Techno-economic assessment of a hybrid RO-MED desalination plant integrated with a solar CHP system

•Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost o...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 251; p. 114985
Main Authors Jamshidian, Farid Jalili, Gorjian, Shiva, Shafieefar, Mehdi
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2021.114985

Cover

Abstract •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost of 1 m3 of produced freshwater is observed. In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant.
AbstractList •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost of 1 m3 of produced freshwater is observed. In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant.
In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant.
In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m³/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m². The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m³ for a single solar-powered MED plant to 1.918 US$/m³ for the solar-powered RO-MED plant.
ArticleNumber 114985
Author Jamshidian, Farid Jalili
Gorjian, Shiva
Shafieefar, Mehdi
Author_xml – sequence: 1
  givenname: Farid Jalili
  surname: Jamshidian
  fullname: Jamshidian, Farid Jalili
  email: farid_jalili@modares.ac.ir
  organization: Water Resources Management and Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University (TMU), Tehran, Iran
– sequence: 2
  givenname: Shiva
  surname: Gorjian
  fullname: Gorjian, Shiva
  email: Gorjian@modares.ac.ir
  organization: Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
– sequence: 3
  givenname: Mehdi
  surname: Shafieefar
  fullname: Shafieefar, Mehdi
  email: Shafiee@modares.ac.ir
  organization: Coastal and Offshore Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University (TMU), Tehran, Iran
BookMark eNqFkM1uEzEURi1UJNLCKyBLbNhM8M-MZyyxAIVCkYqKUFlbHvsOcTRjB18HlLfHIbDppit7cc6nq3NJLmKKQMhLztaccfVmt4boUlxsXAsm-JrzVg_dE7LiQ68bIUR_QVaMa9UMmrXPyCXijjEmO6ZWxN2D28bUQF1IS3DUIgLiArHQNFFLt8cxB0-_3TVfrj9QD2jnEG0JKdL9bCsVYoEf2Rbw9Hco26pgmm2mm5uvFI9YYHlOnk52Rnjx770i3z9e329umtu7T583728bJ3tZml74kffMMiun-mVqANl6KYZx5GM39YrbznktvRBcj0p3TjOhxTR6qVuuhLwir8-7-5x-HgCLWQI6mOuZkA5ohJKqY0J1uqKvHqC7dMixXlcpwQfVSnai1JlyOSFmmMw-h8Xmo-HMnNqbnfnf3pzam3P7Kr59ILpQ_kYr2Yb5cf3dWYda61eAbNCFSoIPGVwxPoXHJv4AxUOllw
CitedBy_id crossref_primary_10_1016_j_seta_2024_104122
crossref_primary_10_1016_j_desal_2024_117694
crossref_primary_10_1016_j_egyr_2022_12_025
crossref_primary_10_1016_j_enconman_2023_117683
crossref_primary_10_1002_tcr_202200107
crossref_primary_10_1007_s13369_023_08410_7
crossref_primary_10_1007_s13201_022_01852_8
crossref_primary_10_1016_j_jclepro_2024_141998
crossref_primary_10_1016_j_pnucene_2023_104607
crossref_primary_10_1016_j_fuel_2023_129245
crossref_primary_10_1016_j_renene_2022_01_043
crossref_primary_10_1016_j_enconman_2023_116677
crossref_primary_10_1016_j_enconman_2022_115878
crossref_primary_10_1016_j_applthermaleng_2024_123660
crossref_primary_10_1016_j_enconman_2022_116428
crossref_primary_10_1007_s11356_022_21036_w
crossref_primary_10_1016_j_energy_2022_125338
crossref_primary_10_3390_en16083408
crossref_primary_10_1016_j_enconman_2021_115162
crossref_primary_10_1016_j_ref_2024_100641
crossref_primary_10_1016_j_desal_2025_118811
crossref_primary_10_1016_j_nexus_2023_100195
crossref_primary_10_1016_j_desal_2024_117600
crossref_primary_10_1016_j_tsep_2023_101858
crossref_primary_10_1016_j_desal_2023_117269
crossref_primary_10_1016_j_desal_2024_117440
crossref_primary_10_1016_j_susmat_2023_e00818
crossref_primary_10_1177_0958305X231204034
crossref_primary_10_1016_j_rser_2024_115022
crossref_primary_10_1093_ijlct_ctae245
crossref_primary_10_1016_j_enconman_2022_116189
crossref_primary_10_1016_j_enconman_2023_117675
crossref_primary_10_1016_j_enconman_2022_116301
crossref_primary_10_1016_j_enconman_2023_116666
crossref_primary_10_1016_j_renene_2025_122674
crossref_primary_10_1016_j_enconman_2022_116427
crossref_primary_10_1016_j_enconman_2022_115558
crossref_primary_10_1002_er_8450
crossref_primary_10_1002_er_8196
crossref_primary_10_1007_s40996_023_01158_y
crossref_primary_10_1016_j_scs_2023_105057
crossref_primary_10_1007_s40095_022_00526_0
crossref_primary_10_1016_j_desal_2024_118349
crossref_primary_10_3389_fenrg_2023_1265309
crossref_primary_10_3390_su151813602
crossref_primary_10_1016_j_desal_2021_115476
crossref_primary_10_1016_j_desal_2023_116643
Cites_doi 10.1115/1.4005752
10.1016/j.jclepro.2021.126402
10.1016/j.enconman.2017.12.071
10.1016/j.renene.2019.10.063
10.1016/j.desal.2014.08.005
10.1016/j.desal.2016.03.016
10.1016/j.desal.2012.08.025
10.3390/w13101369
10.1016/j.rser.2015.04.009
10.1016/B978-0-12-819610-6.00008-9
10.1016/j.jenvman.2021.113034
10.1016/j.rser.2017.09.094
10.1016/j.desal.2020.114623
10.1016/j.desal.2013.12.030
10.1016/j.energy.2011.02.015
10.1016/j.enconman.2020.113103
10.1016/j.apenergy.2009.05.023
10.1016/j.enconman.2015.09.045
10.1016/j.enconman.2021.114333
10.1016/j.rser.2017.01.170
10.1016/j.desal.2019.01.019
10.1016/j.csite.2018.02.006
10.1016/j.desal.2006.02.059
10.1016/j.desal.2014.12.037
10.1016/j.rser.2015.10.059
10.1016/j.desal.2016.09.029
10.1016/j.enconman.2020.113629
10.1016/j.desal.2014.04.007
10.1016/j.enconman.2021.114215
10.1016/j.energy.2017.07.110
10.1016/j.desal.2011.01.006
10.1080/19443994.2012.664674
10.1016/j.rser.2013.01.028
10.1016/j.desal.2013.10.028
10.1016/j.desal.2015.09.014
10.1016/j.desal.2006.12.011
10.1016/j.desal.2014.07.018
10.1016/j.desal.2007.02.064
10.1016/j.desal.2011.08.040
10.1016/j.desal.2016.02.011
10.1016/j.renene.2010.03.034
10.1016/j.desal.2017.12.031
10.1016/j.desal.2011.11.050
10.1016/j.solener.2019.07.046
10.1016/S0011-9164(03)00207-8
10.1016/j.desal.2017.10.040
10.1016/j.desal.2013.01.022
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 1, 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2021.114985
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_114985
S0196890421011614
GeographicLocations United States--US
Iran
GeographicLocations_xml – name: United States--US
– name: Iran
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-72db170a0a3f2db068e34d328bb1b5f761a5cd93d2219b695c90292fbd3941623
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sun Sep 28 10:03:08 EDT 2025
Wed Aug 13 06:59:44 EDT 2025
Thu Oct 09 00:36:53 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Fri Feb 23 02:41:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Concentrated solar power
Hybrid desalination plant
Thermal energy storage
Multi-effect distillation
Freshwater cost
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-72db170a0a3f2db068e34d328bb1b5f761a5cd93d2219b695c90292fbd3941623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2621864309
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2636502659
proquest_journals_2621864309
crossref_primary_10_1016_j_enconman_2021_114985
crossref_citationtrail_10_1016_j_enconman_2021_114985
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114985
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Delgado-Torres, García-Rodríguez (b0070) 2007; 216
Mabrouk, Nafey, Fath (b0200) 2007; 205
Ghorbani, Mahyari, Mehrpooya, Hamedi (b0245) 2020; 148
Sharaf, Nafey, García-Rodríguez (b0215) 2011; 272
Olwig, Hirsch, Sattler, Glade, Schmeken, Will (b0235) 2012; 41
Quoilin, Van Den, Declaye, Dewallef, Lemort (b0125) 2013; 22
Shalaby (b0105) 2017; 73
Sadri, Ameri, Haghighi (b0030) 2017; 402
Al-Obaidi, Filippini, Manenti, Mujtaba (b0025) 2019; 456
Peñate, García-Rodríguez (b0230) 2012; 284
Bataineh (b0100) 2016; 385
Salazar, Fraidenraich, de Oliveira, de Castro, Hongn, Gordon (b0155) 2017; 138
Mohammad, Al-Kayiem, Assadi, Sabir, Khlief (b0170) 2018; 12
Palenzuela, Alarcón-Padilla, Zaragoza (b0240) 2015; 366
Sharon, Prabha, Vijay, Niyas, Gorjian (b0010) 2021; 295
Eterafi, Gorjian, Amidpour (b0060) 2021; 243
Gorjian, Ghobadian (b0050) 2015; 48
Behar, Khellaf, Mohammedi (b0160) 2015; 106
Sharaf (b0225) 2012; 134
Hosseini, Banakar, Gorjian (b0015) 2018; 435
Alhaj, Al-Ghamdi (b0020) 2019; 189
Ruiz-García, de la Nuez-Pestana (b0220) 2018; 426
Shakib, Amidpour, Boghrati, Ghafurian, Esmaieli (b0035) 2021; 295
Ortega-Delgado, García-Rodríguez, Alarcón-Padilla (b0095) 2016; 392
Khoshgoftar Manesh, Ghalami, Amidpour, Hamedi (b0140) 2013; 316
Feria-Díaz, Correa-Mahecha, López-Méndez, Rodríguez-Miranda, Barrera-Rojas (b0075) 2021; 13
Mokhtari, Ahmadisedigh, Ebrahimi (b0190) 2016; 377
Sharaf, Nafey, García-Rodríguez (b0210) 2011; 36
Kabir, Kumar, Kumar, Adelodun, Kim (b0065) 2018; 82
Sadeghi, Ghazaie, Sokolova, Fedorovich, Shirani (b0040) 2020; 493
Gorjian S, Ghobadian B, Ebadi H, Ketabchi F, Khanmohammadi S. Applications of solar PV systems in desalination technologies. In: Gorjian S, Shukla A, editors. Photovolt. Sol. Energy Convers. 1st ed., London: Elsevier; 2020, p. 237–74. https://doi.org/10.1016/B978-0-12-819610-6.00008-9.
Incropera, Lavine, DeWitt (b0165) 2011
Gorjian, Ghobadian, Tavakkoli Hashjin, Banakar (b0005) 2014; 352
Helal, El-Nashar, Al-Katheeri, Al-Malek (b0195) 2003; 154
Sayyaadi, Saffari (b0135) 2010; 87
Druetta, Aguirre, Mussati (b0175) 2014; 344
Moharram, Bayoumi, Hanafy, El-Maghlany (b0080) 2021; 228
Du, Xie, Liu, Wang, Xu, Wang (b0185) 2014; 333
Salcedo, Antipova, Boer, Jiménez, Guillén-Gosálbez (b0180) 2012; 286
Iaquaniello, Salladini, Mari, Mabrouk, Fath (b0085) 2014; 336
AlZahrani, Dincer (b0110) 2018; 158
Aboelmaaref, Zayed, Zhao, Li, Askalany, Salem Ahmed (b0055) 2020; 220
Jalili Jamshidian, Gorjian, Shafiee (b0115) 2018; 3
Abdelgaied, Kabeel, Kandeal, Abosheiasha, Shalaby, Hamed (b0090) 2021; 239
Vince, Marechal, Aoustin, Bréant (b0150) 2008; 222
Benoit, Spreafico, Gauthier, Flamant (b0120) 2016; 55
Al-Mutaz, Wazeer (b0130) 2014; 351
Nafey, Sharaf (b0205) 2010; 35
Lu, Liao, Hu (b0145) 2012; 307
Mabrouk (10.1016/j.enconman.2021.114985_b0200) 2007; 205
Feria-Díaz (10.1016/j.enconman.2021.114985_b0075) 2021; 13
Bataineh (10.1016/j.enconman.2021.114985_b0100) 2016; 385
Quoilin (10.1016/j.enconman.2021.114985_b0125) 2013; 22
Alhaj (10.1016/j.enconman.2021.114985_b0020) 2019; 189
Sharaf (10.1016/j.enconman.2021.114985_b0225) 2012; 134
Ghorbani (10.1016/j.enconman.2021.114985_b0245) 2020; 148
Salcedo (10.1016/j.enconman.2021.114985_b0180) 2012; 286
AlZahrani (10.1016/j.enconman.2021.114985_b0110) 2018; 158
Kabir (10.1016/j.enconman.2021.114985_b0065) 2018; 82
Ruiz-García (10.1016/j.enconman.2021.114985_b0220) 2018; 426
Behar (10.1016/j.enconman.2021.114985_b0160) 2015; 106
Mokhtari (10.1016/j.enconman.2021.114985_b0190) 2016; 377
Peñate (10.1016/j.enconman.2021.114985_b0230) 2012; 284
Incropera (10.1016/j.enconman.2021.114985_b0165) 2011
Benoit (10.1016/j.enconman.2021.114985_b0120) 2016; 55
Gorjian (10.1016/j.enconman.2021.114985_b0005) 2014; 352
Moharram (10.1016/j.enconman.2021.114985_b0080) 2021; 228
Abdelgaied (10.1016/j.enconman.2021.114985_b0090) 2021; 239
Sadeghi (10.1016/j.enconman.2021.114985_b0040) 2020; 493
Al-Mutaz (10.1016/j.enconman.2021.114985_b0130) 2014; 351
Eterafi (10.1016/j.enconman.2021.114985_b0060) 2021; 243
Sadri (10.1016/j.enconman.2021.114985_b0030) 2017; 402
Sharaf (10.1016/j.enconman.2021.114985_b0215) 2011; 272
Lu (10.1016/j.enconman.2021.114985_b0145) 2012; 307
Salazar (10.1016/j.enconman.2021.114985_b0155) 2017; 138
Al-Obaidi (10.1016/j.enconman.2021.114985_b0025) 2019; 456
Du (10.1016/j.enconman.2021.114985_b0185) 2014; 333
Druetta (10.1016/j.enconman.2021.114985_b0175) 2014; 344
Sharon (10.1016/j.enconman.2021.114985_b0010) 2021; 295
Delgado-Torres (10.1016/j.enconman.2021.114985_b0070) 2007; 216
Iaquaniello (10.1016/j.enconman.2021.114985_b0085) 2014; 336
Jalili Jamshidian (10.1016/j.enconman.2021.114985_b0115) 2018; 3
Vince (10.1016/j.enconman.2021.114985_b0150) 2008; 222
Aboelmaaref (10.1016/j.enconman.2021.114985_b0055) 2020; 220
Hosseini (10.1016/j.enconman.2021.114985_b0015) 2018; 435
10.1016/j.enconman.2021.114985_b0045
Khoshgoftar Manesh (10.1016/j.enconman.2021.114985_b0140) 2013; 316
Gorjian (10.1016/j.enconman.2021.114985_b0050) 2015; 48
Palenzuela (10.1016/j.enconman.2021.114985_b0240) 2015; 366
Sharaf (10.1016/j.enconman.2021.114985_b0210) 2011; 36
Mohammad (10.1016/j.enconman.2021.114985_b0170) 2018; 12
Shakib (10.1016/j.enconman.2021.114985_b0035) 2021; 295
Shalaby (10.1016/j.enconman.2021.114985_b0105) 2017; 73
Olwig (10.1016/j.enconman.2021.114985_b0235) 2012; 41
Ortega-Delgado (10.1016/j.enconman.2021.114985_b0095) 2016; 392
Nafey (10.1016/j.enconman.2021.114985_b0205) 2010; 35
Sayyaadi (10.1016/j.enconman.2021.114985_b0135) 2010; 87
Helal (10.1016/j.enconman.2021.114985_b0195) 2003; 154
References_xml – volume: 426
  start-page: 69
  year: 2018
  end-page: 77
  ident: b0220
  article-title: A computational tool for designing BWRO systems with spiral wound modules
  publication-title: Desalination
– volume: 35
  start-page: 2571
  year: 2010
  end-page: 2580
  ident: b0205
  article-title: Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations
  publication-title: Renew Energy
– volume: 435
  start-page: 45
  year: 2018
  end-page: 59
  ident: b0015
  article-title: Development and performance evaluation of an active solar distillation system integrated with a vacuum-type heat exchanger
  publication-title: Desalination
– volume: 402
  start-page: 97
  year: 2017
  end-page: 108
  ident: b0030
  article-title: Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept
  publication-title: Desalination
– volume: 295
  start-page: 113034
  year: 2021
  ident: b0010
  article-title: Assessing suitability of commercial fibre reinforced plastic solar still for sustainable potable water production in rural India through detailed energy-exergy-economic analyses and environmental impacts
  publication-title: J Environ Manage
– volume: 12
  start-page: 26
  year: 2018
  end-page: 37
  ident: b0170
  article-title: An integrated program of a stand-alone parabolic trough solar thermal power plant: Code description and test
  publication-title: Case Stud Therm Eng
– volume: 216
  start-page: 252
  year: 2007
  end-page: 275
  ident: b0070
  article-title: Preliminary assessment of solar organic Rankine cycles for driving a desalination system
  publication-title: Desalination
– volume: 385
  start-page: 39
  year: 2016
  end-page: 52
  ident: b0100
  article-title: Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy
  publication-title: Desalination
– volume: 55
  start-page: 298
  year: 2016
  end-page: 315
  ident: b0120
  article-title: Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients
  publication-title: Renew Sustain Energy Rev
– volume: 138
  start-page: 1148
  year: 2017
  end-page: 1156
  ident: b0155
  article-title: Analytic modeling of parabolic trough solar thermal power plants
  publication-title: Energy
– year: 2011
  ident: b0165
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 272
  start-page: 135
  year: 2011
  end-page: 147
  ident: b0215
  article-title: Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process
  publication-title: Desalination
– volume: 73
  start-page: 789
  year: 2017
  end-page: 797
  ident: b0105
  article-title: Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review
  publication-title: Renew Sustain Energy Rev
– volume: 48
  start-page: 571
  year: 2015
  end-page: 584
  ident: b0050
  article-title: Solar desalination: A sustainable solution to water crisis in Iran
  publication-title: Renew Sustain Energy Rev
– volume: 205
  start-page: 354
  year: 2007
  end-page: 373
  ident: b0200
  article-title: Thermoeconomic analysis of some existing desalination processes
  publication-title: Desalination
– volume: 377
  start-page: 108
  year: 2016
  end-page: 122
  ident: b0190
  article-title: Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water
  publication-title: Desalination
– volume: 158
  start-page: 476
  year: 2018
  end-page: 488
  ident: b0110
  article-title: Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle
  publication-title: Energy Convers Manag
– volume: 87
  start-page: 1122
  year: 2010
  end-page: 1133
  ident: b0135
  article-title: Thermoeconomic optimization of multi effect distillation desalination systems
  publication-title: Appl Energy
– volume: 148
  start-page: 1227
  year: 2020
  end-page: 1243
  ident: b0245
  article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery
  publication-title: Renew Energy
– reference: Gorjian S, Ghobadian B, Ebadi H, Ketabchi F, Khanmohammadi S. Applications of solar PV systems in desalination technologies. In: Gorjian S, Shukla A, editors. Photovolt. Sol. Energy Convers. 1st ed., London: Elsevier; 2020, p. 237–74. https://doi.org/10.1016/B978-0-12-819610-6.00008-9.
– volume: 352
  start-page: 1
  year: 2014
  end-page: 17
  ident: b0005
  article-title: Experimental performance evaluation of a stand-alone point-focus parabolic solar still
  publication-title: Desalination
– volume: 82
  start-page: 894
  year: 2018
  end-page: 900
  ident: b0065
  article-title: Solar energy: Potential and future prospects
  publication-title: Renew Sustain Energy Rev
– volume: 336
  start-page: 121
  year: 2014
  end-page: 128
  ident: b0085
  article-title: Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination
  publication-title: Desalination
– volume: 134
  year: 2012
  ident: b0225
  article-title: Thermo-Economic Comparisons of Different Types of Solar Desalination Processes
  publication-title: J Sol Energy Eng
– volume: 41
  start-page: 9
  year: 2012
  end-page: 25
  ident: b0235
  article-title: Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan
  publication-title: Desalin Water Treat
– volume: 239
  start-page: 114215
  year: 2021
  ident: b0090
  article-title: Performance assessment of solar PV-driven hybrid HDH-RO desalination system integrated with energy recovery units and solar collectors: Theoretical approach
  publication-title: Energy Convers Manag
– volume: 284
  start-page: 86
  year: 2012
  end-page: 91
  ident: b0230
  article-title: Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range
  publication-title: Desalination
– volume: 36
  start-page: 2753
  year: 2011
  end-page: 2764
  ident: b0210
  article-title: Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes
  publication-title: Energy
– volume: 3
  start-page: 301
  year: 2018
  end-page: 312
  ident: b0115
  article-title: An Overview of Solar Thermal Power Generation Systems
  publication-title: J Sol Energy Res
– volume: 13
  start-page: 1369
  year: 2021
  ident: b0075
  article-title: Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review
  publication-title: Water
– volume: 222
  start-page: 96
  year: 2008
  end-page: 118
  ident: b0150
  article-title: Multi-objective optimization of RO desalination plants
  publication-title: Desalination
– volume: 351
  start-page: 9
  year: 2014
  end-page: 18
  ident: b0130
  article-title: Development of a steady-state mathematical model for MEE-TVC desalination plants
  publication-title: Desalination
– volume: 189
  start-page: 480
  year: 2019
  end-page: 490
  ident: b0020
  article-title: Why is powering thermal desalination with concentrated solar power expensive? assessing economic feasibility and market commercialization barriers
  publication-title: Sol Energy
– volume: 228
  start-page: 113629
  year: 2021
  ident: b0080
  article-title: Techno-economic analysis of a combined concentrated solar power and water desalination plant
  publication-title: Energy Convers Manag
– volume: 316
  start-page: 42
  year: 2013
  end-page: 52
  ident: b0140
  article-title: Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization
  publication-title: Desalination
– volume: 307
  start-page: 42
  year: 2012
  end-page: 50
  ident: b0145
  article-title: The design of reverse osmosis systems with multiple-feed and multiple-product
  publication-title: Desalination
– volume: 333
  start-page: 66
  year: 2014
  end-page: 81
  ident: b0185
  article-title: Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method
  publication-title: Desalination
– volume: 366
  start-page: 130
  year: 2015
  end-page: 138
  ident: b0240
  article-title: Large-scale solar desalination by combination with CSP: Techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf
  publication-title: Desalination
– volume: 106
  start-page: 268
  year: 2015
  end-page: 281
  ident: b0160
  article-title: A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES)
  publication-title: Energy Convers Manag
– volume: 344
  start-page: 431
  year: 2014
  end-page: 445
  ident: b0175
  article-title: Minimizing the total cost of multi effect evaporation systems for seawater desalination
  publication-title: Desalination
– volume: 295
  start-page: 126402
  year: 2021
  ident: b0035
  article-title: New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle
  publication-title: J Clean Prod
– volume: 456
  start-page: 136
  year: 2019
  end-page: 149
  ident: b0025
  article-title: Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination
  publication-title: Desalination
– volume: 22
  start-page: 168
  year: 2013
  end-page: 186
  ident: b0125
  article-title: Techno-economic survey of Organic Rankine Cycle (ORC) systems
  publication-title: Renew Sustain Energy Rev
– volume: 154
  start-page: 43
  year: 2003
  end-page: 66
  ident: b0195
  article-title: Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms
  publication-title: Desalination
– volume: 493
  start-page: 114623
  year: 2020
  ident: b0040
  article-title: Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems
  publication-title: Desalination
– volume: 392
  start-page: 102
  year: 2016
  end-page: 117
  ident: b0095
  article-title: Thermoeconomic comparison of integrating seawater desalination processes in a concentrating solar power plant of 5 MWe
  publication-title: Desalination
– volume: 243
  start-page: 114333
  year: 2021
  ident: b0060
  article-title: Thermodynamic design and parametric performance assessment of a novel cogeneration solar organic Rankine cycle system with stable output
  publication-title: Energy Convers Manag
– volume: 286
  start-page: 358
  year: 2012
  end-page: 371
  ident: b0180
  article-title: Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns
  publication-title: Desalination
– volume: 220
  start-page: 113103
  year: 2020
  ident: b0055
  article-title: Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment
  publication-title: Energy Convers Manag
– volume: 134
  year: 2012
  ident: 10.1016/j.enconman.2021.114985_b0225
  article-title: Thermo-Economic Comparisons of Different Types of Solar Desalination Processes
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4005752
– volume: 295
  start-page: 126402
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0035
  article-title: New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2021.126402
– volume: 158
  start-page: 476
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0110
  article-title: Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.12.071
– volume: 148
  start-page: 1227
  year: 2020
  ident: 10.1016/j.enconman.2021.114985_b0245
  article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.063
– volume: 352
  start-page: 1
  year: 2014
  ident: 10.1016/j.enconman.2021.114985_b0005
  article-title: Experimental performance evaluation of a stand-alone point-focus parabolic solar still
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.08.005
– volume: 392
  start-page: 102
  year: 2016
  ident: 10.1016/j.enconman.2021.114985_b0095
  article-title: Thermoeconomic comparison of integrating seawater desalination processes in a concentrating solar power plant of 5 MWe
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.03.016
– volume: 307
  start-page: 42
  year: 2012
  ident: 10.1016/j.enconman.2021.114985_b0145
  article-title: The design of reverse osmosis systems with multiple-feed and multiple-product
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.08.025
– volume: 13
  start-page: 1369
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0075
  article-title: Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review
  publication-title: Water
  doi: 10.3390/w13101369
– volume: 48
  start-page: 571
  year: 2015
  ident: 10.1016/j.enconman.2021.114985_b0050
  article-title: Solar desalination: A sustainable solution to water crisis in Iran
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.009
– ident: 10.1016/j.enconman.2021.114985_b0045
  doi: 10.1016/B978-0-12-819610-6.00008-9
– volume: 295
  start-page: 113034
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0010
  article-title: Assessing suitability of commercial fibre reinforced plastic solar still for sustainable potable water production in rural India through detailed energy-exergy-economic analyses and environmental impacts
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.113034
– volume: 82
  start-page: 894
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0065
  article-title: Solar energy: Potential and future prospects
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.09.094
– volume: 493
  start-page: 114623
  year: 2020
  ident: 10.1016/j.enconman.2021.114985_b0040
  article-title: Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114623
– volume: 336
  start-page: 121
  year: 2014
  ident: 10.1016/j.enconman.2021.114985_b0085
  article-title: Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.12.030
– volume: 36
  start-page: 2753
  issue: 5
  year: 2011
  ident: 10.1016/j.enconman.2021.114985_b0210
  article-title: Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.015
– volume: 220
  start-page: 113103
  year: 2020
  ident: 10.1016/j.enconman.2021.114985_b0055
  article-title: Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113103
– volume: 87
  start-page: 1122
  issue: 4
  year: 2010
  ident: 10.1016/j.enconman.2021.114985_b0135
  article-title: Thermoeconomic optimization of multi effect distillation desalination systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.05.023
– volume: 106
  start-page: 268
  year: 2015
  ident: 10.1016/j.enconman.2021.114985_b0160
  article-title: A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES)
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.09.045
– volume: 243
  start-page: 114333
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0060
  article-title: Thermodynamic design and parametric performance assessment of a novel cogeneration solar organic Rankine cycle system with stable output
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114333
– volume: 73
  start-page: 789
  year: 2017
  ident: 10.1016/j.enconman.2021.114985_b0105
  article-title: Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.170
– volume: 456
  start-page: 136
  year: 2019
  ident: 10.1016/j.enconman.2021.114985_b0025
  article-title: Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.01.019
– volume: 3
  start-page: 301
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0115
  article-title: An Overview of Solar Thermal Power Generation Systems
  publication-title: J Sol Energy Res
– volume: 12
  start-page: 26
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0170
  article-title: An integrated program of a stand-alone parabolic trough solar thermal power plant: Code description and test
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2018.02.006
– volume: 205
  start-page: 354
  issue: 1-3
  year: 2007
  ident: 10.1016/j.enconman.2021.114985_b0200
  article-title: Thermoeconomic analysis of some existing desalination processes
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.02.059
– volume: 366
  start-page: 130
  year: 2015
  ident: 10.1016/j.enconman.2021.114985_b0240
  article-title: Large-scale solar desalination by combination with CSP: Techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.037
– volume: 55
  start-page: 298
  year: 2016
  ident: 10.1016/j.enconman.2021.114985_b0120
  article-title: Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.10.059
– volume: 402
  start-page: 97
  year: 2017
  ident: 10.1016/j.enconman.2021.114985_b0030
  article-title: Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.09.029
– volume: 228
  start-page: 113629
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0080
  article-title: Techno-economic analysis of a combined concentrated solar power and water desalination plant
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113629
– volume: 344
  start-page: 431
  year: 2014
  ident: 10.1016/j.enconman.2021.114985_b0175
  article-title: Minimizing the total cost of multi effect evaporation systems for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.04.007
– volume: 239
  start-page: 114215
  year: 2021
  ident: 10.1016/j.enconman.2021.114985_b0090
  article-title: Performance assessment of solar PV-driven hybrid HDH-RO desalination system integrated with energy recovery units and solar collectors: Theoretical approach
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114215
– volume: 138
  start-page: 1148
  year: 2017
  ident: 10.1016/j.enconman.2021.114985_b0155
  article-title: Analytic modeling of parabolic trough solar thermal power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.110
– volume: 272
  start-page: 135
  issue: 1-3
  year: 2011
  ident: 10.1016/j.enconman.2021.114985_b0215
  article-title: Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.01.006
– volume: 41
  start-page: 9
  issue: 1-3
  year: 2012
  ident: 10.1016/j.enconman.2021.114985_b0235
  article-title: Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan
  publication-title: Desalin Water Treat
  doi: 10.1080/19443994.2012.664674
– volume: 22
  start-page: 168
  year: 2013
  ident: 10.1016/j.enconman.2021.114985_b0125
  article-title: Techno-economic survey of Organic Rankine Cycle (ORC) systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.01.028
– year: 2011
  ident: 10.1016/j.enconman.2021.114985_b0165
– volume: 333
  start-page: 66
  issue: 1
  year: 2014
  ident: 10.1016/j.enconman.2021.114985_b0185
  article-title: Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.10.028
– volume: 377
  start-page: 108
  year: 2016
  ident: 10.1016/j.enconman.2021.114985_b0190
  article-title: Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.09.014
– volume: 216
  start-page: 252
  issue: 1-3
  year: 2007
  ident: 10.1016/j.enconman.2021.114985_b0070
  article-title: Preliminary assessment of solar organic Rankine cycles for driving a desalination system
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.12.011
– volume: 351
  start-page: 9
  year: 2014
  ident: 10.1016/j.enconman.2021.114985_b0130
  article-title: Development of a steady-state mathematical model for MEE-TVC desalination plants
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.07.018
– volume: 222
  start-page: 96
  issue: 1-3
  year: 2008
  ident: 10.1016/j.enconman.2021.114985_b0150
  article-title: Multi-objective optimization of RO desalination plants
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.02.064
– volume: 284
  start-page: 86
  year: 2012
  ident: 10.1016/j.enconman.2021.114985_b0230
  article-title: Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.08.040
– volume: 385
  start-page: 39
  year: 2016
  ident: 10.1016/j.enconman.2021.114985_b0100
  article-title: Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.02.011
– volume: 35
  start-page: 2571
  issue: 11
  year: 2010
  ident: 10.1016/j.enconman.2021.114985_b0205
  article-title: Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.03.034
– volume: 435
  start-page: 45
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0015
  article-title: Development and performance evaluation of an active solar distillation system integrated with a vacuum-type heat exchanger
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.12.031
– volume: 286
  start-page: 358
  year: 2012
  ident: 10.1016/j.enconman.2021.114985_b0180
  article-title: Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.11.050
– volume: 189
  start-page: 480
  year: 2019
  ident: 10.1016/j.enconman.2021.114985_b0020
  article-title: Why is powering thermal desalination with concentrated solar power expensive? assessing economic feasibility and market commercialization barriers
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.07.046
– volume: 154
  start-page: 43
  issue: 1
  year: 2003
  ident: 10.1016/j.enconman.2021.114985_b0195
  article-title: Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms
  publication-title: Desalination
  doi: 10.1016/S0011-9164(03)00207-8
– volume: 426
  start-page: 69
  year: 2018
  ident: 10.1016/j.enconman.2021.114985_b0220
  article-title: A computational tool for designing BWRO systems with spiral wound modules
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.10.040
– volume: 316
  start-page: 42
  year: 2013
  ident: 10.1016/j.enconman.2021.114985_b0140
  article-title: Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.01.022
SSID ssj0003506
Score 2.574073
Snippet •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system...
In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114985
SubjectTerms administrative management
Algorithms
case studies
Climatic conditions
Cogeneration
Concentrated solar power
Desalination
Desalination plants
Distillation
economic evaluation
Economic models
Economics
electricity
energy conversion
Energy storage
freshwater
Freshwater cost
heat
Hybrid desalination plant
Hybrid modes
Integration
Iran
Irradiation
latitude
longitude
Multi-effect distillation
people
Radiation
Recovery
Reverse osmosis
solar collectors
Solar energy
solar radiation
Thermal energy
Thermal energy storage
Water demand
Working hours
Title Techno-economic assessment of a hybrid RO-MED desalination plant integrated with a solar CHP system
URI https://dx.doi.org/10.1016/j.enconman.2021.114985
https://www.proquest.com/docview/2621864309
https://www.proquest.com/docview/2636502659
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iFz2IK44bEbzGaZYmzVFGZVRccAFvIUuLinYGZzx48beb12VcEDx4K2keLS_Jy8vyfR9Cu8r6VBdUkkL7hAhVaJJJL0iQQVAVqHMBAM5n57J_K07u0rsp1GuxMHCtson9dUyvonVT0m282R0-PHSvgdkl07HTUThMqMSshVCgYrD3_nnNg6eVviZUJlD7C0r4cQ-4IstnCzyojAJtrgZN5d8nqB-hupp_jhbQfJM44v363xbRVF4uobkvdILLyNf75CRvwMbYTmg38aDAFt-_AT4LX12Qs8MDHPKRBTguNA0ePkUX4wl5RMCwQRtNRrD0xb3-Ja45n1fQ7dHhTa9PGhEF4rniY6JYcFQlNrG8iI-JzHIuAmeZc9SlhZLUpj5oHliMXU7q1OuEaVa4wHVM1hhfRdPloMzXEA7eZzzxuYo5h_C80NLykASquHKwtOmgtPWc8Q3DOAhdPJn2KtmjaT1uwOOm9ngHdSd2w5pj408L3TaM-dZbTJwI_rTdbFvSNON1ZJgEbS7BE91BO5PXcaTB8Ykt88Er1OExnWUy1ev_-PwGmmWAoKh2cTbR9PjlNd-Kec3YbVcddxvN7B-f9s8_ABH494Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELUQHIADmmERzTJjJK6mYzu24-OoATVLA2KRuFleEgGCdItuDlzm28eVpVmExGFukeNSoqpyuby8VwjtKuuFLqgkhfYJSVWhSSZ9SoIMKVWBOhcA4Dw4k_2b9PhW3M6gXouFgWuVTeyvY3oVrZuWbqPN7uj-vnsFzC6Zjk5H4TABilnPpYIpWIHt_X2758FFVWATehPo_g4m_LAHZJHlkwUiVEaBN1dDUeWvZ6hPsbqagA5_oKUmc8R_6p_7iWbychktvuMTXEG-3igneYM2xnbKu4mHBbb47hUAWvjynAwO9nHIxxbwuGAbPHqMOsZT9oiAYYc2ioxh7Yt7_Qtckz6vopvDg-tenzRVFIjnik-IYsFRldjE8iI-JjLLeRo4y5yjThRKUit80DywGLyc1MLrhGlWuMB1zNYYX0Oz5bDM1xEO3mc88bmKSUfqeaGl5SEJVHHlYG3TQaLVnPENxThUung07V2yB9Nq3IDGTa3xDupO5UY1yca3Ero1jPngLibOBN_KbrWWNM2AHRsmoThXyhPdQTvT13GowfmJLfPhC_ThMZ9lUuiN__j8bzTfvx6cmtOjs5NNtMAATlFt6Wyh2cnzS74dk5yJ-1U58T_J3fkb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+assessment+of+a+hybrid+RO-MED+desalination+plant+integrated+with+a+solar+CHP+system&rft.jtitle=Energy+conversion+and+management&rft.au=Jamshidian%2C+Farid+Jalili&rft.au=Gorjian%2C+Shiva&rft.au=Shafieefar%2C+Mehdi&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=251&rft_id=info:doi/10.1016%2Fj.enconman.2021.114985&rft.externalDocID=S0196890421011614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon