Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data
Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missin...
Saved in:
Published in | The international journal of biostatistics Vol. 20; no. 2; pp. 599 - 629 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.11.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 1557-4679 2194-573X 1557-4679 |
DOI | 10.1515/ijb-2022-0014 |
Cover
Abstract | Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55–95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework. |
---|---|
AbstractList | Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55–95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework. Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55-95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55-95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework. |
Author | Momeni Roochi, Elahe Eftekhari Mahabadi, Samaneh |
Author_xml | – sequence: 1 givenname: Elahe surname: Momeni Roochi fullname: Momeni Roochi, Elahe email: momeni.elahe@ut.ac.ir organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran – sequence: 2 givenname: Samaneh orcidid: 0000-0001-8938-5864 surname: Eftekhari Mahabadi fullname: Eftekhari Mahabadi, Samaneh email: seftekhari@ut.ac.ir organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38009236$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUuLFDEUhYOMOA9dupUCN7MpzbOqoisdfMGAG12HVOpWc5t0Uiapkf4D_u5J2zMog26SE_Ldw-Wcc3ISYgBCnjP6iimmXuN2bDnlvKWUyUfkjCnVt7Lr9clf-pSc57ylVLKB6SfkVAyUai66M_Lrvd1DRhuaDC6GqY1pglQfIWPBGyz7Js6Nj2GDZZ0wWN9gmCFBcJCbEpu6ToubEJMd0Vf8TVO97LJ4dLZgDAfGhoITLAlyrrJxHkP99U1JWM_JFvuUPJ6tz_Ds7r4g3z9--Hb1ub3--unL1bvr1olelFb1g1Bajnq0jNFJ6X4YO6m7AZzUs2JApVODngGcmDXntmMwq4lTNTqAYRIX5PLou6T4Y4VczA6zA-9tgLhmwwctRccUVxV9-QDdxjXVALIRTPZScdnzSr24o9ZxB5NZEu5s2pv7hCsgjoBLMecEs3FYfidTkkVvGDWHHk3t0Rx6NIce61T7YOre-H_82yP_0_oCtcJNWvdV_Nn5n3NVKK3FLWsWtIM |
CitedBy_id | crossref_primary_10_1177_09622802241288350 |
Cites_doi | 10.2307/2529876 10.1002/jae.1157 10.1097/01.jcp.0000132448.65972.d9 10.1002/0470090456.ch21 10.1002/sim.7078 10.1191/1740774504cn005oa 10.1002/sim.3948 10.1093/biostatistics/kxm001 10.2307/2986113 10.1080/01621459.1995.10476615 10.1214/13-STS414 10.1111/j.1541-0420.2006.00580.x 10.1002/sim.2107 10.1002/sim.3117 10.2307/1912352 10.1002/9781119942412 10.1002/sim.8560 10.1093/biomet/63.3.581 10.1191/1740774505cn128oa 10.1111/1467-9876.00119 10.1111/1467-9868.00318 10.1002/sim.3655 10.1214/08-AOAS191 10.1111/1467-9868.00055 10.1007/s40300-015-0063-6 10.1002/9781119013563 10.1201/9781420011180 10.1111/1468-0262.00260 10.5705/ss.2009.252 10.1080/02664763.2012.710196 10.1016/j.csda.2010.11.021 10.1080/01621459.1993.10594302 10.1002/sim.7698 10.1002/bimj.200900202 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston. 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston. – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1515/ijb-2022-0014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-4679 |
EndPage | 629 |
ExternalDocumentID | 38009236 10_1515_ijb_2022_0014 10_1515_ijb_2022_0014202599 |
Genre | Journal Article |
GroupedDBID | --- -~S 0R~ 123 1WD 4.4 53G AAAEU AAAVF AACIX AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAOUV AAOWA AAPJK AAQCX AARVR AASQH AAXCG ABAQN ABDRH ABFKT ABJNI ABMBZ ABMIY ABPLS ABRDF ABSOE ABWLS ABYBW ABYKJ ACDEB ACEFL ACGFO ACGFS ACHNZ ACONX ACPMA ACUND ACYCL ACZBO ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEDGQ AEGVQ AEICA AEJQW AEMOE AENEX AEQDQ AEQLX AERZL AFBAA AFBDD AFBQV AFCXV AFYRI AGBEV AGQYU AHCWZ AHVWV AHXUK AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ALWYM AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CKPZI CS3 DASCH DSRVY DU5 F5P HZ~ IY9 J9A K.~ KDIRW MV1 NQBSW O9- P2P QD8 SA. SLJYH T2Y UK5 WTRAM AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c373t-5783594b9ba110d5978b64968ec49f51e04c589feec3f922a61ef5d205bcee8d3 |
ISSN | 1557-4679 2194-573X |
IngestDate | Fri Sep 05 14:56:04 EDT 2025 Wed Aug 13 03:34:50 EDT 2025 Tue Sep 16 01:45:01 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Oct 01 01:49:01 EDT 2025 Sat Sep 06 16:58:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | informative drop-out second-order local sensitivity Bayesian approach linear mixed-effect model normal longitudinal data |
Language | English |
License | 2023 Walter de Gruyter GmbH, Berlin/Boston. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-5783594b9ba110d5978b64968ec49f51e04c589feec3f922a61ef5d205bcee8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8938-5864 |
PMID | 38009236 |
PQID | 3147452472 |
PQPubID | 2031306 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2894361525 proquest_journals_3147452472 pubmed_primary_38009236 crossref_citationtrail_10_1515_ijb_2022_0014 crossref_primary_10_1515_ijb_2022_0014 walterdegruyter_journals_10_1515_ijb_2022_0014202599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | The international journal of biostatistics |
PublicationTitleAlternate | Int J Biostat |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024122017141997928_j_ijb-2022-0014_ref_008 2024122017141997928_j_ijb-2022-0014_ref_009 2024122017141997928_j_ijb-2022-0014_ref_020 2024122017141997928_j_ijb-2022-0014_ref_021 2024122017141997928_j_ijb-2022-0014_ref_002 2024122017141997928_j_ijb-2022-0014_ref_024 2024122017141997928_j_ijb-2022-0014_ref_003 2024122017141997928_j_ijb-2022-0014_ref_025 2024122017141997928_j_ijb-2022-0014_ref_022 2024122017141997928_j_ijb-2022-0014_ref_001 2024122017141997928_j_ijb-2022-0014_ref_023 2024122017141997928_j_ijb-2022-0014_ref_006 2024122017141997928_j_ijb-2022-0014_ref_028 2024122017141997928_j_ijb-2022-0014_ref_007 2024122017141997928_j_ijb-2022-0014_ref_029 2024122017141997928_j_ijb-2022-0014_ref_004 2024122017141997928_j_ijb-2022-0014_ref_026 2024122017141997928_j_ijb-2022-0014_ref_005 2024122017141997928_j_ijb-2022-0014_ref_027 2024122017141997928_j_ijb-2022-0014_ref_019 2024122017141997928_j_ijb-2022-0014_ref_031 2024122017141997928_j_ijb-2022-0014_ref_010 2024122017141997928_j_ijb-2022-0014_ref_032 2024122017141997928_j_ijb-2022-0014_ref_030 2024122017141997928_j_ijb-2022-0014_ref_013 2024122017141997928_j_ijb-2022-0014_ref_035 2024122017141997928_j_ijb-2022-0014_ref_014 2024122017141997928_j_ijb-2022-0014_ref_036 2024122017141997928_j_ijb-2022-0014_ref_011 2024122017141997928_j_ijb-2022-0014_ref_033 2024122017141997928_j_ijb-2022-0014_ref_012 2024122017141997928_j_ijb-2022-0014_ref_034 2024122017141997928_j_ijb-2022-0014_ref_017 2024122017141997928_j_ijb-2022-0014_ref_039 2024122017141997928_j_ijb-2022-0014_ref_018 2024122017141997928_j_ijb-2022-0014_ref_015 2024122017141997928_j_ijb-2022-0014_ref_037 2024122017141997928_j_ijb-2022-0014_ref_016 2024122017141997928_j_ijb-2022-0014_ref_038 |
References_xml | – ident: 2024122017141997928_j_ijb-2022-0014_ref_034 doi: 10.2307/2529876 – ident: 2024122017141997928_j_ijb-2022-0014_ref_020 doi: 10.1002/jae.1157 – ident: 2024122017141997928_j_ijb-2022-0014_ref_037 doi: 10.1097/01.jcp.0000132448.65972.d9 – ident: 2024122017141997928_j_ijb-2022-0014_ref_036 doi: 10.1002/0470090456.ch21 – ident: 2024122017141997928_j_ijb-2022-0014_ref_039 – ident: 2024122017141997928_j_ijb-2022-0014_ref_029 doi: 10.1002/sim.7078 – ident: 2024122017141997928_j_ijb-2022-0014_ref_014 – ident: 2024122017141997928_j_ijb-2022-0014_ref_015 doi: 10.1191/1740774504cn005oa – ident: 2024122017141997928_j_ijb-2022-0014_ref_021 doi: 10.1002/sim.3948 – ident: 2024122017141997928_j_ijb-2022-0014_ref_013 doi: 10.1093/biostatistics/kxm001 – ident: 2024122017141997928_j_ijb-2022-0014_ref_003 doi: 10.2307/2986113 – ident: 2024122017141997928_j_ijb-2022-0014_ref_004 doi: 10.1080/01621459.1995.10476615 – ident: 2024122017141997928_j_ijb-2022-0014_ref_011 doi: 10.1214/13-STS414 – ident: 2024122017141997928_j_ijb-2022-0014_ref_017 doi: 10.1111/j.1541-0420.2006.00580.x – ident: 2024122017141997928_j_ijb-2022-0014_ref_018 doi: 10.1002/sim.2107 – ident: 2024122017141997928_j_ijb-2022-0014_ref_019 doi: 10.1002/sim.3117 – ident: 2024122017141997928_j_ijb-2022-0014_ref_033 doi: 10.2307/1912352 – ident: 2024122017141997928_j_ijb-2022-0014_ref_032 doi: 10.1002/9781119942412 – ident: 2024122017141997928_j_ijb-2022-0014_ref_030 doi: 10.1002/sim.8560 – ident: 2024122017141997928_j_ijb-2022-0014_ref_001 doi: 10.1093/biomet/63.3.581 – ident: 2024122017141997928_j_ijb-2022-0014_ref_016 doi: 10.1191/1740774505cn128oa – ident: 2024122017141997928_j_ijb-2022-0014_ref_008 doi: 10.1111/1467-9876.00119 – ident: 2024122017141997928_j_ijb-2022-0014_ref_009 doi: 10.1111/1467-9868.00318 – ident: 2024122017141997928_j_ijb-2022-0014_ref_027 doi: 10.1002/sim.3655 – ident: 2024122017141997928_j_ijb-2022-0014_ref_038 doi: 10.1214/08-AOAS191 – ident: 2024122017141997928_j_ijb-2022-0014_ref_005 doi: 10.1111/1467-9868.00055 – ident: 2024122017141997928_j_ijb-2022-0014_ref_028 doi: 10.1007/s40300-015-0063-6 – ident: 2024122017141997928_j_ijb-2022-0014_ref_002 doi: 10.1002/9781119013563 – ident: 2024122017141997928_j_ijb-2022-0014_ref_006 – ident: 2024122017141997928_j_ijb-2022-0014_ref_012 doi: 10.1201/9781420011180 – ident: 2024122017141997928_j_ijb-2022-0014_ref_031 – ident: 2024122017141997928_j_ijb-2022-0014_ref_010 doi: 10.1111/1468-0262.00260 – ident: 2024122017141997928_j_ijb-2022-0014_ref_026 doi: 10.5705/ss.2009.252 – ident: 2024122017141997928_j_ijb-2022-0014_ref_035 – ident: 2024122017141997928_j_ijb-2022-0014_ref_024 doi: 10.1080/02664763.2012.710196 – ident: 2024122017141997928_j_ijb-2022-0014_ref_022 doi: 10.1016/j.csda.2010.11.021 – ident: 2024122017141997928_j_ijb-2022-0014_ref_007 doi: 10.1080/01621459.1993.10594302 – ident: 2024122017141997928_j_ijb-2022-0014_ref_023 doi: 10.1002/sim.7698 – ident: 2024122017141997928_j_ijb-2022-0014_ref_025 doi: 10.1002/bimj.200900202 |
SSID | ssj0041819 |
Score | 2.336732 |
Snippet | Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods... Incomplete data is a prevalent complication in longitudinal studies due to individuals' drop-out before intended completion time. Currently available methods... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 599 |
SubjectTerms | Antidepressants Antidepressive Agents - therapeutic use Bayes Theorem Bayesian analysis Bayesian approach Clinical trials Clinical Trials as Topic - methods Data Interpretation, Statistical Humans informative drop-out linear mixed-effect model Longitudinal Studies Models, Statistical normal longitudinal data second-order local sensitivity Sensitivity analysis |
Title | Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data |
URI | https://www.degruyter.com/doi/10.1515/ijb-2022-0014 https://www.ncbi.nlm.nih.gov/pubmed/38009236 https://www.proquest.com/docview/3147452472 https://www.proquest.com/docview/2894361525 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Complete Journal Package 2023 customDbUrl: eissn: 1557-4679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041819 issn: 1557-4679 databaseCode: AGBEV dateStart: 20050501 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyR4mPimMJCR0F5KWOvY-eBtQx0T2oaEWtS3KImdNVCasaag8gN44kdzr-Ok7lakwUuUplZs5Zw499r33kPIS7-vQjCTXUcFnl668ZxYCHzxsDxZKHs8weTkk1PvaMTfj8W41fptRS0tyuR1-nNjXsn_oArXAFfMkv0HZJubwgU4B3zhCAjD8VoYH8RLpZMg5-jWSkfX0YQfMwzE-m6CLaYFShItpJa_yuv8Pl3YAVx_Jz-bAQt0iKwu_gR3sza1sRU8-9wEzMLpKpeyEvwwyW2NhYu8y9eWGa3iFEleYAZTVRy6wRqLQOTdj0WRaoXh7mAaTxq-DbJSfZmAR989iSdxEsu8Wsj-Gs_UxF6zYNwk71nTrPAdmKKryVJtuGbmZtazOMisiVZUskpXPgBC18rIPydAFHCz0QNcfenq3f3TD9Hh6Pg4Gg7Gw93zbw5qkOFevRFkuUG2mO95rE229t8dDD7VX3YO1lCo6--akZqardDn3lqP6zbOFcflNtn-oWMhpDq7WCzLeu9dmzTDO2Tb-CJ0vyLWXdJSs3vkZqVOurxPftX0oja9qEUvWmTUphdd0YuWBb1MrzcU7mWRC9usk4vW5KKaXBTJ9YCMDgfDt0eOke1wUtd3S0fgYmLIkzCJwbaU4LEGicdDL1ApDzPRVz2eiiDMlErdLGQs9voqE5L1RAIWWyDdh6QNA1SPCfUlyiHw1AsE55z1woQHQkmRMQlWFPM65FX9oKPU1LRHaZVphL4t4BIBLhHigrGbvEN2m-bnVTGXvzXcqVGLzEsyj9w-97lg3Gcd8qL5G2Zj3GIDzheLecRQzsBDTbEOeVSh3fTkBljgzIVB80vwr_rYOBo4Abo_uUanT8mt1eu2Q9rlxUI9A6O5TJ4bLv8BMiXKpw |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVgg4lFeBhQJGQpxIdzcZOzG3FrUs0PbUIm5RHDtlYUlQkwgtP4DfzUxelBYucHMSO57Y48yMPfMNwLNw5jSpyYHnItVs3SgvkZIXHsOTaTtFw8HJB4dqfoxvP8jem7Ds3CqtOzmtV1WLkDqxRVrzRtmANUASeLL4ZGh-yY5iFX_ysfqyvAxrZKsoHMHa9uud3ff97xhJhOkOXPNCy9-F0QUN8zqsf2sOrQeKzsievRtgeqpbl5PPW3VlttLv5wAd_-uzbsJ6p5mK7ZaVbsEll9-GK22uytUd-LGTrBxHXIqSbWjrNaCddJGz1xdnoBBFJpYF5z-qLefaEos-mLAUVSHyIvcWJzmxXOOPu3op6F1nzs-5Dk3zovPNpaLowzZFk1tEsDfrBhzv7R69mntdEgcvDcKg8iRvLWk02iSkaViyXyKjUKvIpagzOXNTTGWkM-fSINO-n6iZy6T1p9KQ_I5scBdGRKC7DyK0DI6PqYokIvpTbTCSzsrMtyRTfTWGF_1sxmmHcM6JNpYxWzo0vjGNb8zjy558OIbnQ_WvLbTH3ypu9qwRdyu8jIMZhih9DP0xPB0e09rkA5ckd0Vdxj6D2yvOMDWGey1LDT0FEcNdBUQ0nuOxX338kRoqSK0f_FuzJ3B1fnSwH--_OXz3EK7RTWwDKzdhVJ3W7hFpWJV53K2hn1kbJA8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKxAcyhsWChgJcSLdXWfs2Nxa6FJeFQeKeouS2KkWqqTqJkLLD-B3M5MXSwsXuDmJHU_scWbGnvkG4Gk09ZbU5DDwRjdbNzpIlOKFx_Bk1k0w5eDkD_t67wDfHqrDlSh-dqt0_ui0XlYtQurYlVnNG2UD1gBJ4PH8S0rzS3YUq_jjE5dfhHUS9YbMr_Xt1zu7n_u_MZIEsx225rmGv8uicwrmVdj41pxZDwStiJ7ZNUh6oluPk69bdZVuZd_P4Dn-z1ddh41OLxXbLSPdgAu-uAmX2kyVy1vwYydZeo63FAu2oF3QQHbSRcE-X5x_QpS5OC45-1HtONOWmPehhAtRlaIoi2B-VBDDNd64yxeC3rVyes51aJLnnWcuFUUftCmazCKCfVlvw8Fs99PLvaBL4RBkYRRWgeKNJYupTRPSMxxZLybVaLXxGdpcTf0EM2Vs7n0W5lbKRE99rpycqJSkt3HhHVgjAv09EJFjaHzMtFGIKCc2RaO8U7l0JFGlHsHzfjLjrMM35zQbxzHbOTS8MQ1vzMPLfnw4gmdD9ZMW2ONvFTd7zoi79b2IwylGqCRGcgRPhse0Mvm4JSl8WS9iydD2mvNLjeBuy1FDT6FhsKuQiMYzLParjz9SQwVl7f1_a_YYLn98NYvfv9l_9wCu0D1soyo3Ya06rf1DUq-q9FG3gn4CCpIiyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+second-order+sensitivity+of+longitudinal+inferences+to+non-ignorability%3A+an+application+to+antidepressant+clinical+trial+data&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Momeni+Roochi%2C+Elahe&rft.au=Eftekhari+Mahabadi%2C+Samaneh&rft.date=2024-11-01&rft.issn=1557-4679&rft.eissn=1557-4679&rft.volume=20&rft.issue=2&rft.spage=599&rft_id=info:doi/10.1515%2Fijb-2022-0014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-4679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-4679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-4679&client=summon |