnAXeggnd-il9cmuE0AzyDIbiYnMY6LGNSHY4pDDoNAfAigHF6nU73BvDk8e_1MfpqVRfh5G09Qo-T64fxbXH_5-Zu_Pu-0KxiqVCmrZS1UktdlaWpbd0aI3hZaQ5CGM5Gho0400IJa1mbr2pBLFetoC3olrAj9HOTd_ALtXxRXdcsgpursGwoaVazaj5mlfX5Ri9C_2-AmJq5ixq6Tnnoh9gwSioqRlTSTH_s0Kd-CD73klVZkpGgUmT1_U0N7RzM9u_3aWdANkCHPsYAttEurUefgnLdtsgrPrlaFznOIRc7Ibsd_YfPNjhEvXWfOn4F-uup5A |
| CitedBy_id | crossref_primary_10_1021_acs_cgd_4c01680 |
| Cites_doi | 10.1038/nature22374 10.1038/s41586-023-06071-y 10.1103/PhysRevB.54.11169 10.1002/zaac.19673530510 10.1080/0892702031000104887 10.1002/anie.202102073 10.1007/s11837-013-0755-4 10.48550/arXiv.2307.04340 10.1021/acs.chemmater.9b01294 10.3891/acta.chem.scand.25-0411 10.1107/S0021889811038970 10.1107/S0567740870004399 10.1107/S0108768188099641 10.1002/cphc.202400254 10.1039/D3DD00063J 10.48550/arXiv.2110.06197 10.1107/S0365110X5800116X 10.1038/s41467-022-29241-4 10.1016/j.cpc.2012.05.008 10.1103/PhysRevLett.77.3865 10.1524/zkri.1990.191.1-2.125 10.1063/1.4812323 10.1107/S0567740870003370 10.1038/s41524-020-00406-3 10.1039/C8DT04444A 10.1038/npjcompumats.2015.10 10.1038/s42256-023-00716-3 10.1107/S0567740869004286 10.1107/S0108768190013416 10.1088/0953-8984/23/5/053201 10.1039/C8FD00045J 10.1063/1.2210932 |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2025 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 ADTOC UNPAY |
| DOI | 10.1039/d4fd00094c |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1364-5498 |
| EndPage | 13 |
| ExternalDocumentID | 10.1039/d4fd00094c 39301819 10_1039_D4FD00094C d4fd00094c |
| Genre | Journal Article |
| GroupedDBID | --- -~X 0-7 0R~ 29H 4.4 5GY 705 70~ 7~J 85S AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- P2P R56 R7B RAOCF RCNCU RPMJG RRA RRC RSCEA SKA SLH TN5 UPT VH6 WH7 AAYXX CITATION -JG AGSTE NPM OK1 7SR 8BQ 8FD JG9 7X8 .-4 .GJ 0UZ 1TJ 2WC 3EH 53G 6TJ 71~ ACHDF ACRPL ADNMO ADTOC ADXHL AETEA AFFNX AGQPQ AHGXI AI. ALSGL ANBJS ANLMG AQHUZ ASPBG AVWKF AZFZN BBWZM CAG COF EEHRC FEDTE HF~ HVGLF IDY J3G J3H L-8 M4U MVM NDZJH OHT RCLXC RNS ROL RRXOS UMF UNPAY UQL VH1 WHG XJT XOL ZCG ZXP |
| ID | FETCH-LOGICAL-c373t-adb7aff9c9c755d8f8bdd6457c4e66d432d3243c6a6ff3b66d860f4ab61becb03 |
| IEDL.DBID | UNPAY |
| ISSN | 1359-6640 1364-5498 |
| IngestDate | Sun Sep 07 10:52:23 EDT 2025 Fri Jul 11 07:51:19 EDT 2025 Mon Jun 30 13:18:02 EDT 2025 Wed Feb 19 02:00:26 EST 2025 Thu Apr 24 22:51:22 EDT 2025 Tue Jul 01 01:50:55 EDT 2025 Tue May 27 12:02:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-adb7aff9c9c755d8f8bdd6457c4e66d432d3243c6a6ff3b66d860f4ab61becb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1910-2483 0000-0002-6583-7755 0000-0003-4849-6714 0000-0001-8020-7711 0000-0002-0101-4426 0000-0001-9329-9993 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1039/d4fd00094c |
| PMID | 39301819 |
| PQID | 3155026196 |
| PQPubID | 2047504 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1039_d4fd00094c proquest_journals_3155026196 proquest_miscellaneous_3107162191 crossref_primary_10_1039_D4FD00094C rsc_primary_d4fd00094c crossref_citationtrail_10_1039_D4FD00094C pubmed_primary_39301819 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-14 |
| PublicationDateYYYYMMDD | 2025-01-14 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Faraday discussions |
| PublicationTitleAlternate | Faraday Discuss |
| PublicationYear | 2025 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Xie (D4FD00094C/cit10/1) 2022 Elcombe (D4FD00094C/cit20/1) 1991; 47 Cheng (D4FD00094C/cit9/1) 2022; 13 Schäfer (D4FD00094C/cit26/1) 1967; 353 Momma (D4FD00094C/cit32/1) 2011; 44 Oganov (D4FD00094C/cit4/1) 2006; 124 Jain (D4FD00094C/cit7/1) 2013; 1 Saal (D4FD00094C/cit14/1) 2013; 65 Calos (D4FD00094C/cit24/1) 1990; 191 Kirklin (D4FD00094C/cit15/1) 2015; 1 Deng (D4FD00094C/cit30/1) 2023; 5 Collins (D4FD00094C/cit1/1) 2021; 60 Dunn (D4FD00094C/cit16/1) 2020; 6 Abrahams (D4FD00094C/cit18/1) 1958; 11 Collins (D4FD00094C/cit2/1) 2017; 546 Pickard (D4FD00094C/cit6/1) 2011; 23 Collins (D4FD00094C/cit3/1) 2018; 211 Kresse (D4FD00094C/cit13/1) 1996; 54 Antypov (D4FD00094C/cit19/1) 2024 Gale (D4FD00094C/cit28/1) 2003; 29 Chen (D4FD00094C/cit17/1) 2019; 31 Wang (D4FD00094C/cit5/1) 2012; 183 Zamaraeva (D4FD00094C/cit31/1) 2023; 2 (D4FD00094C/cit8/1) 1988; 44 Antunes (D4FD00094C/cit11/1) 2023 Oberteuffer (D4FD00094C/cit23/1) 1970; 26 Benndorf (D4FD00094C/cit27/1) 2019; 48 Kjekshus (D4FD00094C/cit21/1) 1971; 25 Barton Jnr (D4FD00094C/cit25/1) 1969; 25 Gusev (D4FD00094C/cit12/1) 2023; 619 Koto (D4FD00094C/cit22/1) 1970; 26 Perdew (D4FD00094C/cit29/1) 1996; 77 |
| References_xml | – issn: 1988 issue: 44 volume-title: Crystallographic databases edited by F. H. Allen, G. Gergerhoff and R. Sievers end-page: 680 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. – issn: 2023 volume-title: Crystal structure generation with autoregressive large language modeling publication-title: arXiv doi: Antunes Butler Grau-Crespo – issn: 2022 volume-title: Crystal diffusion variational autoencoder for periodic material generation publication-title: arXiv doi: Xie Fu Ganea Barzilay Jaakkola – volume: 546 start-page: 280 year: 2017 ident: D4FD00094C/cit2/1 publication-title: Nature doi: 10.1038/nature22374 – volume: 619 start-page: 68 year: 2023 ident: D4FD00094C/cit12/1 publication-title: Nature doi: 10.1038/s41586-023-06071-y – volume: 54 start-page: 11169 year: 1996 ident: D4FD00094C/cit13/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 353 start-page: 281 year: 1967 ident: D4FD00094C/cit26/1 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19673530510 – volume: 29 start-page: 291 year: 2003 ident: D4FD00094C/cit28/1 publication-title: Mol. Simul. doi: 10.1080/0892702031000104887 – volume: 60 start-page: 16457 year: 2021 ident: D4FD00094C/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102073 – volume: 65 start-page: 1501 year: 2013 ident: D4FD00094C/cit14/1 publication-title: JOM doi: 10.1007/s11837-013-0755-4 – volume-title: arXiv year: 2023 ident: D4FD00094C/cit11/1 doi: 10.48550/arXiv.2307.04340 – volume: 31 start-page: 3564 year: 2019 ident: D4FD00094C/cit17/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01294 – volume: 25 start-page: 411 year: 1971 ident: D4FD00094C/cit21/1 publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.25-0411 – volume: 44 start-page: 1272 year: 2011 ident: D4FD00094C/cit32/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 26 start-page: 1499 year: 1970 ident: D4FD00094C/cit23/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0567740870004399 – volume: 44 start-page: 680 volume-title: Acta Crystallogr., Sect. B: Struct. Sci. year: 1988 ident: D4FD00094C/cit8/1 doi: 10.1107/S0108768188099641 – start-page: e202400254 year: 2024 ident: D4FD00094C/cit19/1 publication-title: ChemPhysChem doi: 10.1002/cphc.202400254 – volume: 2 start-page: 1831 year: 2023 ident: D4FD00094C/cit31/1 publication-title: Digital Discovery doi: 10.1039/D3DD00063J – volume-title: arXiv year: 2022 ident: D4FD00094C/cit10/1 doi: 10.48550/arXiv.2110.06197 – volume: 11 start-page: 437 year: 1958 ident: D4FD00094C/cit18/1 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X5800116X – volume: 13 start-page: 1492 year: 2022 ident: D4FD00094C/cit9/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29241-4 – volume: 183 start-page: 2063 year: 2012 ident: D4FD00094C/cit5/1 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 77 start-page: 3865 year: 1996 ident: D4FD00094C/cit29/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 191 start-page: 125 year: 1990 ident: D4FD00094C/cit24/1 publication-title: Z. Kristallogr. doi: 10.1524/zkri.1990.191.1-2.125 – volume: 1 start-page: 011002 year: 2013 ident: D4FD00094C/cit7/1 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 26 start-page: 915 year: 1970 ident: D4FD00094C/cit22/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0567740870003370 – volume: 6 start-page: 138 year: 2020 ident: D4FD00094C/cit16/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00406-3 – volume: 48 start-page: 1118 year: 2019 ident: D4FD00094C/cit27/1 publication-title: Dalton Trans. doi: 10.1039/C8DT04444A – volume: 1 start-page: 15010 year: 2015 ident: D4FD00094C/cit15/1 publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2015.10 – volume: 5 start-page: 1031 year: 2023 ident: D4FD00094C/cit30/1 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00716-3 – volume: 25 start-page: 1524 year: 1969 ident: D4FD00094C/cit25/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0567740869004286 – volume: 47 start-page: 305 year: 1991 ident: D4FD00094C/cit20/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768190013416 – volume: 23 start-page: 053201 year: 2011 ident: D4FD00094C/cit6/1 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/23/5/053201 – volume: 211 start-page: 117 year: 2018 ident: D4FD00094C/cit3/1 publication-title: Faraday Discuss. doi: 10.1039/C8FD00045J – volume: 124 start-page: 244704 year: 2006 ident: D4FD00094C/cit4/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2210932 |
| SSID | ssj0006364 |
| Score | 2.454557 |
| Snippet | The prediction of new compounds
via
crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction... The prediction of new compounds crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of... The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction... |
| SourceID | unpaywall proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | Algorithms Crystal structure Heuristic Heuristic methods Machine learning |
| Title | Integration of generative machine learning with the heuristic crystal structure prediction code FUSE |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39301819 https://www.proquest.com/docview/3155026196 https://www.proquest.com/docview/3107162191 https://doi.org/10.1039/d4fd00094c |
| UnpaywallVersion | publishedVersion |
| Volume | 256 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry P&R customDbUrl: https://pubs.rsc.org eissn: 1364-5498 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006364 issn: 1359-6640 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V3UO58C4E2spALxxSkthx4uNqu6sWQYVEVyqnyM9W6pJdbTdC5dczzqtdihDKzZkkI8_Y_iZjfwNwkDCbxxZHWiasD1BiGkolaZgowWXGrctrJqYvp_x4xj6dp-db8K47C7ORv6fio2HO1Nvf9AMY8hTx9gCGs9Ovo-91JJWKkPPm1CPlLMRgJ-84SDce3lx17kFJXFhW1yi0XZVLefNTzud3FpnpYxh36jV7S64Oq7U61L_-YG78t_5P4FGLMcmocYqnsGXLZ7A97kq7PQdz0pJEoFHIwpGLmnvaT3zkR7250pK2msQF8T9qCaJEcmmrhtWZ6NUNYso5abhnq5Uly5XP99Sv82fkyXT2bfICZtPJ2fg4bMsthJpmdB1KozLpnNBCZ2lqcpcrYzhLM80s54bRxCD6oppL7hxV2JTzyDGpeIyOoCK6A4NyUdpXQCIjo0jj_JBJy_BS1AlFE50qEyvFZQAfOnMUuuUi9yUx5kWdE6eiOGLTo7rfxgG872WXDQPHX6V2O6sW7Si8LqiPv3yIyAN429_GvvZJEVnaReVlIk-ihWFrAC8bb-g_QwX1fGYigB10j7751qYBHPQec0-5W7HX_yf2Bh4mvrpwFIcx24UBGtHuIeRZq30YjiZnJ5_3W9__DSEf_YI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R5UAvQB-U8JLbcukhNIkdJz6ihRWtVFSpXYmeIj-p1CW7WjZC9Nd3nBcsIFTl5kySkWdsf5OxvwE4TJjNY4sjLRPWBygxDaWSNEyU4DLj1uU1E9O3c342Zl8v0osV-NCdhVnK31Px2TBn6u1v-gWs8hTx9gBWx-ffj3_VkVQqQs6bU4-UsxCDnbzjIF16eHnVeQQlcWGZX6PQWlXO5O2NnEzuLTKjDRh26jV7S_4cVQt1pP8-YG58Xv9NWG8xJjlunOIVrNjyNawNu9Jub8B8aUki0Chk6shlzT3tJz5yVW-utKStJnFJ_I9agiiR_LZVw-pM9PwWMeWENNyz1dyS2dzne-rX-TPyZDT-cfoWxqPTn8OzsC23EGqa0UUojcqkc0ILnaWpyV2ujOEszTSznBtGE4Poi2ouuXNUYVPOI8ek4jE6goroFgzKaWm3gURGRpHG-SGTluGlqBOKJjpVJlaKywA-deYodMtF7ktiTIo6J05FccJGJ3W_DQP42MvOGgaOJ6X2OqsW7Si8LqiPv3yIyAN439_GvvZJEVnaaeVlIk-ihWFrAO8ab-g_QwX1fGYigC10j775zqYBHPYe80i5O7Gd_xPbhZeJry4cxWHM9mCARrT7CHkW6qD1-X881vvw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+generative+machine+learning+with+the+heuristic+crystal+structure+prediction+code+FUSE&rft.jtitle=Faraday+discussions&rft.au=Collins%2C+Christopher+M&rft.au=Sayeed%2C+Hasan+M&rft.au=Darling%2C+George+R&rft.au=Claridge%2C+John+B&rft.date=2025-01-14&rft.issn=1364-5498&rft.eissn=1364-5498&rft_id=info:doi/10.1039%2Fd4fd00094c&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6640&client=summon |