Higher order topological derivatives for three-dimensional anisotropic elasticity

This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function 𝕁 is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a6) approximation of 𝕁 is derived and justi...

Full description

Saved in:
Bibliographic Details
Published inESAIM Mathematical Modelling and Numerical Analysis Vol. 51; no. 6; pp. 2069 - 2092
Main Authors Bonnet, Marc, Cornaggia, Rémi
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.11.2017
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Subjects
Online AccessGet full text
ISSN0764-583X
2822-7840
1290-3841
1290-3841
2804-7214
DOI10.1051/m2an/2017015

Cover

Abstract This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function 𝕁 is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a6) approximation of 𝕁 is derived and justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational issues, and examples of objective functions commonly used in solid mechanics, are discussed.
AbstractList This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function 𝕁 is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a6) approximation of 𝕁 is derived and justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational issues, and examples of objective functions commonly used in solid mechanics, are discussed.
This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function ?? is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a6) approximation of ?? is derived and justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational issues, and examples of objective functions commonly used in solid mechanics, are discussed.
This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective function J is expanded in powers of the characteristic size a of a single small inhomogeneity. The O(a 6) approximation of J is derived and justified for an inhomogeneity of given location, shape and elastic properties embedded in a 3D solid of arbitrary shape and elastic properties; the background and the inhomogeneity materials may both be anisotropic. The generalization to multiple small inhomogeneities is concisely described. Computational issues, and examples of objective functions commonly used in solid mechanics, are discussed.
Author Cornaggia, Rémi
Bonnet, Marc
Author_xml – sequence: 1
  givenname: Marc
  surname: Bonnet
  fullname: Bonnet, Marc
  organization: POEMS (ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay), Palaiseau, France
– sequence: 2
  givenname: Rémi
  surname: Cornaggia
  fullname: Cornaggia, Rémi
  organization: IRMAR, Université Rennes-1, Rennes, France
BackLink https://hal.science/hal-01499498$$DView record in HAL
BookMark eNqFkFFr2zAQgMVoYWm7t_2AwJ4Kc3uSJct-7EKXFDLaQEf7Ji6y3Kh1LE9SsubfVyZhg8Hoiw7pvjvdfSfkqHOdIeQzhQsKgl6uGXaXDKgEKj6QEWUVZHnJ6REZgSx4Jsr88SM5CeEZAChwMSKLmX1aGT92vk5ndL1r3ZPV2I7T3W4x2q0J48al3Mobk9V2bbpgXZcI7Gxw0bve6rFpMUSrbdydkeMG22A-HeIp-fn9-n4yy-a305vJ1TzTucxjVmhW1kwYKXJgjGI5TKsZ1xIRK2CmwCVCU9RcCKOXRtdLaPhQUfNC6jI_Jdm-76brcfcb21b13q7R7xQFNfhQgw918JH48z2_wr-kQ6tmV3M1vAHlVcWrcksT-2XP9t792pgQ1bPb-LRzUIxWFWPAhEzU1z2lvQvBm-a9Adg_eNKVBLsuerTt_4oOW9oQzeufD9C_qELmUqgSHtRi8uPbopwKdZe_AfM1nvA
CitedBy_id crossref_primary_10_1108_EC_07_2021_0433
crossref_primary_10_1016_j_wavemoti_2024_103447
crossref_primary_10_1016_j_ijsolstr_2017_08_029
crossref_primary_10_1016_j_jde_2024_08_050
crossref_primary_10_1108_EC_07_2021_0407
crossref_primary_10_1016_j_jmps_2021_104773
crossref_primary_10_1137_17M1149018
Cites_doi 10.1023/A:1023940025757
10.1137/S0363012902406801
10.1002/pssb.200572719
10.1093/qjmam/hbu025
10.1007/978-94-011-9306-1
10.1016/j.ijsolstr.2011.07.013
10.1002/(SICI)1097-0207(19980815)42:7<1215::AID-NME406>3.0.CO;2-5
10.1137/1.9781611972597
10.1016/j.enganabound.2010.08.007
10.1081/SME-100105654
10.1016/0093-6413(93)90032-J
10.1137/S0036139902414379
10.1007/978-3-642-61631-0
10.1016/j.ijsolstr.2010.07.004
10.1137/100812501
10.1002/9781118578469
10.1080/00029890.2001.11919820
10.1093/qjmam/hbt018
10.1088/0266-5611/21/2/008
10.1007/978-0-387-70914-7
10.1007/978-3-540-68545-6
10.1088/0266-5611/29/7/075012
10.1007/s11075-014-9953-6
10.1137/S0363012900369538
10.1016/j.jcp.2005.12.015
10.1088/0266-5611/6/3/009
10.1088/0266-5611/24/3/035022
10.1177/1081286511433082
10.1098/rspa.1957.0133
10.1177/1081286515588636
10.1016/0022-5096(75)90012-5
10.1016/j.ijsolstr.2010.01.011
ContentType Journal Article
Copyright 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2017/06/m2an160069/m2an160069.html .
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2017/06/m2an160069/m2an160069.html .
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1051/m2an/2017015
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1290-3841
2804-7214
EndPage 2092
ExternalDocumentID 10.1051/m2an/2017015
oai:HAL:hal-01499498v1
10_1051_m2an_2017015
ark_67375_80W_QCMBQ8G5_P
GroupedDBID -E.
.FH
0E1
3V.
4.4
5VS
6TJ
74X
74Y
7WY
7~V
8FE
8FG
8FL
AADXX
AAOTM
ABDBF
ABJCF
ABKKG
ABLJU
ABUBZ
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFKRA
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BEZIV
BPHCQ
BSCLL
C0O
DC4
EBS
EJD
ESX
FAM
FRP
GI~
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
K7-
L6V
L98
LO0
M-V
M0C
M0N
M7S
O9-
OAV
OK1
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
WXU
WXY
AAOGA
AAYXX
ABGDZ
ABJNI
AGQPQ
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
AMVHM
TUS
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c373t-6c28d25e7530221a81290c24c7aaa902e6aba0f6d455ecbecdb0f4d25ed467c83
IEDL.DBID UNPAY
ISSN 0764-583X
2822-7840
1290-3841
IngestDate Sun Oct 26 04:07:02 EDT 2025
Sun Oct 19 01:11:46 EDT 2025
Mon Jun 30 10:10:24 EDT 2025
Tue Jul 01 01:07:13 EDT 2025
Thu Apr 24 23:04:51 EDT 2025
Wed Oct 30 09:22:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 45F15
74B05
1991 Mathematics Subject Classification 35C20
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-6c28d25e7530221a81290c24c7aaa902e6aba0f6d455ecbecdb0f4d25ed467c83
Notes istex:97E2AE6269AB20EB1FD3F4325EFCC1A2FDA86578
publisher-ID:m2an160069
mbonnet@ensta.fr
ark:/67375/80W-QCMBQ8G5-P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1410-9800
0000-0001-8834-3777
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2017/06/m2an160069.pdf
PQID 2199220257
PQPubID 626356
PageCount 24
ParticipantIDs unpaywall_primary_10_1051_m2an_2017015
hal_primary_oai_HAL_hal_01499498v1
proquest_journals_2199220257
crossref_primary_10_1051_m2an_2017015
crossref_citationtrail_10_1051_m2an_2017015
istex_primary_ark_67375_80W_QCMBQ8G5_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ESAIM Mathematical Modelling and Numerical Analysis
PublicationYear 2017
Publisher EDP Sciences
Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
Publisher_xml – name: EDP Sciences
– name: Société de Mathématiques Appliquées et Industrielles (SMAI) / EDP
References Eshelby (R18) 1961; 2
Samet (R33) 2004; 42
Kohn (R25) 1990; 6
Masmoudi (R28) 2005; 21
Ramm (R32) 2001; 108
Garreau (R21) 2001; 39
Gintides (R22) 2015; 68
Sokolowski (R35) 2001; 21
R23
Bonnet (R12) 2011; 35
R24
Silva (R34) 2010; 47
Andrieux (R7) 1993; 20
R29
Xinchun (R37) 2007; 244
Bellis (R9) 2010; 47
R1
R2
Ammari (R5) 2002; 67
R4
Kuykendall (R26) 2012; 17
Bellis (R10) 2013; 29
R30
Eshelby (R17) 1957; 241
R31
Touhei (R36) 2011; 48
Amstutz (R6) 2006; 216
Asaro (R8) 1975; 23
Bonnet (R11) 2008; 24
Bonnet (R13) 2013; 66
R14
R16
Freidin (R19) 2016; 21
R15
Fu (R20) 1998; 42
Martin (R27) 2003; 64
Ammari (R3) 2012; 50
References_xml – volume: 67
  start-page: 97
  year: 2002
  ident: R5
  publication-title: J. Elast.
  doi: 10.1023/A:1023940025757
– volume: 42
  start-page: 1523
  year: 2004
  ident: R33
  publication-title: SIAM J. Contr. Opt.
  doi: 10.1137/S0363012902406801
– volume: 244
  start-page: 1008
  year: 2007
  ident: R37
  publication-title: Phys. Stat. Sol.
  doi: 10.1002/pssb.200572719
– volume: 68
  start-page: 85
  year: 2015
  ident: R22
  publication-title: The Quarterly J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbu025
– ident: R31
  doi: 10.1007/978-94-011-9306-1
– volume: 48
  start-page: 3194
  year: 2011
  ident: R36
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2011.07.013
– volume: 42
  start-page: 1215
  year: 1998
  ident: R20
  publication-title: Int. J. Num. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19980815)42:7<1215::AID-NME406>3.0.CO;2-5
– ident: R15
  doi: 10.1137/1.9781611972597
– volume: 35
  start-page: 223
  year: 2011
  ident: R12
  publication-title: Eng. Anal. Boundary Elements
  doi: 10.1016/j.enganabound.2010.08.007
– volume: 21
  start-page: 331
  year: 2001
  ident: R35
  publication-title: Mech. Based Design Struct. Machines
  doi: 10.1081/SME-100105654
– volume: 20
  start-page: 415
  year: 1993
  ident: R7
  publication-title: Mech. Res. Commun.
  doi: 10.1016/0093-6413(93)90032-J
– volume: 64
  start-page: 297
  year: 2003
  ident: R27
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139902414379
– ident: R30
  doi: 10.1007/978-3-642-61631-0
– volume: 47
  start-page: 3053
  year: 2010
  ident: R34
  publication-title: Inter. J. Solids Structures
  doi: 10.1016/j.ijsolstr.2010.07.004
– ident: R1
– volume: 50
  start-page: 48
  year: 2012
  ident: R3
  publication-title: SIAM J. Control Opt.
  doi: 10.1137/100812501
– ident: R16
– ident: R23
  doi: 10.1002/9781118578469
– volume: 108
  start-page: 855
  year: 2001
  ident: R32
  publication-title: Amer. Math. Monthly.
  doi: 10.1080/00029890.2001.11919820
– volume: 66
  start-page: 557
  year: 2013
  ident: R13
  publication-title: Quarterly J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbt018
– volume: 21
  start-page: 547
  year: 2005
  ident: R28
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/21/2/008
– ident: R14
  doi: 10.1007/978-0-387-70914-7
– ident: R24
  doi: 10.1007/978-3-540-68545-6
– volume: 29
  start-page: 075012
  year: 2013
  ident: R10
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/29/7/075012
– ident: R29
– ident: R2
  doi: 10.1007/s11075-014-9953-6
– volume: 39
  start-page: 1756
  year: 2001
  ident: R21
  publication-title: SIAM J. Contr. Opt.
  doi: 10.1137/S0363012900369538
– volume: 216
  start-page: 573
  year: 2006
  ident: R6
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.12.015
– volume: 2
  start-page: 89
  year: 1961
  ident: R18
  publication-title: Progress in solid Mechanics
– volume: 6
  start-page: 389
  year: 1990
  ident: R25
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/6/3/009
– volume: 24
  start-page: 035022
  year: 2008
  ident: R11
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/24/3/035022
– volume: 17
  start-page: 840
  year: 2012
  ident: R26
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286511433082
– volume: 241
  start-page: 376
  year: 1957
  ident: R17
  publication-title: Proc. Roy. Soc.
  doi: 10.1098/rspa.1957.0133
– volume: 21
  start-page: 255
  year: 2016
  ident: R19
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286515588636
– volume: 23
  start-page: 77
  year: 1975
  ident: R8
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(75)90012-5
– ident: R4
– volume: 47
  start-page: 1221
  year: 2010
  ident: R9
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2010.01.011
SSID ssj0001045
ssj0037293
ssib050964956
ssj0003314051
Score 2.2269487
Snippet This article concerns an extension of the topological derivative concept for 3D elasticity problems involving elastic inhomogeneities, whereby an objective...
SourceID unpaywall
hal
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2069
SubjectTerms 35C20
45F15
74B05
asymptotic expansion
Computer Science
Elastic anisotropy
Elastic properties
Elasticity
elastostatics
Inhomogeneity
Modeling and Simulation
Solid mechanics
Topological derivative
Topology
volume integral equation
Title Higher order topological derivatives for three-dimensional anisotropic elasticity
URI https://api.istex.fr/ark:/67375/80W-QCMBQ8G5-P/fulltext.pdf
https://www.proquest.com/docview/2199220257
https://hal.science/hal-01499498
https://www.esaim-m2an.org/articles/m2an/pdf/2017/06/m2an160069.pdf
UnpaywallVersion publishedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003314051
  issn: 0764-583X
  databaseCode: ABDBF
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314051
  issn: 0764-583X
  databaseCode: AMVHM
  dateStart: 20130901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: GI~
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1t2wNw4BtRWKoIAReUNnEc2zm2hW6F6GorUVFOluM4otpuWjXpwvLr8SRpVJBASNzi0diKPRN7rLx5A_CKU5HGHpLhxYq7NDA-Jit7rq_9VAiqCeWYKDw7Z9MF_bAMlycwPuTClLDKXK2u3CuisooouEaIDVAy2CapvbD7fOCxUuAzJNvtW3ELOiy0AXkbOovzi-GXkoCTUcwrWuK1i0TIJEv9Gv5uvbEaEUfzsCzu0cHU-oqwyA6u9PdfYs9b-2yrbr6p9froGJrcg-QwgQp9ctnfF3Ff__iN2_E_Z3gf7tZhqjOsujyAE5M9hDtH5IW2NWsYX_NHMK8AI05J5ekUVekFdADHtssKatcmd2yE7BTWe4ybYFWBihHEUdkq3xS7zXalHWOjeQR6FzePYTF5_2k8detyDa4OeFC4TBORkNBwLEREfCVwxa2xNVdKRR4xTMXKS1lCw9Bo6ztJ7KUUeyR2t9YieALtbJOZp-Bou0uYWCU2mGIUqUp5EqdKs4iYKIh52oW3B1tJXXOZY0mNtSz_qYe-xIWTtWW78LrR3lYcHn_Qe2nN3qgg8fZ0-FGiDC-SEY3Etd-FN6VXNGpqd4ngOB5K4X2W8_FsNBdnobzowunBbWS9L-SSINqX2DiT23EaV_rrWz37V8XncBufqkTJU2gXu715YSOmIu5BS0zOetAZjt6NJr36-_gJc2oTlw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5t7QPwwPgpCgNFCHhBaRPHsZPHUm1UiE6rREV5shzbEdW6tGrSwfjr54vTqEMCIfEWn85W7LvYZ-W77wDecJrkWYBkeJnkPo1MiMnKgR-qME8SqgjlmCg8OWPjGf00j-cHMNrlwtSwylIuLv1LIgtHFNwgxAYoGax1bi_sIR8ErBaEDMl2-1Z8CF0W24C8A93Z2fnwW03AySjmFc3x2kVSZJKlYQN_t97oRsTRAiyLu3cwHX5HWGQXV_rnrdjzzrZYy-sfcrncO4ZOj0DvJuDQJxf9bZX11a_fuB3_c4YP4H4TpnpD1-UhHJjiEdzbIy-0rUnL-Fo-hqkDjHg1ladXudIL6ACebdcV1K5M6dkI2aus9xhfY1UBxwjiyWJRrqrNar1QnrHRPAK9q-snMDs9-TIa-025Bl9FPKp8pkiiSWw4FiIioUxwxa2xFZdSpgExTGYyyJmmcWyU9R2dBTnFHtru1iqJnkKnWBXmGXjK7hImk9oGU4wiVSnXWS4VS4lJo4znPXi_s5VQDZc5ltRYivqfehwKXDjRWLYHb1vttePw-IPea2v2VgWJt8fDzwJleJFMaZpchT14V3tFqyY3FwiO47FIgq9iOpp8mCYfY3Heg-Od24hmXygFQbQvsXEmt-O0rvTXt3r-r4ov4C4-uUTJY-hUm615aSOmKnvVfBE3eG0RPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+order+topological+derivatives+for+three-dimensional+anisotropic+elasticity&rft.jtitle=ESAIM%3A+Mathematical+Modelling+and+Numerical+Analysis&rft.au=Bonnet%2C+Marc&rft.au=Cornaggia%2C+R%C3%A9mi&rft.date=2017-11-01&rft.issn=0764-583X&rft.eissn=1290-3841&rft.volume=51&rft.issue=6&rft.spage=2069&rft.epage=2092&rft_id=info:doi/10.1051%2Fm2an%2F2017015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_m2an_2017015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon