Integration of generative machine learning with the heuristic crystal structure prediction code FUSE

The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algori...

Full description

Saved in:
Bibliographic Details
Published inFaraday discussions Vol. 256; pp. 85 - 13
Main Authors Collins, Christopher M, Sayeed, Hasan M, Darling, George R, Claridge, John B, Sparks, Taylor D, Rosseinsky, Matthew J
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.01.2025
Subjects
Online AccessGet full text
ISSN1359-6640
1364-5498
1364-5498
DOI10.1039/d4fd00094c

Cover

Abstract The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. We integrate generative machine learning with heuristic crystal structure prediction in FUSE. The combined result shows superior performance over both components, accelerating the pace at which we will be able to predict and discover new compounds.
AbstractList The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge. We integrate generative machine learning with heuristic crystal structure prediction in FUSE. The combined result shows superior performance over both components, accelerating the pace at which we will be able to predict and discover new compounds.
The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction via heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
The prediction of new compounds crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of inorganic crystal structures there are three distinct classes of prediction: performing crystal structure prediction heuristic algorithms, using a range of established crystal structure prediction codes, an emerging community using generative machine learning models to predict crystal structures directly and the use of mathematical optimisation to solve crystal structures exactly. In this work, we demonstrate the combination of heuristic and generative machine learning, the use of a generative machine learning model to produce the starting population of crystal structures for a heuristic algorithm and discuss the benefits, demonstrating the method on eight known compounds with reported crystal structures and three hypothetical compounds. We show that the integration of machine learning structure generation with heuristic structure prediction results in both faster compute times per structure and lower energies. This work provides to the community a set of eleven compounds with varying chemistry and complexity that can be used as a benchmark for new crystal structure prediction methods as they emerge.
Author Claridge, John B
Sayeed, Hasan M
Sparks, Taylor D
Rosseinsky, Matthew J
Darling, George R
Collins, Christopher M
AuthorAffiliation Department of Chemistry
University of Liverpool
Leverhulme Research Centre for Functional Materials Design
Materials Innovation Factory
Department of Materials Science and Engineering
University of Utah
AuthorAffiliation_xml – name: University of Liverpool
– name: University of Utah
– name: Department of Chemistry
– name: Materials Innovation Factory
– name: Leverhulme Research Centre for Functional Materials Design
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Christopher M
  surname: Collins
  fullname: Collins, Christopher M
– sequence: 2
  givenname: Hasan M
  surname: Sayeed
  fullname: Sayeed, Hasan M
– sequence: 3
  givenname: George R
  surname: Darling
  fullname: Darling, George R
– sequence: 4
  givenname: John B
  surname: Claridge
  fullname: Claridge, John B
– sequence: 5
  givenname: Taylor D
  surname: Sparks
  fullname: Sparks, Taylor D
– sequence: 6
  givenname: Matthew J
  surname: Rosseinsky
  fullname: Rosseinsky, Matthew J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39301819$$D View this record in MEDLINE/PubMed
BookMark eNpd0EtPGzEQAGCroirPC3cqS70gqi127PWuj1UggITUQ-G88trjxGjjTW0vKP8eJ4FAc_Lrm_HMHKI933tA6JSSX5QweWm4NYQQyfUXdECZ4EXJZb232peyEIKTfXQY41M2Ir9-Q_tMMkJrKg-QufMJpkEl13vcWzwFD6vTM-C50jPnAXeggnd-il9cmuE0AzyDIbiYnMY6LGNSHY4pDDoNAfAigHF6nU73BvDk8e_1MfpqVRfh5G09Qo-T64fxbXH_5-Zu_Pu-0KxiqVCmrZS1UktdlaWpbd0aI3hZaQ5CGM5Gho0400IJa1mbr2pBLFetoC3olrAj9HOTd_ALtXxRXdcsgpursGwoaVazaj5mlfX5Ri9C_2-AmJq5ixq6Tnnoh9gwSioqRlTSTH_s0Kd-CD73klVZkpGgUmT1_U0N7RzM9u_3aWdANkCHPsYAttEurUefgnLdtsgrPrlaFznOIRc7Ibsd_YfPNjhEvXWfOn4F-uup5A
CitedBy_id crossref_primary_10_1021_acs_cgd_4c01680
Cites_doi 10.1038/nature22374
10.1038/s41586-023-06071-y
10.1103/PhysRevB.54.11169
10.1002/zaac.19673530510
10.1080/0892702031000104887
10.1002/anie.202102073
10.1007/s11837-013-0755-4
10.48550/arXiv.2307.04340
10.1021/acs.chemmater.9b01294
10.3891/acta.chem.scand.25-0411
10.1107/S0021889811038970
10.1107/S0567740870004399
10.1107/S0108768188099641
10.1002/cphc.202400254
10.1039/D3DD00063J
10.48550/arXiv.2110.06197
10.1107/S0365110X5800116X
10.1038/s41467-022-29241-4
10.1016/j.cpc.2012.05.008
10.1103/PhysRevLett.77.3865
10.1524/zkri.1990.191.1-2.125
10.1063/1.4812323
10.1107/S0567740870003370
10.1038/s41524-020-00406-3
10.1039/C8DT04444A
10.1038/npjcompumats.2015.10
10.1038/s42256-023-00716-3
10.1107/S0567740869004286
10.1107/S0108768190013416
10.1088/0953-8984/23/5/053201
10.1039/C8FD00045J
10.1063/1.2210932
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
ADTOC
UNPAY
DOI 10.1039/d4fd00094c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5498
EndPage 13
ExternalDocumentID 10.1039/d4fd00094c
39301819
10_1039_D4FD00094C
d4fd00094c
Genre Journal Article
GroupedDBID ---
-~X
0-7
0R~
29H
4.4
5GY
705
70~
7~J
85S
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
P2P
R56
R7B
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SLH
TN5
UPT
VH6
WH7
AAYXX
CITATION
-JG
AGSTE
NPM
OK1
7SR
8BQ
8FD
JG9
7X8
.-4
.GJ
0UZ
1TJ
2WC
3EH
53G
6TJ
71~
ACHDF
ACRPL
ADNMO
ADTOC
ADXHL
AETEA
AFFNX
AGQPQ
AHGXI
AI.
ALSGL
ANBJS
ANLMG
AQHUZ
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
EEHRC
FEDTE
HF~
HVGLF
IDY
J3G
J3H
L-8
M4U
MVM
NDZJH
OHT
RCLXC
RNS
ROL
RRXOS
UMF
UNPAY
UQL
VH1
WHG
XJT
XOL
ZCG
ZXP
ID FETCH-LOGICAL-c373t-adb7aff9c9c755d8f8bdd6457c4e66d432d3243c6a6ff3b66d860f4ab61becb03
IEDL.DBID UNPAY
ISSN 1359-6640
1364-5498
IngestDate Sun Sep 07 10:52:23 EDT 2025
Fri Jul 11 07:51:19 EDT 2025
Mon Jun 30 13:18:02 EDT 2025
Wed Feb 19 02:00:26 EST 2025
Thu Apr 24 22:51:22 EDT 2025
Tue Jul 01 01:50:55 EDT 2025
Tue May 27 12:02:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-adb7aff9c9c755d8f8bdd6457c4e66d432d3243c6a6ff3b66d860f4ab61becb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1910-2483
0000-0002-6583-7755
0000-0003-4849-6714
0000-0001-8020-7711
0000-0002-0101-4426
0000-0001-9329-9993
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1039/d4fd00094c
PMID 39301819
PQID 3155026196
PQPubID 2047504
PageCount 19
ParticipantIDs unpaywall_primary_10_1039_d4fd00094c
proquest_journals_3155026196
proquest_miscellaneous_3107162191
crossref_primary_10_1039_D4FD00094C
rsc_primary_d4fd00094c
crossref_citationtrail_10_1039_D4FD00094C
pubmed_primary_39301819
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-14
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Faraday discussions
PublicationTitleAlternate Faraday Discuss
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xie (D4FD00094C/cit10/1) 2022
Elcombe (D4FD00094C/cit20/1) 1991; 47
Cheng (D4FD00094C/cit9/1) 2022; 13
Schäfer (D4FD00094C/cit26/1) 1967; 353
Momma (D4FD00094C/cit32/1) 2011; 44
Oganov (D4FD00094C/cit4/1) 2006; 124
Jain (D4FD00094C/cit7/1) 2013; 1
Saal (D4FD00094C/cit14/1) 2013; 65
Calos (D4FD00094C/cit24/1) 1990; 191
Kirklin (D4FD00094C/cit15/1) 2015; 1
Deng (D4FD00094C/cit30/1) 2023; 5
Collins (D4FD00094C/cit1/1) 2021; 60
Dunn (D4FD00094C/cit16/1) 2020; 6
Abrahams (D4FD00094C/cit18/1) 1958; 11
Collins (D4FD00094C/cit2/1) 2017; 546
Pickard (D4FD00094C/cit6/1) 2011; 23
Collins (D4FD00094C/cit3/1) 2018; 211
Kresse (D4FD00094C/cit13/1) 1996; 54
Antypov (D4FD00094C/cit19/1) 2024
Gale (D4FD00094C/cit28/1) 2003; 29
Chen (D4FD00094C/cit17/1) 2019; 31
Wang (D4FD00094C/cit5/1) 2012; 183
Zamaraeva (D4FD00094C/cit31/1) 2023; 2
(D4FD00094C/cit8/1) 1988; 44
Antunes (D4FD00094C/cit11/1) 2023
Oberteuffer (D4FD00094C/cit23/1) 1970; 26
Benndorf (D4FD00094C/cit27/1) 2019; 48
Kjekshus (D4FD00094C/cit21/1) 1971; 25
Barton Jnr (D4FD00094C/cit25/1) 1969; 25
Gusev (D4FD00094C/cit12/1) 2023; 619
Koto (D4FD00094C/cit22/1) 1970; 26
Perdew (D4FD00094C/cit29/1) 1996; 77
References_xml – issn: 1988
  issue: 44
  volume-title: Crystallographic databases edited by F. H. Allen, G. Gergerhoff and R. Sievers
  end-page: 680
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– issn: 2023
  volume-title: Crystal structure generation with autoregressive large language modeling
  publication-title: arXiv
  doi: Antunes Butler Grau-Crespo
– issn: 2022
  volume-title: Crystal diffusion variational autoencoder for periodic material generation
  publication-title: arXiv
  doi: Xie Fu Ganea Barzilay Jaakkola
– volume: 546
  start-page: 280
  year: 2017
  ident: D4FD00094C/cit2/1
  publication-title: Nature
  doi: 10.1038/nature22374
– volume: 619
  start-page: 68
  year: 2023
  ident: D4FD00094C/cit12/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06071-y
– volume: 54
  start-page: 11169
  year: 1996
  ident: D4FD00094C/cit13/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 353
  start-page: 281
  year: 1967
  ident: D4FD00094C/cit26/1
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19673530510
– volume: 29
  start-page: 291
  year: 2003
  ident: D4FD00094C/cit28/1
  publication-title: Mol. Simul.
  doi: 10.1080/0892702031000104887
– volume: 60
  start-page: 16457
  year: 2021
  ident: D4FD00094C/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102073
– volume: 65
  start-page: 1501
  year: 2013
  ident: D4FD00094C/cit14/1
  publication-title: JOM
  doi: 10.1007/s11837-013-0755-4
– volume-title: arXiv
  year: 2023
  ident: D4FD00094C/cit11/1
  doi: 10.48550/arXiv.2307.04340
– volume: 31
  start-page: 3564
  year: 2019
  ident: D4FD00094C/cit17/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01294
– volume: 25
  start-page: 411
  year: 1971
  ident: D4FD00094C/cit21/1
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.25-0411
– volume: 44
  start-page: 1272
  year: 2011
  ident: D4FD00094C/cit32/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 26
  start-page: 1499
  year: 1970
  ident: D4FD00094C/cit23/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0567740870004399
– volume: 44
  start-page: 680
  volume-title: Acta Crystallogr., Sect. B: Struct. Sci.
  year: 1988
  ident: D4FD00094C/cit8/1
  doi: 10.1107/S0108768188099641
– start-page: e202400254
  year: 2024
  ident: D4FD00094C/cit19/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202400254
– volume: 2
  start-page: 1831
  year: 2023
  ident: D4FD00094C/cit31/1
  publication-title: Digital Discovery
  doi: 10.1039/D3DD00063J
– volume-title: arXiv
  year: 2022
  ident: D4FD00094C/cit10/1
  doi: 10.48550/arXiv.2110.06197
– volume: 11
  start-page: 437
  year: 1958
  ident: D4FD00094C/cit18/1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X5800116X
– volume: 13
  start-page: 1492
  year: 2022
  ident: D4FD00094C/cit9/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29241-4
– volume: 183
  start-page: 2063
  year: 2012
  ident: D4FD00094C/cit5/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.05.008
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4FD00094C/cit29/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 191
  start-page: 125
  year: 1990
  ident: D4FD00094C/cit24/1
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.1990.191.1-2.125
– volume: 1
  start-page: 011002
  year: 2013
  ident: D4FD00094C/cit7/1
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 26
  start-page: 915
  year: 1970
  ident: D4FD00094C/cit22/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0567740870003370
– volume: 6
  start-page: 138
  year: 2020
  ident: D4FD00094C/cit16/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00406-3
– volume: 48
  start-page: 1118
  year: 2019
  ident: D4FD00094C/cit27/1
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04444A
– volume: 1
  start-page: 15010
  year: 2015
  ident: D4FD00094C/cit15/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/npjcompumats.2015.10
– volume: 5
  start-page: 1031
  year: 2023
  ident: D4FD00094C/cit30/1
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00716-3
– volume: 25
  start-page: 1524
  year: 1969
  ident: D4FD00094C/cit25/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0567740869004286
– volume: 47
  start-page: 305
  year: 1991
  ident: D4FD00094C/cit20/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768190013416
– volume: 23
  start-page: 053201
  year: 2011
  ident: D4FD00094C/cit6/1
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/23/5/053201
– volume: 211
  start-page: 117
  year: 2018
  ident: D4FD00094C/cit3/1
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00045J
– volume: 124
  start-page: 244704
  year: 2006
  ident: D4FD00094C/cit4/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2210932
SSID ssj0006364
Score 2.454557
Snippet The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction...
The prediction of new compounds crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction of...
The prediction of new compounds via crystal structure prediction may transform how the materials chemistry community discovers new compounds. In the prediction...
SourceID unpaywall
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Algorithms
Crystal structure
Heuristic
Heuristic methods
Machine learning
Title Integration of generative machine learning with the heuristic crystal structure prediction code FUSE
URI https://www.ncbi.nlm.nih.gov/pubmed/39301819
https://www.proquest.com/docview/3155026196
https://www.proquest.com/docview/3107162191
https://doi.org/10.1039/d4fd00094c
UnpaywallVersion publishedVersion
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry P&R
  customDbUrl: https://pubs.rsc.org
  eissn: 1364-5498
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006364
  issn: 1359-6640
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V3UO58C4E2spALxxSkthx4uNqu6sWQYVEVyqnyM9W6pJdbTdC5dczzqtdihDKzZkkI8_Y_iZjfwNwkDCbxxZHWiasD1BiGkolaZgowWXGrctrJqYvp_x4xj6dp-db8K47C7ORv6fio2HO1Nvf9AMY8hTx9gCGs9Ovo-91JJWKkPPm1CPlLMRgJ-84SDce3lx17kFJXFhW1yi0XZVLefNTzud3FpnpYxh36jV7S64Oq7U61L_-YG78t_5P4FGLMcmocYqnsGXLZ7A97kq7PQdz0pJEoFHIwpGLmnvaT3zkR7250pK2msQF8T9qCaJEcmmrhtWZ6NUNYso5abhnq5Uly5XP99Sv82fkyXT2bfICZtPJ2fg4bMsthJpmdB1KozLpnNBCZ2lqcpcrYzhLM80s54bRxCD6oppL7hxV2JTzyDGpeIyOoCK6A4NyUdpXQCIjo0jj_JBJy_BS1AlFE50qEyvFZQAfOnMUuuUi9yUx5kWdE6eiOGLTo7rfxgG872WXDQPHX6V2O6sW7Si8LqiPv3yIyAN429_GvvZJEVnaReVlIk-ihWFrAC8bb-g_QwX1fGYigB10j7751qYBHPQec0-5W7HX_yf2Bh4mvrpwFIcx24UBGtHuIeRZq30YjiZnJ5_3W9__DSEf_YI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R5UAvQB-U8JLbcukhNIkdJz6ihRWtVFSpXYmeIj-p1CW7WjZC9Nd3nBcsIFTl5kySkWdsf5OxvwE4TJjNY4sjLRPWBygxDaWSNEyU4DLj1uU1E9O3c342Zl8v0osV-NCdhVnK31Px2TBn6u1v-gWs8hTx9gBWx-ffj3_VkVQqQs6bU4-UsxCDnbzjIF16eHnVeQQlcWGZX6PQWlXO5O2NnEzuLTKjDRh26jV7S_4cVQt1pP8-YG58Xv9NWG8xJjlunOIVrNjyNawNu9Jub8B8aUki0Chk6shlzT3tJz5yVW-utKStJnFJ_I9agiiR_LZVw-pM9PwWMeWENNyz1dyS2dzne-rX-TPyZDT-cfoWxqPTn8OzsC23EGqa0UUojcqkc0ILnaWpyV2ujOEszTSznBtGE4Poi2ouuXNUYVPOI8ek4jE6goroFgzKaWm3gURGRpHG-SGTluGlqBOKJjpVJlaKywA-deYodMtF7ktiTIo6J05FccJGJ3W_DQP42MvOGgaOJ6X2OqsW7Si8LqiPv3yIyAN439_GvvZJEVnaaeVlIk-ihWFrAO8ab-g_QwX1fGYigC10j775zqYBHPYe80i5O7Gd_xPbhZeJry4cxWHM9mCARrT7CHkW6qD1-X881vvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+generative+machine+learning+with+the+heuristic+crystal+structure+prediction+code+FUSE&rft.jtitle=Faraday+discussions&rft.au=Collins%2C+Christopher+M&rft.au=Sayeed%2C+Hasan+M&rft.au=Darling%2C+George+R&rft.au=Claridge%2C+John+B&rft.date=2025-01-14&rft.issn=1364-5498&rft.eissn=1364-5498&rft_id=info:doi/10.1039%2Fd4fd00094c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6640&client=summon