Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data

Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missin...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biostatistics Vol. 20; no. 2; pp. 599 - 629
Main Authors Momeni Roochi, Elahe, Eftekhari Mahabadi, Samaneh
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.11.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1557-4679
2194-573X
1557-4679
DOI10.1515/ijb-2022-0014

Cover

Abstract Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55–95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.
AbstractList Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55–95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.
Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55-95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55-95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.
Author Momeni Roochi, Elahe
Eftekhari Mahabadi, Samaneh
Author_xml – sequence: 1
  givenname: Elahe
  surname: Momeni Roochi
  fullname: Momeni Roochi, Elahe
  email: momeni.elahe@ut.ac.ir
  organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Samaneh
  orcidid: 0000-0001-8938-5864
  surname: Eftekhari Mahabadi
  fullname: Eftekhari Mahabadi, Samaneh
  email: seftekhari@ut.ac.ir
  organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38009236$$D View this record in MEDLINE/PubMed
BookMark eNp1kUuLFDEUhYOMOA9dupUCN7MpzbOqoisdfMGAG12HVOpWc5t0Uiapkf4D_u5J2zMog26SE_Ldw-Wcc3ISYgBCnjP6iimmXuN2bDnlvKWUyUfkjCnVt7Lr9clf-pSc57ylVLKB6SfkVAyUai66M_Lrvd1DRhuaDC6GqY1pglQfIWPBGyz7Js6Nj2GDZZ0wWN9gmCFBcJCbEpu6ToubEJMd0Vf8TVO97LJ4dLZgDAfGhoITLAlyrrJxHkP99U1JWM_JFvuUPJ6tz_Ds7r4g3z9--Hb1ub3--unL1bvr1olelFb1g1Bajnq0jNFJ6X4YO6m7AZzUs2JApVODngGcmDXntmMwq4lTNTqAYRIX5PLou6T4Y4VczA6zA-9tgLhmwwctRccUVxV9-QDdxjXVALIRTPZScdnzSr24o9ZxB5NZEu5s2pv7hCsgjoBLMecEs3FYfidTkkVvGDWHHk3t0Rx6NIce61T7YOre-H_82yP_0_oCtcJNWvdV_Nn5n3NVKK3FLWsWtIM
CitedBy_id crossref_primary_10_1177_09622802241288350
Cites_doi 10.2307/2529876
10.1002/jae.1157
10.1097/01.jcp.0000132448.65972.d9
10.1002/0470090456.ch21
10.1002/sim.7078
10.1191/1740774504cn005oa
10.1002/sim.3948
10.1093/biostatistics/kxm001
10.2307/2986113
10.1080/01621459.1995.10476615
10.1214/13-STS414
10.1111/j.1541-0420.2006.00580.x
10.1002/sim.2107
10.1002/sim.3117
10.2307/1912352
10.1002/9781119942412
10.1002/sim.8560
10.1093/biomet/63.3.581
10.1191/1740774505cn128oa
10.1111/1467-9876.00119
10.1111/1467-9868.00318
10.1002/sim.3655
10.1214/08-AOAS191
10.1111/1467-9868.00055
10.1007/s40300-015-0063-6
10.1002/9781119013563
10.1201/9781420011180
10.1111/1468-0262.00260
10.5705/ss.2009.252
10.1080/02664763.2012.710196
10.1016/j.csda.2010.11.021
10.1080/01621459.1993.10594302
10.1002/sim.7698
10.1002/bimj.200900202
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston.
2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston.
– notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1515/ijb-2022-0014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-4679
EndPage 629
ExternalDocumentID 38009236
10_1515_ijb_2022_0014
10_1515_ijb_2022_0014202599
Genre Journal Article
GroupedDBID ---
-~S
0R~
123
1WD
4.4
53G
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAOUV
AAOWA
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABDRH
ABFKT
ABJNI
ABMBZ
ABMIY
ABPLS
ABRDF
ABSOE
ABWLS
ABYBW
ABYKJ
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACONX
ACPMA
ACUND
ACYCL
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AFBAA
AFBDD
AFBQV
AFCXV
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CKPZI
CS3
DASCH
DSRVY
DU5
F5P
HZ~
IY9
J9A
K.~
KDIRW
MV1
NQBSW
O9-
P2P
QD8
SA.
SLJYH
T2Y
UK5
WTRAM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c373t-5783594b9ba110d5978b64968ec49f51e04c589feec3f922a61ef5d205bcee8d3
ISSN 1557-4679
2194-573X
IngestDate Fri Sep 05 14:56:04 EDT 2025
Wed Aug 13 03:34:50 EDT 2025
Tue Sep 16 01:45:01 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Oct 01 01:49:01 EDT 2025
Sat Sep 06 16:58:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords informative drop-out
second-order local sensitivity
Bayesian approach
linear mixed-effect model
normal longitudinal data
Language English
License 2023 Walter de Gruyter GmbH, Berlin/Boston.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-5783594b9ba110d5978b64968ec49f51e04c589feec3f922a61ef5d205bcee8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8938-5864
PMID 38009236
PQID 3147452472
PQPubID 2031306
PageCount 31
ParticipantIDs proquest_miscellaneous_2894361525
proquest_journals_3147452472
pubmed_primary_38009236
crossref_citationtrail_10_1515_ijb_2022_0014
crossref_primary_10_1515_ijb_2022_0014
walterdegruyter_journals_10_1515_ijb_2022_0014202599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle The international journal of biostatistics
PublicationTitleAlternate Int J Biostat
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024122017141997928_j_ijb-2022-0014_ref_008
2024122017141997928_j_ijb-2022-0014_ref_009
2024122017141997928_j_ijb-2022-0014_ref_020
2024122017141997928_j_ijb-2022-0014_ref_021
2024122017141997928_j_ijb-2022-0014_ref_002
2024122017141997928_j_ijb-2022-0014_ref_024
2024122017141997928_j_ijb-2022-0014_ref_003
2024122017141997928_j_ijb-2022-0014_ref_025
2024122017141997928_j_ijb-2022-0014_ref_022
2024122017141997928_j_ijb-2022-0014_ref_001
2024122017141997928_j_ijb-2022-0014_ref_023
2024122017141997928_j_ijb-2022-0014_ref_006
2024122017141997928_j_ijb-2022-0014_ref_028
2024122017141997928_j_ijb-2022-0014_ref_007
2024122017141997928_j_ijb-2022-0014_ref_029
2024122017141997928_j_ijb-2022-0014_ref_004
2024122017141997928_j_ijb-2022-0014_ref_026
2024122017141997928_j_ijb-2022-0014_ref_005
2024122017141997928_j_ijb-2022-0014_ref_027
2024122017141997928_j_ijb-2022-0014_ref_019
2024122017141997928_j_ijb-2022-0014_ref_031
2024122017141997928_j_ijb-2022-0014_ref_010
2024122017141997928_j_ijb-2022-0014_ref_032
2024122017141997928_j_ijb-2022-0014_ref_030
2024122017141997928_j_ijb-2022-0014_ref_013
2024122017141997928_j_ijb-2022-0014_ref_035
2024122017141997928_j_ijb-2022-0014_ref_014
2024122017141997928_j_ijb-2022-0014_ref_036
2024122017141997928_j_ijb-2022-0014_ref_011
2024122017141997928_j_ijb-2022-0014_ref_033
2024122017141997928_j_ijb-2022-0014_ref_012
2024122017141997928_j_ijb-2022-0014_ref_034
2024122017141997928_j_ijb-2022-0014_ref_017
2024122017141997928_j_ijb-2022-0014_ref_039
2024122017141997928_j_ijb-2022-0014_ref_018
2024122017141997928_j_ijb-2022-0014_ref_015
2024122017141997928_j_ijb-2022-0014_ref_037
2024122017141997928_j_ijb-2022-0014_ref_016
2024122017141997928_j_ijb-2022-0014_ref_038
References_xml – ident: 2024122017141997928_j_ijb-2022-0014_ref_034
  doi: 10.2307/2529876
– ident: 2024122017141997928_j_ijb-2022-0014_ref_020
  doi: 10.1002/jae.1157
– ident: 2024122017141997928_j_ijb-2022-0014_ref_037
  doi: 10.1097/01.jcp.0000132448.65972.d9
– ident: 2024122017141997928_j_ijb-2022-0014_ref_036
  doi: 10.1002/0470090456.ch21
– ident: 2024122017141997928_j_ijb-2022-0014_ref_039
– ident: 2024122017141997928_j_ijb-2022-0014_ref_029
  doi: 10.1002/sim.7078
– ident: 2024122017141997928_j_ijb-2022-0014_ref_014
– ident: 2024122017141997928_j_ijb-2022-0014_ref_015
  doi: 10.1191/1740774504cn005oa
– ident: 2024122017141997928_j_ijb-2022-0014_ref_021
  doi: 10.1002/sim.3948
– ident: 2024122017141997928_j_ijb-2022-0014_ref_013
  doi: 10.1093/biostatistics/kxm001
– ident: 2024122017141997928_j_ijb-2022-0014_ref_003
  doi: 10.2307/2986113
– ident: 2024122017141997928_j_ijb-2022-0014_ref_004
  doi: 10.1080/01621459.1995.10476615
– ident: 2024122017141997928_j_ijb-2022-0014_ref_011
  doi: 10.1214/13-STS414
– ident: 2024122017141997928_j_ijb-2022-0014_ref_017
  doi: 10.1111/j.1541-0420.2006.00580.x
– ident: 2024122017141997928_j_ijb-2022-0014_ref_018
  doi: 10.1002/sim.2107
– ident: 2024122017141997928_j_ijb-2022-0014_ref_019
  doi: 10.1002/sim.3117
– ident: 2024122017141997928_j_ijb-2022-0014_ref_033
  doi: 10.2307/1912352
– ident: 2024122017141997928_j_ijb-2022-0014_ref_032
  doi: 10.1002/9781119942412
– ident: 2024122017141997928_j_ijb-2022-0014_ref_030
  doi: 10.1002/sim.8560
– ident: 2024122017141997928_j_ijb-2022-0014_ref_001
  doi: 10.1093/biomet/63.3.581
– ident: 2024122017141997928_j_ijb-2022-0014_ref_016
  doi: 10.1191/1740774505cn128oa
– ident: 2024122017141997928_j_ijb-2022-0014_ref_008
  doi: 10.1111/1467-9876.00119
– ident: 2024122017141997928_j_ijb-2022-0014_ref_009
  doi: 10.1111/1467-9868.00318
– ident: 2024122017141997928_j_ijb-2022-0014_ref_027
  doi: 10.1002/sim.3655
– ident: 2024122017141997928_j_ijb-2022-0014_ref_038
  doi: 10.1214/08-AOAS191
– ident: 2024122017141997928_j_ijb-2022-0014_ref_005
  doi: 10.1111/1467-9868.00055
– ident: 2024122017141997928_j_ijb-2022-0014_ref_028
  doi: 10.1007/s40300-015-0063-6
– ident: 2024122017141997928_j_ijb-2022-0014_ref_002
  doi: 10.1002/9781119013563
– ident: 2024122017141997928_j_ijb-2022-0014_ref_006
– ident: 2024122017141997928_j_ijb-2022-0014_ref_012
  doi: 10.1201/9781420011180
– ident: 2024122017141997928_j_ijb-2022-0014_ref_031
– ident: 2024122017141997928_j_ijb-2022-0014_ref_010
  doi: 10.1111/1468-0262.00260
– ident: 2024122017141997928_j_ijb-2022-0014_ref_026
  doi: 10.5705/ss.2009.252
– ident: 2024122017141997928_j_ijb-2022-0014_ref_035
– ident: 2024122017141997928_j_ijb-2022-0014_ref_024
  doi: 10.1080/02664763.2012.710196
– ident: 2024122017141997928_j_ijb-2022-0014_ref_022
  doi: 10.1016/j.csda.2010.11.021
– ident: 2024122017141997928_j_ijb-2022-0014_ref_007
  doi: 10.1080/01621459.1993.10594302
– ident: 2024122017141997928_j_ijb-2022-0014_ref_023
  doi: 10.1002/sim.7698
– ident: 2024122017141997928_j_ijb-2022-0014_ref_025
  doi: 10.1002/bimj.200900202
SSID ssj0041819
Score 2.336732
Snippet Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods...
Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 599
SubjectTerms Antidepressants
Antidepressive Agents - therapeutic use
Bayes Theorem
Bayesian analysis
Bayesian approach
Clinical trials
Clinical Trials as Topic - methods
Data Interpretation, Statistical
Humans
informative drop-out
linear mixed-effect model
Longitudinal Studies
Models, Statistical
normal longitudinal data
second-order local sensitivity
Sensitivity analysis
Title Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data
URI https://www.degruyter.com/doi/10.1515/ijb-2022-0014
https://www.ncbi.nlm.nih.gov/pubmed/38009236
https://www.proquest.com/docview/3147452472
https://www.proquest.com/docview/2894361525
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package 2023
  customDbUrl:
  eissn: 1557-4679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041819
  issn: 1557-4679
  databaseCode: AGBEV
  dateStart: 20050501
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyR4mPimMJCR0F5KWOvY-eBtQx0T2oaEWtS3KImdNVCasaag8gN44kdzr-Ok7lakwUuUplZs5Zw499r33kPIS7-vQjCTXUcFnl668ZxYCHzxsDxZKHs8weTkk1PvaMTfj8W41fptRS0tyuR1-nNjXsn_oArXAFfMkv0HZJubwgU4B3zhCAjD8VoYH8RLpZMg5-jWSkfX0YQfMwzE-m6CLaYFShItpJa_yuv8Pl3YAVx_Jz-bAQt0iKwu_gR3sza1sRU8-9wEzMLpKpeyEvwwyW2NhYu8y9eWGa3iFEleYAZTVRy6wRqLQOTdj0WRaoXh7mAaTxq-DbJSfZmAR989iSdxEsu8Wsj-Gs_UxF6zYNwk71nTrPAdmKKryVJtuGbmZtazOMisiVZUskpXPgBC18rIPydAFHCz0QNcfenq3f3TD9Hh6Pg4Gg7Gw93zbw5qkOFevRFkuUG2mO95rE229t8dDD7VX3YO1lCo6--akZqardDn3lqP6zbOFcflNtn-oWMhpDq7WCzLeu9dmzTDO2Tb-CJ0vyLWXdJSs3vkZqVOurxPftX0oja9qEUvWmTUphdd0YuWBb1MrzcU7mWRC9usk4vW5KKaXBTJ9YCMDgfDt0eOke1wUtd3S0fgYmLIkzCJwbaU4LEGicdDL1ApDzPRVz2eiiDMlErdLGQs9voqE5L1RAIWWyDdh6QNA1SPCfUlyiHw1AsE55z1woQHQkmRMQlWFPM65FX9oKPU1LRHaZVphL4t4BIBLhHigrGbvEN2m-bnVTGXvzXcqVGLzEsyj9w-97lg3Gcd8qL5G2Zj3GIDzheLecRQzsBDTbEOeVSh3fTkBljgzIVB80vwr_rYOBo4Abo_uUanT8mt1eu2Q9rlxUI9A6O5TJ4bLv8BMiXKpw
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVgg4lFeBhQJGQpxIdzcZOzG3FrUs0PbUIm5RHDtlYUlQkwgtP4DfzUxelBYucHMSO57Y48yMPfMNwLNw5jSpyYHnItVs3SgvkZIXHsOTaTtFw8HJB4dqfoxvP8jem7Ds3CqtOzmtV1WLkDqxRVrzRtmANUASeLL4ZGh-yY5iFX_ysfqyvAxrZKsoHMHa9uud3ff97xhJhOkOXPNCy9-F0QUN8zqsf2sOrQeKzsievRtgeqpbl5PPW3VlttLv5wAd_-uzbsJ6p5mK7ZaVbsEll9-GK22uytUd-LGTrBxHXIqSbWjrNaCddJGz1xdnoBBFJpYF5z-qLefaEos-mLAUVSHyIvcWJzmxXOOPu3op6F1nzs-5Dk3zovPNpaLowzZFk1tEsDfrBhzv7R69mntdEgcvDcKg8iRvLWk02iSkaViyXyKjUKvIpagzOXNTTGWkM-fSINO-n6iZy6T1p9KQ_I5scBdGRKC7DyK0DI6PqYokIvpTbTCSzsrMtyRTfTWGF_1sxmmHcM6JNpYxWzo0vjGNb8zjy558OIbnQ_WvLbTH3ypu9qwRdyu8jIMZhih9DP0xPB0e09rkA5ckd0Vdxj6D2yvOMDWGey1LDT0FEcNdBUQ0nuOxX338kRoqSK0f_FuzJ3B1fnSwH--_OXz3EK7RTWwDKzdhVJ3W7hFpWJV53K2hn1kbJA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAcyhsWChgJcSLdXWfs2Nxa6FJeFQeKeouS2KkWqqTqJkLLD-B3M5MXSwsXuDmJHU_scWbGnvkG4Gk09ZbU5DDwRjdbNzpIlOKFx_Bk1k0w5eDkD_t67wDfHqrDlSh-dqt0_ui0XlYtQurYlVnNG2UD1gBJ4PH8S0rzS3YUq_jjE5dfhHUS9YbMr_Xt1zu7n_u_MZIEsx225rmGv8uicwrmVdj41pxZDwStiJ7ZNUh6oluPk69bdZVuZd_P4Dn-z1ddh41OLxXbLSPdgAu-uAmX2kyVy1vwYydZeo63FAu2oF3QQHbSRcE-X5x_QpS5OC45-1HtONOWmPehhAtRlaIoi2B-VBDDNd64yxeC3rVyes51aJLnnWcuFUUftCmazCKCfVlvw8Fs99PLvaBL4RBkYRRWgeKNJYupTRPSMxxZLybVaLXxGdpcTf0EM2Vs7n0W5lbKRE99rpycqJSkt3HhHVgjAv09EJFjaHzMtFGIKCc2RaO8U7l0JFGlHsHzfjLjrMM35zQbxzHbOTS8MQ1vzMPLfnw4gmdD9ZMW2ONvFTd7zoi79b2IwylGqCRGcgRPhse0Mvm4JSl8WS9iydD2mvNLjeBuy1FDT6FhsKuQiMYzLParjz9SQwVl7f1_a_YYLn98NYvfv9l_9wCu0D1soyo3Ya06rf1DUq-q9FG3gn4CCpIiyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+second-order+sensitivity+of+longitudinal+inferences+to+non-ignorability%3A+an+application+to+antidepressant+clinical+trial+data&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Momeni+Roochi%2C+Elahe&rft.au=Eftekhari+Mahabadi%2C+Samaneh&rft.date=2024-11-01&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=20&rft.issue=2&rft.spage=599&rft_id=info:doi/10.1515%2Fijb-2022-0014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon