Techno-economic assessment of a hybrid RO-MED desalination plant integrated with a solar CHP system
•Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost o...
        Saved in:
      
    
          | Published in | Energy conversion and management Vol. 251; p. 114985 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        01.01.2022
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0196-8904 1879-2227  | 
| DOI | 10.1016/j.enconman.2021.114985 | 
Cover
| Abstract | •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost of 1 m3 of produced freshwater is observed.
In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant. | 
    
|---|---|
| AbstractList | •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system rises total recovery by 15%.•Employing a thermal energy storage unit enhances the working hours by 30%.•About an 8% drop in the final cost of 1 m3 of produced freshwater is observed.
In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant. In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m3/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m2. The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m3 for a single solar-powered MED plant to 1.918 US$/m3 for the solar-powered RO-MED plant. In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way that both heat and electricity demands of the hybrid RO-MED plant could be provided by a solar combined heat and power (CHP) system composed of parabolic trough concentrators (PTCs). For this purpose, the climatic conditions of Bushehr province (latitude 28.7621° N; longitude 51.5150° E), located in the south of Iran, was considered as the case study, and the water demand of 1,000 m³/day was assumed. In the first step, new algorithms were developed to integrate RO and MED desalination plants, and an incorporated thermal energy storage (TES) system was designed using the MATLAB program. Additionally, the whole system including the RO-MED plant and the solar CHP system was mathematically modeled and their performance was technically and economically evaluated. To perform this, four scenarios including recovery values for RO and MED as 50% and 30% (scenario 1), 50% and 35% (scenario 2), 55% and 30% (scenario 3), and 55% and 35% (scenario 4) were deemed. The results revealed that, first of all, the fourth scenario yields the highest total recovery amounts in all considered shares of freshwater production between two desalination plants. Secondly, under this scenario, the optimum total recovery can be obtained when each desalination plant produces 50% of the required freshwater, leading to a 15% rise in total recovery in hybrid mode, compared to the use of a single MED unit. Moreover, it was found that the integration of the TES unit can extend the working hours of the system by 30% under daylight irradiation. From calculations, the number of required PTCs in the solar field was calculated as 188 with a total aperture area of 17,869 m². The economic evaluation of the designed system illustrated that the integration of a RO plant with an existing MED system could reduce the total cost of the produced freshwater for 6700 people from 2.08 US$/m³ for a single solar-powered MED plant to 1.918 US$/m³ for the solar-powered RO-MED plant.  | 
    
| ArticleNumber | 114985 | 
    
| Author | Jamshidian, Farid Jalili Gorjian, Shiva Shafieefar, Mehdi  | 
    
| Author_xml | – sequence: 1 givenname: Farid Jalili surname: Jamshidian fullname: Jamshidian, Farid Jalili email: farid_jalili@modares.ac.ir organization: Water Resources Management and Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University (TMU), Tehran, Iran – sequence: 2 givenname: Shiva surname: Gorjian fullname: Gorjian, Shiva email: Gorjian@modares.ac.ir organization: Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran – sequence: 3 givenname: Mehdi surname: Shafieefar fullname: Shafieefar, Mehdi email: Shafiee@modares.ac.ir organization: Coastal and Offshore Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University (TMU), Tehran, Iran  | 
    
| BookMark | eNqFkM1uEzEURi1UJNLCKyBLbNhM8M-MZyyxAIVCkYqKUFlbHvsOcTRjB18HlLfHIbDppit7cc6nq3NJLmKKQMhLztaccfVmt4boUlxsXAsm-JrzVg_dE7LiQ68bIUR_QVaMa9UMmrXPyCXijjEmO6ZWxN2D28bUQF1IS3DUIgLiArHQNFFLt8cxB0-_3TVfrj9QD2jnEG0JKdL9bCsVYoEf2Rbw9Hco26pgmm2mm5uvFI9YYHlOnk52Rnjx770i3z9e329umtu7T583728bJ3tZml74kffMMiun-mVqANl6KYZx5GM39YrbznktvRBcj0p3TjOhxTR6qVuuhLwir8-7-5x-HgCLWQI6mOuZkA5ohJKqY0J1uqKvHqC7dMixXlcpwQfVSnai1JlyOSFmmMw-h8Xmo-HMnNqbnfnf3pzam3P7Kr59ILpQ_kYr2Yb5cf3dWYda61eAbNCFSoIPGVwxPoXHJv4AxUOllw | 
    
| CitedBy_id | crossref_primary_10_1016_j_seta_2024_104122 crossref_primary_10_1016_j_desal_2024_117694 crossref_primary_10_1016_j_egyr_2022_12_025 crossref_primary_10_1016_j_enconman_2023_117683 crossref_primary_10_1002_tcr_202200107 crossref_primary_10_1007_s13369_023_08410_7 crossref_primary_10_1007_s13201_022_01852_8 crossref_primary_10_1016_j_jclepro_2024_141998 crossref_primary_10_1016_j_pnucene_2023_104607 crossref_primary_10_1016_j_fuel_2023_129245 crossref_primary_10_1016_j_renene_2022_01_043 crossref_primary_10_1016_j_enconman_2023_116677 crossref_primary_10_1016_j_enconman_2022_115878 crossref_primary_10_1016_j_applthermaleng_2024_123660 crossref_primary_10_1016_j_enconman_2022_116428 crossref_primary_10_1007_s11356_022_21036_w crossref_primary_10_1016_j_energy_2022_125338 crossref_primary_10_3390_en16083408 crossref_primary_10_1016_j_enconman_2021_115162 crossref_primary_10_1016_j_ref_2024_100641 crossref_primary_10_1016_j_desal_2025_118811 crossref_primary_10_1016_j_nexus_2023_100195 crossref_primary_10_1016_j_desal_2024_117600 crossref_primary_10_1016_j_tsep_2023_101858 crossref_primary_10_1016_j_desal_2023_117269 crossref_primary_10_1016_j_desal_2024_117440 crossref_primary_10_1016_j_susmat_2023_e00818 crossref_primary_10_1177_0958305X231204034 crossref_primary_10_1016_j_rser_2024_115022 crossref_primary_10_1093_ijlct_ctae245 crossref_primary_10_1016_j_enconman_2022_116189 crossref_primary_10_1016_j_enconman_2023_117675 crossref_primary_10_1016_j_enconman_2022_116301 crossref_primary_10_1016_j_enconman_2023_116666 crossref_primary_10_1016_j_renene_2025_122674 crossref_primary_10_1016_j_enconman_2022_116427 crossref_primary_10_1016_j_enconman_2022_115558 crossref_primary_10_1002_er_8450 crossref_primary_10_1002_er_8196 crossref_primary_10_1007_s40996_023_01158_y crossref_primary_10_1016_j_scs_2023_105057 crossref_primary_10_1007_s40095_022_00526_0 crossref_primary_10_1016_j_desal_2024_118349 crossref_primary_10_3389_fenrg_2023_1265309 crossref_primary_10_3390_su151813602 crossref_primary_10_1016_j_desal_2021_115476 crossref_primary_10_1016_j_desal_2023_116643  | 
    
| Cites_doi | 10.1115/1.4005752 10.1016/j.jclepro.2021.126402 10.1016/j.enconman.2017.12.071 10.1016/j.renene.2019.10.063 10.1016/j.desal.2014.08.005 10.1016/j.desal.2016.03.016 10.1016/j.desal.2012.08.025 10.3390/w13101369 10.1016/j.rser.2015.04.009 10.1016/B978-0-12-819610-6.00008-9 10.1016/j.jenvman.2021.113034 10.1016/j.rser.2017.09.094 10.1016/j.desal.2020.114623 10.1016/j.desal.2013.12.030 10.1016/j.energy.2011.02.015 10.1016/j.enconman.2020.113103 10.1016/j.apenergy.2009.05.023 10.1016/j.enconman.2015.09.045 10.1016/j.enconman.2021.114333 10.1016/j.rser.2017.01.170 10.1016/j.desal.2019.01.019 10.1016/j.csite.2018.02.006 10.1016/j.desal.2006.02.059 10.1016/j.desal.2014.12.037 10.1016/j.rser.2015.10.059 10.1016/j.desal.2016.09.029 10.1016/j.enconman.2020.113629 10.1016/j.desal.2014.04.007 10.1016/j.enconman.2021.114215 10.1016/j.energy.2017.07.110 10.1016/j.desal.2011.01.006 10.1080/19443994.2012.664674 10.1016/j.rser.2013.01.028 10.1016/j.desal.2013.10.028 10.1016/j.desal.2015.09.014 10.1016/j.desal.2006.12.011 10.1016/j.desal.2014.07.018 10.1016/j.desal.2007.02.064 10.1016/j.desal.2011.08.040 10.1016/j.desal.2016.02.011 10.1016/j.renene.2010.03.034 10.1016/j.desal.2017.12.031 10.1016/j.desal.2011.11.050 10.1016/j.solener.2019.07.046 10.1016/S0011-9164(03)00207-8 10.1016/j.desal.2017.10.040 10.1016/j.desal.2013.01.022  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 1, 2022  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 1, 2022  | 
    
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6  | 
    
| DOI | 10.1016/j.enconman.2021.114985 | 
    
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Aerospace Database AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Economics  | 
    
| EISSN | 1879-2227 | 
    
| ExternalDocumentID | 10_1016_j_enconman_2021_114985 S0196890421011614  | 
    
| GeographicLocations | United States--US Iran  | 
    
| GeographicLocations_xml | – name: United States--US – name: Iran  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c373t-72db170a0a3f2db068e34d328bb1b5f761a5cd93d2219b695c90292fbd3941623 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0196-8904 | 
    
| IngestDate | Sun Sep 28 10:03:08 EDT 2025 Wed Aug 13 06:59:44 EDT 2025 Thu Oct 09 00:36:53 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Fri Feb 23 02:41:01 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Concentrated solar power Hybrid desalination plant Thermal energy storage Multi-effect distillation Freshwater cost  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c373t-72db170a0a3f2db068e34d328bb1b5f761a5cd93d2219b695c90292fbd3941623 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2621864309 | 
    
| PQPubID | 2047472 | 
    
| ParticipantIDs | proquest_miscellaneous_2636502659 proquest_journals_2621864309 crossref_primary_10_1016_j_enconman_2021_114985 crossref_citationtrail_10_1016_j_enconman_2021_114985 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114985  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-01 2022-01-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Energy conversion and management | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd  | 
    
| References | Delgado-Torres, García-Rodríguez (b0070) 2007; 216 Mabrouk, Nafey, Fath (b0200) 2007; 205 Ghorbani, Mahyari, Mehrpooya, Hamedi (b0245) 2020; 148 Sharaf, Nafey, García-Rodríguez (b0215) 2011; 272 Olwig, Hirsch, Sattler, Glade, Schmeken, Will (b0235) 2012; 41 Quoilin, Van Den, Declaye, Dewallef, Lemort (b0125) 2013; 22 Shalaby (b0105) 2017; 73 Sadri, Ameri, Haghighi (b0030) 2017; 402 Al-Obaidi, Filippini, Manenti, Mujtaba (b0025) 2019; 456 Peñate, García-Rodríguez (b0230) 2012; 284 Bataineh (b0100) 2016; 385 Salazar, Fraidenraich, de Oliveira, de Castro, Hongn, Gordon (b0155) 2017; 138 Mohammad, Al-Kayiem, Assadi, Sabir, Khlief (b0170) 2018; 12 Palenzuela, Alarcón-Padilla, Zaragoza (b0240) 2015; 366 Sharon, Prabha, Vijay, Niyas, Gorjian (b0010) 2021; 295 Eterafi, Gorjian, Amidpour (b0060) 2021; 243 Gorjian, Ghobadian (b0050) 2015; 48 Behar, Khellaf, Mohammedi (b0160) 2015; 106 Sharaf (b0225) 2012; 134 Hosseini, Banakar, Gorjian (b0015) 2018; 435 Alhaj, Al-Ghamdi (b0020) 2019; 189 Ruiz-García, de la Nuez-Pestana (b0220) 2018; 426 Shakib, Amidpour, Boghrati, Ghafurian, Esmaieli (b0035) 2021; 295 Ortega-Delgado, García-Rodríguez, Alarcón-Padilla (b0095) 2016; 392 Khoshgoftar Manesh, Ghalami, Amidpour, Hamedi (b0140) 2013; 316 Feria-Díaz, Correa-Mahecha, López-Méndez, Rodríguez-Miranda, Barrera-Rojas (b0075) 2021; 13 Mokhtari, Ahmadisedigh, Ebrahimi (b0190) 2016; 377 Sharaf, Nafey, García-Rodríguez (b0210) 2011; 36 Kabir, Kumar, Kumar, Adelodun, Kim (b0065) 2018; 82 Sadeghi, Ghazaie, Sokolova, Fedorovich, Shirani (b0040) 2020; 493 Gorjian S, Ghobadian B, Ebadi H, Ketabchi F, Khanmohammadi S. Applications of solar PV systems in desalination technologies. In: Gorjian S, Shukla A, editors. Photovolt. Sol. Energy Convers. 1st ed., London: Elsevier; 2020, p. 237–74. https://doi.org/10.1016/B978-0-12-819610-6.00008-9. Incropera, Lavine, DeWitt (b0165) 2011 Gorjian, Ghobadian, Tavakkoli Hashjin, Banakar (b0005) 2014; 352 Helal, El-Nashar, Al-Katheeri, Al-Malek (b0195) 2003; 154 Sayyaadi, Saffari (b0135) 2010; 87 Druetta, Aguirre, Mussati (b0175) 2014; 344 Moharram, Bayoumi, Hanafy, El-Maghlany (b0080) 2021; 228 Du, Xie, Liu, Wang, Xu, Wang (b0185) 2014; 333 Salcedo, Antipova, Boer, Jiménez, Guillén-Gosálbez (b0180) 2012; 286 Iaquaniello, Salladini, Mari, Mabrouk, Fath (b0085) 2014; 336 AlZahrani, Dincer (b0110) 2018; 158 Aboelmaaref, Zayed, Zhao, Li, Askalany, Salem Ahmed (b0055) 2020; 220 Jalili Jamshidian, Gorjian, Shafiee (b0115) 2018; 3 Abdelgaied, Kabeel, Kandeal, Abosheiasha, Shalaby, Hamed (b0090) 2021; 239 Vince, Marechal, Aoustin, Bréant (b0150) 2008; 222 Benoit, Spreafico, Gauthier, Flamant (b0120) 2016; 55 Al-Mutaz, Wazeer (b0130) 2014; 351 Nafey, Sharaf (b0205) 2010; 35 Lu, Liao, Hu (b0145) 2012; 307 Mabrouk (10.1016/j.enconman.2021.114985_b0200) 2007; 205 Feria-Díaz (10.1016/j.enconman.2021.114985_b0075) 2021; 13 Bataineh (10.1016/j.enconman.2021.114985_b0100) 2016; 385 Quoilin (10.1016/j.enconman.2021.114985_b0125) 2013; 22 Alhaj (10.1016/j.enconman.2021.114985_b0020) 2019; 189 Sharaf (10.1016/j.enconman.2021.114985_b0225) 2012; 134 Ghorbani (10.1016/j.enconman.2021.114985_b0245) 2020; 148 Salcedo (10.1016/j.enconman.2021.114985_b0180) 2012; 286 AlZahrani (10.1016/j.enconman.2021.114985_b0110) 2018; 158 Kabir (10.1016/j.enconman.2021.114985_b0065) 2018; 82 Ruiz-García (10.1016/j.enconman.2021.114985_b0220) 2018; 426 Behar (10.1016/j.enconman.2021.114985_b0160) 2015; 106 Mokhtari (10.1016/j.enconman.2021.114985_b0190) 2016; 377 Peñate (10.1016/j.enconman.2021.114985_b0230) 2012; 284 Incropera (10.1016/j.enconman.2021.114985_b0165) 2011 Benoit (10.1016/j.enconman.2021.114985_b0120) 2016; 55 Gorjian (10.1016/j.enconman.2021.114985_b0005) 2014; 352 Moharram (10.1016/j.enconman.2021.114985_b0080) 2021; 228 Abdelgaied (10.1016/j.enconman.2021.114985_b0090) 2021; 239 Sadeghi (10.1016/j.enconman.2021.114985_b0040) 2020; 493 Al-Mutaz (10.1016/j.enconman.2021.114985_b0130) 2014; 351 Eterafi (10.1016/j.enconman.2021.114985_b0060) 2021; 243 Sadri (10.1016/j.enconman.2021.114985_b0030) 2017; 402 Sharaf (10.1016/j.enconman.2021.114985_b0215) 2011; 272 Lu (10.1016/j.enconman.2021.114985_b0145) 2012; 307 Salazar (10.1016/j.enconman.2021.114985_b0155) 2017; 138 Al-Obaidi (10.1016/j.enconman.2021.114985_b0025) 2019; 456 Du (10.1016/j.enconman.2021.114985_b0185) 2014; 333 Druetta (10.1016/j.enconman.2021.114985_b0175) 2014; 344 Sharon (10.1016/j.enconman.2021.114985_b0010) 2021; 295 Delgado-Torres (10.1016/j.enconman.2021.114985_b0070) 2007; 216 Iaquaniello (10.1016/j.enconman.2021.114985_b0085) 2014; 336 Jalili Jamshidian (10.1016/j.enconman.2021.114985_b0115) 2018; 3 Vince (10.1016/j.enconman.2021.114985_b0150) 2008; 222 Aboelmaaref (10.1016/j.enconman.2021.114985_b0055) 2020; 220 Hosseini (10.1016/j.enconman.2021.114985_b0015) 2018; 435 10.1016/j.enconman.2021.114985_b0045 Khoshgoftar Manesh (10.1016/j.enconman.2021.114985_b0140) 2013; 316 Gorjian (10.1016/j.enconman.2021.114985_b0050) 2015; 48 Palenzuela (10.1016/j.enconman.2021.114985_b0240) 2015; 366 Sharaf (10.1016/j.enconman.2021.114985_b0210) 2011; 36 Mohammad (10.1016/j.enconman.2021.114985_b0170) 2018; 12 Shakib (10.1016/j.enconman.2021.114985_b0035) 2021; 295 Shalaby (10.1016/j.enconman.2021.114985_b0105) 2017; 73 Olwig (10.1016/j.enconman.2021.114985_b0235) 2012; 41 Ortega-Delgado (10.1016/j.enconman.2021.114985_b0095) 2016; 392 Nafey (10.1016/j.enconman.2021.114985_b0205) 2010; 35 Sayyaadi (10.1016/j.enconman.2021.114985_b0135) 2010; 87 Helal (10.1016/j.enconman.2021.114985_b0195) 2003; 154  | 
    
| References_xml | – volume: 426 start-page: 69 year: 2018 end-page: 77 ident: b0220 article-title: A computational tool for designing BWRO systems with spiral wound modules publication-title: Desalination – volume: 35 start-page: 2571 year: 2010 end-page: 2580 ident: b0205 article-title: Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations publication-title: Renew Energy – volume: 435 start-page: 45 year: 2018 end-page: 59 ident: b0015 article-title: Development and performance evaluation of an active solar distillation system integrated with a vacuum-type heat exchanger publication-title: Desalination – volume: 402 start-page: 97 year: 2017 end-page: 108 ident: b0030 article-title: Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept publication-title: Desalination – volume: 295 start-page: 113034 year: 2021 ident: b0010 article-title: Assessing suitability of commercial fibre reinforced plastic solar still for sustainable potable water production in rural India through detailed energy-exergy-economic analyses and environmental impacts publication-title: J Environ Manage – volume: 12 start-page: 26 year: 2018 end-page: 37 ident: b0170 article-title: An integrated program of a stand-alone parabolic trough solar thermal power plant: Code description and test publication-title: Case Stud Therm Eng – volume: 216 start-page: 252 year: 2007 end-page: 275 ident: b0070 article-title: Preliminary assessment of solar organic Rankine cycles for driving a desalination system publication-title: Desalination – volume: 385 start-page: 39 year: 2016 end-page: 52 ident: b0100 article-title: Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy publication-title: Desalination – volume: 55 start-page: 298 year: 2016 end-page: 315 ident: b0120 article-title: Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients publication-title: Renew Sustain Energy Rev – volume: 138 start-page: 1148 year: 2017 end-page: 1156 ident: b0155 article-title: Analytic modeling of parabolic trough solar thermal power plants publication-title: Energy – year: 2011 ident: b0165 article-title: Fundamentals of Heat and Mass Transfer – volume: 272 start-page: 135 year: 2011 end-page: 147 ident: b0215 article-title: Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process publication-title: Desalination – volume: 73 start-page: 789 year: 2017 end-page: 797 ident: b0105 article-title: Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review publication-title: Renew Sustain Energy Rev – volume: 48 start-page: 571 year: 2015 end-page: 584 ident: b0050 article-title: Solar desalination: A sustainable solution to water crisis in Iran publication-title: Renew Sustain Energy Rev – volume: 205 start-page: 354 year: 2007 end-page: 373 ident: b0200 article-title: Thermoeconomic analysis of some existing desalination processes publication-title: Desalination – volume: 377 start-page: 108 year: 2016 end-page: 122 ident: b0190 article-title: Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water publication-title: Desalination – volume: 158 start-page: 476 year: 2018 end-page: 488 ident: b0110 article-title: Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle publication-title: Energy Convers Manag – volume: 87 start-page: 1122 year: 2010 end-page: 1133 ident: b0135 article-title: Thermoeconomic optimization of multi effect distillation desalination systems publication-title: Appl Energy – volume: 148 start-page: 1227 year: 2020 end-page: 1243 ident: b0245 article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery publication-title: Renew Energy – reference: Gorjian S, Ghobadian B, Ebadi H, Ketabchi F, Khanmohammadi S. Applications of solar PV systems in desalination technologies. In: Gorjian S, Shukla A, editors. Photovolt. Sol. Energy Convers. 1st ed., London: Elsevier; 2020, p. 237–74. https://doi.org/10.1016/B978-0-12-819610-6.00008-9. – volume: 352 start-page: 1 year: 2014 end-page: 17 ident: b0005 article-title: Experimental performance evaluation of a stand-alone point-focus parabolic solar still publication-title: Desalination – volume: 82 start-page: 894 year: 2018 end-page: 900 ident: b0065 article-title: Solar energy: Potential and future prospects publication-title: Renew Sustain Energy Rev – volume: 336 start-page: 121 year: 2014 end-page: 128 ident: b0085 article-title: Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination publication-title: Desalination – volume: 134 year: 2012 ident: b0225 article-title: Thermo-Economic Comparisons of Different Types of Solar Desalination Processes publication-title: J Sol Energy Eng – volume: 41 start-page: 9 year: 2012 end-page: 25 ident: b0235 article-title: Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan publication-title: Desalin Water Treat – volume: 239 start-page: 114215 year: 2021 ident: b0090 article-title: Performance assessment of solar PV-driven hybrid HDH-RO desalination system integrated with energy recovery units and solar collectors: Theoretical approach publication-title: Energy Convers Manag – volume: 284 start-page: 86 year: 2012 end-page: 91 ident: b0230 article-title: Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range publication-title: Desalination – volume: 36 start-page: 2753 year: 2011 end-page: 2764 ident: b0210 article-title: Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes publication-title: Energy – volume: 3 start-page: 301 year: 2018 end-page: 312 ident: b0115 article-title: An Overview of Solar Thermal Power Generation Systems publication-title: J Sol Energy Res – volume: 13 start-page: 1369 year: 2021 ident: b0075 article-title: Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review publication-title: Water – volume: 222 start-page: 96 year: 2008 end-page: 118 ident: b0150 article-title: Multi-objective optimization of RO desalination plants publication-title: Desalination – volume: 351 start-page: 9 year: 2014 end-page: 18 ident: b0130 article-title: Development of a steady-state mathematical model for MEE-TVC desalination plants publication-title: Desalination – volume: 189 start-page: 480 year: 2019 end-page: 490 ident: b0020 article-title: Why is powering thermal desalination with concentrated solar power expensive? assessing economic feasibility and market commercialization barriers publication-title: Sol Energy – volume: 228 start-page: 113629 year: 2021 ident: b0080 article-title: Techno-economic analysis of a combined concentrated solar power and water desalination plant publication-title: Energy Convers Manag – volume: 316 start-page: 42 year: 2013 end-page: 52 ident: b0140 article-title: Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization publication-title: Desalination – volume: 307 start-page: 42 year: 2012 end-page: 50 ident: b0145 article-title: The design of reverse osmosis systems with multiple-feed and multiple-product publication-title: Desalination – volume: 333 start-page: 66 year: 2014 end-page: 81 ident: b0185 article-title: Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method publication-title: Desalination – volume: 366 start-page: 130 year: 2015 end-page: 138 ident: b0240 article-title: Large-scale solar desalination by combination with CSP: Techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf publication-title: Desalination – volume: 106 start-page: 268 year: 2015 end-page: 281 ident: b0160 article-title: A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES) publication-title: Energy Convers Manag – volume: 344 start-page: 431 year: 2014 end-page: 445 ident: b0175 article-title: Minimizing the total cost of multi effect evaporation systems for seawater desalination publication-title: Desalination – volume: 295 start-page: 126402 year: 2021 ident: b0035 article-title: New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle publication-title: J Clean Prod – volume: 456 start-page: 136 year: 2019 end-page: 149 ident: b0025 article-title: Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination publication-title: Desalination – volume: 22 start-page: 168 year: 2013 end-page: 186 ident: b0125 article-title: Techno-economic survey of Organic Rankine Cycle (ORC) systems publication-title: Renew Sustain Energy Rev – volume: 154 start-page: 43 year: 2003 end-page: 66 ident: b0195 article-title: Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms publication-title: Desalination – volume: 493 start-page: 114623 year: 2020 ident: b0040 article-title: Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems publication-title: Desalination – volume: 392 start-page: 102 year: 2016 end-page: 117 ident: b0095 article-title: Thermoeconomic comparison of integrating seawater desalination processes in a concentrating solar power plant of 5 MWe publication-title: Desalination – volume: 243 start-page: 114333 year: 2021 ident: b0060 article-title: Thermodynamic design and parametric performance assessment of a novel cogeneration solar organic Rankine cycle system with stable output publication-title: Energy Convers Manag – volume: 286 start-page: 358 year: 2012 end-page: 371 ident: b0180 article-title: Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns publication-title: Desalination – volume: 220 start-page: 113103 year: 2020 ident: b0055 article-title: Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment publication-title: Energy Convers Manag – volume: 134 year: 2012 ident: 10.1016/j.enconman.2021.114985_b0225 article-title: Thermo-Economic Comparisons of Different Types of Solar Desalination Processes publication-title: J Sol Energy Eng doi: 10.1115/1.4005752 – volume: 295 start-page: 126402 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0035 article-title: New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126402 – volume: 158 start-page: 476 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0110 article-title: Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.12.071 – volume: 148 start-page: 1227 year: 2020 ident: 10.1016/j.enconman.2021.114985_b0245 article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.063 – volume: 352 start-page: 1 year: 2014 ident: 10.1016/j.enconman.2021.114985_b0005 article-title: Experimental performance evaluation of a stand-alone point-focus parabolic solar still publication-title: Desalination doi: 10.1016/j.desal.2014.08.005 – volume: 392 start-page: 102 year: 2016 ident: 10.1016/j.enconman.2021.114985_b0095 article-title: Thermoeconomic comparison of integrating seawater desalination processes in a concentrating solar power plant of 5 MWe publication-title: Desalination doi: 10.1016/j.desal.2016.03.016 – volume: 307 start-page: 42 year: 2012 ident: 10.1016/j.enconman.2021.114985_b0145 article-title: The design of reverse osmosis systems with multiple-feed and multiple-product publication-title: Desalination doi: 10.1016/j.desal.2012.08.025 – volume: 13 start-page: 1369 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0075 article-title: Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review publication-title: Water doi: 10.3390/w13101369 – volume: 48 start-page: 571 year: 2015 ident: 10.1016/j.enconman.2021.114985_b0050 article-title: Solar desalination: A sustainable solution to water crisis in Iran publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.009 – ident: 10.1016/j.enconman.2021.114985_b0045 doi: 10.1016/B978-0-12-819610-6.00008-9 – volume: 295 start-page: 113034 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0010 article-title: Assessing suitability of commercial fibre reinforced plastic solar still for sustainable potable water production in rural India through detailed energy-exergy-economic analyses and environmental impacts publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.113034 – volume: 82 start-page: 894 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0065 article-title: Solar energy: Potential and future prospects publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.09.094 – volume: 493 start-page: 114623 year: 2020 ident: 10.1016/j.enconman.2021.114985_b0040 article-title: Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems publication-title: Desalination doi: 10.1016/j.desal.2020.114623 – volume: 336 start-page: 121 year: 2014 ident: 10.1016/j.enconman.2021.114985_b0085 article-title: Concentrating solar power (CSP) system integrated with MED–RO hybrid desalination publication-title: Desalination doi: 10.1016/j.desal.2013.12.030 – volume: 36 start-page: 2753 issue: 5 year: 2011 ident: 10.1016/j.enconman.2021.114985_b0210 article-title: Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes publication-title: Energy doi: 10.1016/j.energy.2011.02.015 – volume: 220 start-page: 113103 year: 2020 ident: 10.1016/j.enconman.2021.114985_b0055 article-title: Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: Technology categorization, thermodynamic performance and economical assessment publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113103 – volume: 87 start-page: 1122 issue: 4 year: 2010 ident: 10.1016/j.enconman.2021.114985_b0135 article-title: Thermoeconomic optimization of multi effect distillation desalination systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.05.023 – volume: 106 start-page: 268 year: 2015 ident: 10.1016/j.enconman.2021.114985_b0160 article-title: A novel parabolic trough solar collector model – Validation with experimental data and comparison to Engineering Equation Solver (EES) publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.09.045 – volume: 243 start-page: 114333 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0060 article-title: Thermodynamic design and parametric performance assessment of a novel cogeneration solar organic Rankine cycle system with stable output publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114333 – volume: 73 start-page: 789 year: 2017 ident: 10.1016/j.enconman.2021.114985_b0105 article-title: Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.170 – volume: 456 start-page: 136 year: 2019 ident: 10.1016/j.enconman.2021.114985_b0025 article-title: Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2019.01.019 – volume: 3 start-page: 301 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0115 article-title: An Overview of Solar Thermal Power Generation Systems publication-title: J Sol Energy Res – volume: 12 start-page: 26 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0170 article-title: An integrated program of a stand-alone parabolic trough solar thermal power plant: Code description and test publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2018.02.006 – volume: 205 start-page: 354 issue: 1-3 year: 2007 ident: 10.1016/j.enconman.2021.114985_b0200 article-title: Thermoeconomic analysis of some existing desalination processes publication-title: Desalination doi: 10.1016/j.desal.2006.02.059 – volume: 366 start-page: 130 year: 2015 ident: 10.1016/j.enconman.2021.114985_b0240 article-title: Large-scale solar desalination by combination with CSP: Techno-economic analysis of different options for the Mediterranean Sea and the Arabian Gulf publication-title: Desalination doi: 10.1016/j.desal.2014.12.037 – volume: 55 start-page: 298 year: 2016 ident: 10.1016/j.enconman.2021.114985_b0120 article-title: Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.10.059 – volume: 402 start-page: 97 year: 2017 ident: 10.1016/j.enconman.2021.114985_b0030 article-title: Multi-objective optimization of MED-TVC-RO hybrid desalination system based on the irreversibility concept publication-title: Desalination doi: 10.1016/j.desal.2016.09.029 – volume: 228 start-page: 113629 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0080 article-title: Techno-economic analysis of a combined concentrated solar power and water desalination plant publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113629 – volume: 344 start-page: 431 year: 2014 ident: 10.1016/j.enconman.2021.114985_b0175 article-title: Minimizing the total cost of multi effect evaporation systems for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2014.04.007 – volume: 239 start-page: 114215 year: 2021 ident: 10.1016/j.enconman.2021.114985_b0090 article-title: Performance assessment of solar PV-driven hybrid HDH-RO desalination system integrated with energy recovery units and solar collectors: Theoretical approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114215 – volume: 138 start-page: 1148 year: 2017 ident: 10.1016/j.enconman.2021.114985_b0155 article-title: Analytic modeling of parabolic trough solar thermal power plants publication-title: Energy doi: 10.1016/j.energy.2017.07.110 – volume: 272 start-page: 135 issue: 1-3 year: 2011 ident: 10.1016/j.enconman.2021.114985_b0215 article-title: Exergy and thermo-economic analyses of a combined solar organic cycle with multi effect distillation (MED) desalination process publication-title: Desalination doi: 10.1016/j.desal.2011.01.006 – volume: 41 start-page: 9 issue: 1-3 year: 2012 ident: 10.1016/j.enconman.2021.114985_b0235 article-title: Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan publication-title: Desalin Water Treat doi: 10.1080/19443994.2012.664674 – volume: 22 start-page: 168 year: 2013 ident: 10.1016/j.enconman.2021.114985_b0125 article-title: Techno-economic survey of Organic Rankine Cycle (ORC) systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.01.028 – year: 2011 ident: 10.1016/j.enconman.2021.114985_b0165 – volume: 333 start-page: 66 issue: 1 year: 2014 ident: 10.1016/j.enconman.2021.114985_b0185 article-title: Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method publication-title: Desalination doi: 10.1016/j.desal.2013.10.028 – volume: 377 start-page: 108 year: 2016 ident: 10.1016/j.enconman.2021.114985_b0190 article-title: Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water publication-title: Desalination doi: 10.1016/j.desal.2015.09.014 – volume: 216 start-page: 252 issue: 1-3 year: 2007 ident: 10.1016/j.enconman.2021.114985_b0070 article-title: Preliminary assessment of solar organic Rankine cycles for driving a desalination system publication-title: Desalination doi: 10.1016/j.desal.2006.12.011 – volume: 351 start-page: 9 year: 2014 ident: 10.1016/j.enconman.2021.114985_b0130 article-title: Development of a steady-state mathematical model for MEE-TVC desalination plants publication-title: Desalination doi: 10.1016/j.desal.2014.07.018 – volume: 222 start-page: 96 issue: 1-3 year: 2008 ident: 10.1016/j.enconman.2021.114985_b0150 article-title: Multi-objective optimization of RO desalination plants publication-title: Desalination doi: 10.1016/j.desal.2007.02.064 – volume: 284 start-page: 86 year: 2012 ident: 10.1016/j.enconman.2021.114985_b0230 article-title: Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range publication-title: Desalination doi: 10.1016/j.desal.2011.08.040 – volume: 385 start-page: 39 year: 2016 ident: 10.1016/j.enconman.2021.114985_b0100 article-title: Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy publication-title: Desalination doi: 10.1016/j.desal.2016.02.011 – volume: 35 start-page: 2571 issue: 11 year: 2010 ident: 10.1016/j.enconman.2021.114985_b0205 article-title: Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations publication-title: Renew Energy doi: 10.1016/j.renene.2010.03.034 – volume: 435 start-page: 45 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0015 article-title: Development and performance evaluation of an active solar distillation system integrated with a vacuum-type heat exchanger publication-title: Desalination doi: 10.1016/j.desal.2017.12.031 – volume: 286 start-page: 358 year: 2012 ident: 10.1016/j.enconman.2021.114985_b0180 article-title: Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns publication-title: Desalination doi: 10.1016/j.desal.2011.11.050 – volume: 189 start-page: 480 year: 2019 ident: 10.1016/j.enconman.2021.114985_b0020 article-title: Why is powering thermal desalination with concentrated solar power expensive? assessing economic feasibility and market commercialization barriers publication-title: Sol Energy doi: 10.1016/j.solener.2019.07.046 – volume: 154 start-page: 43 issue: 1 year: 2003 ident: 10.1016/j.enconman.2021.114985_b0195 article-title: Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms publication-title: Desalination doi: 10.1016/S0011-9164(03)00207-8 – volume: 426 start-page: 69 year: 2018 ident: 10.1016/j.enconman.2021.114985_b0220 article-title: A computational tool for designing BWRO systems with spiral wound modules publication-title: Desalination doi: 10.1016/j.desal.2017.10.040 – volume: 316 start-page: 42 year: 2013 ident: 10.1016/j.enconman.2021.114985_b0140 article-title: Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization publication-title: Desalination doi: 10.1016/j.desal.2013.01.022  | 
    
| SSID | ssj0003506 | 
    
| Score | 2.574073 | 
    
| Snippet | •Proposed solar hybrid desalination system is independent of any fossil-based power source.•Compared to a single multi-effect desalination plant, hybrid system... In this study, an existing thermal multi-effect distillation (MED) plant was assumed to be integrated with reverse osmosis (RO) desalination system in a way...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 114985 | 
    
| SubjectTerms | administrative management Algorithms case studies Climatic conditions Cogeneration Concentrated solar power Desalination Desalination plants Distillation economic evaluation Economic models Economics electricity energy conversion Energy storage freshwater Freshwater cost heat Hybrid desalination plant Hybrid modes Integration Iran Irradiation latitude longitude Multi-effect distillation people Radiation Recovery Reverse osmosis solar collectors Solar energy solar radiation Thermal energy Thermal energy storage Water demand Working hours  | 
    
| Title | Techno-economic assessment of a hybrid RO-MED desalination plant integrated with a solar CHP system | 
    
| URI | https://dx.doi.org/10.1016/j.enconman.2021.114985 https://www.proquest.com/docview/2621864309 https://www.proquest.com/docview/2636502659  | 
    
| Volume | 251 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2025 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iFz2IK44bEbzGaZYmzVFGZVRccAFvIUuLinYGZzx48beb12VcEDx4K2keLS_Jy8vyfR9Cu8r6VBdUkkL7hAhVaJJJL0iQQVAVqHMBAM5n57J_K07u0rsp1GuxMHCtson9dUyvonVT0m282R0-PHSvgdkl07HTUThMqMSshVCgYrD3_nnNg6eVviZUJlD7C0r4cQ-4IstnCzyojAJtrgZN5d8nqB-hupp_jhbQfJM44v363xbRVF4uobkvdILLyNf75CRvwMbYTmg38aDAFt-_AT4LX12Qs8MDHPKRBTguNA0ePkUX4wl5RMCwQRtNRrD0xb3-Ja45n1fQ7dHhTa9PGhEF4rniY6JYcFQlNrG8iI-JzHIuAmeZc9SlhZLUpj5oHliMXU7q1OuEaVa4wHVM1hhfRdPloMzXEA7eZzzxuYo5h_C80NLykASquHKwtOmgtPWc8Q3DOAhdPJn2KtmjaT1uwOOm9ngHdSd2w5pj408L3TaM-dZbTJwI_rTdbFvSNON1ZJgEbS7BE91BO5PXcaTB8Ykt88Er1OExnWUy1ev_-PwGmmWAoKh2cTbR9PjlNd-Kec3YbVcddxvN7B-f9s8_ABH494Y | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTuQwELUQHIADmmERzTJjJK6mYzu24-OoATVLA2KRuFleEgGCdItuDlzm28eVpVmExGFukeNSoqpyuby8VwjtKuuFLqgkhfYJSVWhSSZ9SoIMKVWBOhcA4Dw4k_2b9PhW3M6gXouFgWuVTeyvY3oVrZuWbqPN7uj-vnsFzC6Zjk5H4TABilnPpYIpWIHt_X2758FFVWATehPo_g4m_LAHZJHlkwUiVEaBN1dDUeWvZ6hPsbqagA5_oKUmc8R_6p_7iWbychktvuMTXEG-3igneYM2xnbKu4mHBbb47hUAWvjynAwO9nHIxxbwuGAbPHqMOsZT9oiAYYc2ioxh7Yt7_Qtckz6vopvDg-tenzRVFIjnik-IYsFRldjE8iI-JjLLeRo4y5yjThRKUit80DywGLyc1MLrhGlWuMB1zNYYX0Oz5bDM1xEO3mc88bmKSUfqeaGl5SEJVHHlYG3TQaLVnPENxThUung07V2yB9Nq3IDGTa3xDupO5UY1yca3Ero1jPngLibOBN_KbrWWNM2AHRsmoThXyhPdQTvT13GowfmJLfPhC_ThMZ9lUuiN__j8bzTfvx6cmtOjs5NNtMAATlFt6Wyh2cnzS74dk5yJ-1U58T_J3fkb | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techno-economic+assessment+of+a+hybrid+RO-MED+desalination+plant+integrated+with+a+solar+CHP+system&rft.jtitle=Energy+conversion+and+management&rft.au=Jamshidian%2C+Farid+Jalili&rft.au=Gorjian%2C+Shiva&rft.au=Shafieefar%2C+Mehdi&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=251&rft_id=info:doi/10.1016%2Fj.enconman.2021.114985&rft.externalDocID=S0196890421011614 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |