A high-throughput screening of metal-organic framework based membranes for biogas upgrading
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for...
Saved in:
Published in | Faraday discussions Vol. 231; pp. 235 - 257 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
15.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-6640 1364-5498 1364-5498 |
DOI | 10.1039/d1fd00005e |
Cover
Abstract | Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO
2
, CH
4
and H
2
S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO
2
/CH
4
and H
2
S/CH
4
mixtures. The Henry constant for the adsorption of H
2
O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H
2
O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
High-throughput computational screening methodology designed to identify the most promising porous metal-organic frameworks for biogas upgrading. |
---|---|
AbstractList | Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal–organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO
2
, CH
4
and H
2
S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO
2
/CH
4
and H
2
S/CH
4
mixtures. The Henry constant for the adsorption of H
2
O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H
2
O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO 2 , CH 4 and H 2 S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO 2 /CH 4 and H 2 S/CH 4 mixtures. The Henry constant for the adsorption of H 2 O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H 2 O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. High-throughput computational screening methodology designed to identify the most promising porous metal-organic frameworks for biogas upgrading. Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal–organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO , CH and H S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO /CH and H S/CH mixtures. The Henry constant for the adsorption of H O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. |
Author | Glover, Joseph Besley, Elena |
AuthorAffiliation | School of Chemistry University of Nottingham |
AuthorAffiliation_xml | – name: University of Nottingham – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Joseph surname: Glover fullname: Glover, Joseph – sequence: 2 givenname: Elena surname: Besley fullname: Besley, Elena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34517410$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0LtPxiAQAHBiNL4Xdw2Ji9FUgQIto_GdmLjo5NBQoP3QFiq0Mf73op-vqCyQ3O-Ou1sDi847A8AWRocY5eJI40ajdJhZAKs45zRjVJSLb28mMs4pWgFrMT4kwlN0GazklOGCYrQK7o_hzLazbJwFP7WzYRphVMEYZ10LfQN7M8ou86GVzirYBNmbZx8eYS2j0Sna10E6E2HjA6ytb2WE09AGqVP-BlhqZBfN5se9Du7Oz25PLrPrm4urk-PrTOVFPmZU1JhLWpYIc6M5ZZqUpaoRaajghijDUa6l4oSyksqiEArXDSOaUFJgwVS-Dg7mdSc3yJdn2XXVEGwvw0uFUfW2oup7RUnvzfUQ_NNk4lj1NirTdWkOP8WKsIKwHGNBE939RR_8FFyaJamSICZKzpLa-VBT3Rv99ffnkhPYnwMVfIzBNH_aO8Xnp-_tnSWMfmFlRzla78Ygbfd_yvY8JUT1VfrHxK_kBaRG |
CitedBy_id | crossref_primary_10_1002_adfm_202207197 crossref_primary_10_1021_acs_iecr_4c00855 crossref_primary_10_1021_acs_jpcc_2c02237 crossref_primary_10_1016_j_cej_2023_147302 crossref_primary_10_3390_membranes12070700 crossref_primary_10_1134_S0036024424702601 crossref_primary_10_1021_acs_chemmater_3c01940 crossref_primary_10_1016_j_seppur_2022_121463 crossref_primary_10_1088_2053_1591_ad0c07 crossref_primary_10_1038_s42004_024_01166_7 crossref_primary_10_1002_mame_202300225 crossref_primary_10_1039_D1MA00026H crossref_primary_10_1016_j_cej_2024_150097 crossref_primary_10_1016_j_seppur_2025_131646 crossref_primary_10_1021_acs_energyfuels_4c03493 crossref_primary_10_1016_j_jcou_2022_102077 crossref_primary_10_1021_acs_jctc_4c01478 crossref_primary_10_1016_j_ccst_2021_100026 |
Cites_doi | 10.1016/j.biombioe.2011.02.033 10.1016/j.seppur.2015.08.020 10.1021/acs.jpcc.6b07493 10.1016/j.seppur.2019.05.035 10.1021/cg900504m 10.1021/acs.chemrev.7b00095 10.1016/j.jssc.2009.07.019 10.1016/j.ces.2014.08.003 10.1039/B817050A 10.1016/j.seppur.2017.07.051 10.1039/c3ta00927k 10.1021/la302223m 10.1021/acsami.8b12746 10.1039/C5CS00292C 10.1002/andp.19213690304 10.1021/jp972543+ 10.1039/C8CS00829A 10.1002/ejic.201600190 10.1016/j.seppur.2016.09.036 10.1039/C5RA00666J 10.1016/j.ccr.2019.02.032 10.1021/ja910492d 10.1021/acssuschemeng.8b05832 10.1039/c2jm15609a 10.1021/ja909263x 10.1021/acs.jctc.8b00669 10.1039/C6CS00362A 10.1016/j.seppur.2019.116101 10.1016/S0376-7388(99)00073-3 10.1016/j.energy.2006.10.018 10.1080/08927022.2015.1010082 10.1021/ja00051a040 10.1039/C5TA06472D 10.1021/ic800008f 10.1126/science.1228032 10.1039/c2ee23201d 10.1021/acs.chemmater.7b00441 10.1002/adma.201704303 10.1016/j.jiec.2012.09.019 10.1021/ja901587t 10.1021/ja2108239 10.1039/C4CS00070F 10.1021/i160057a011 10.1021/jp3062527 10.1039/C5TA08984K 10.1039/C7CS00033B 10.1021/jz3008485 10.1016/j.memsci.2015.01.007 10.1021/jp9707495 10.1080/08927022.2013.829228 10.1002/aic.690470719 10.1002/andp.18812480110 10.1016/j.memsci.2011.05.041 10.1016/0376-7388(91)80060-J 10.1039/C6TA06262H 10.1039/C7CS00885F 10.1021/cg401583v 10.1021/acs.chemrev.6b00626 10.1016/j.energy.2018.05.106 10.1002/adma.201705189 10.1021/cr200217c 10.1016/j.jhazmat.2007.01.098 10.1016/j.desal.2017.07.023 10.1039/C8TA01547C 10.1021/j100161a070 10.1021/cm9907965 10.1016/j.micromeso.2012.07.008 10.1021/cr200304e 10.1016/j.memsci.2018.10.049 10.1021/ie201885s 10.1021/acs.jpcc.8b05416 10.1039/C8TA04939D 10.1016/j.ces.2014.10.007 10.1016/j.cjche.2018.03.012 10.1021/cm301435j 10.1006/jcph.1995.1039 10.1039/C4CS00159A 10.1016/j.micromeso.2013.09.025 10.1021/ja801294f 10.1038/s41563-017-0013-1 10.1039/c2ee21996d 10.1021/ja8074874 10.1063/1.1683075 10.1039/c2cc31821k 10.1016/j.seppur.2011.06.037 10.1002/aic.16376 10.1039/C4NJ01405G 10.1016/j.memsci.2010.05.032 10.1021/cm301242d 10.1021/ie202038m 10.1016/j.memsci.2008.04.030 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 ADTOC UNPAY |
DOI | 10.1039/d1fd00005e |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5498 |
EndPage | 257 |
ExternalDocumentID | 10.1039/d1fd00005e 34517410 10_1039_D1FD00005E d1fd00005e |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 0-7 0R 1TJ 29H 4.4 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GNO HZ H~N IDZ J3I JG N9A O9- OK1 P2P R7B RCNCU RPMJG RRA RRC RSCEA SKA SLH TN5 UPT VH6 WH7 X --- -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACBEA ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 .-4 .GJ 0UZ 3EH 53G 6TJ 71~ ACHDF ACRPL ADNMO ADTOC ADXHL AETEA AFFNX AGQPQ AHGXI AI. ALSGL ANBJS ANLMG AQHUZ ASPBG AVWKF AZFZN BBWZM CAG COF EEHRC FEDTE HF~ HVGLF IDY J3G J3H L-8 M4U MVM NDZJH OHT RCLXC RNS ROL RRXOS UMF UNPAY UQL VH1 WHG XJT XOL ZCG ZXP |
ID | FETCH-LOGICAL-c373t-49b16a488016ed645d288cb02f496e2ce603dac624584a779c1bf52d2427195c3 |
IEDL.DBID | UNPAY |
ISSN | 1359-6640 1364-5498 |
IngestDate | Tue Aug 19 15:18:57 EDT 2025 Wed Oct 01 14:51:47 EDT 2025 Sun Jun 29 15:29:38 EDT 2025 Wed Feb 19 02:27:42 EST 2025 Tue Jul 01 01:50:51 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Sat Jan 08 11:09:41 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-49b16a488016ed645d288cb02f496e2ce603dac624584a779c1bf52d2427195c3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1fd00005e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5281-6664 0000-0002-9910-7603 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2021/fd/d1fd00005e |
PMID | 34517410 |
PQID | 2582059865 |
PQPubID | 2047504 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1039_D1FD00005E rsc_primary_d1fd00005e proquest_miscellaneous_2572531194 pubmed_primary_34517410 proquest_journals_2582059865 unpaywall_primary_10_1039_d1fd00005e crossref_citationtrail_10_1039_D1FD00005E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Faraday discussions |
PublicationTitleAlternate | Faraday Discuss |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Goh (D1FD00005E/cit14) 2018; 434 Qiu (D1FD00005E/cit28) 2014; 43 Zhao (D1FD00005E/cit23) 2018; 30 Robeson (D1FD00005E/cit12) 2008; 320 Stock (D1FD00005E/cit27) 2012; 112 Liu (D1FD00005E/cit30) 2018; 17 Mowat (D1FD00005E/cit78) 2009; 182 Shah (D1FD00005E/cit69) 2017; 117 Carta (D1FD00005E/cit19) 2013; 339 Horn (D1FD00005E/cit60) 2004; 120 Avci (D1FD00005E/cit66) 2018; 10 Lorentz (D1FD00005E/cit55) 1881; 248 Wang (D1FD00005E/cit26) 2018; 47 Qiao (D1FD00005E/cit37) 2016; 4 Plimpton (D1FD00005E/cit52) 1995; 117 Getman (D1FD00005E/cit64) 2012; 112 Gascon (D1FD00005E/cit16) 2012; 24 Colón (D1FD00005E/cit63) 2014; 43 Habib (D1FD00005E/cit94) 2020; 234 Moghadam (D1FD00005E/cit35) 2017; 29 Lee (D1FD00005E/cit90) 2012; 163 Potoff (D1FD00005E/cit59) 2001; 47 Basu (D1FD00005E/cit33) 2011; 81 Dong (D1FD00005E/cit76) 2000; 12 Frenkel (D1FD00005E/cit47) 2002 Yang (D1FD00005E/cit68) 2012; 22 Song (D1FD00005E/cit92) 2012; 5 Xie (D1FD00005E/cit17) 2019; 572 Sánchez-Laínez (D1FD00005E/cit95) 2019; 224 Rasi (D1FD00005E/cit2) 2007; 32 Gosh (D1FD00005E/cit4) 2007 Dong (D1FD00005E/cit34) 2013; 1 Wu (D1FD00005E/cit36) 2012; 28 Rojas (D1FD00005E/cit24) 2019; 388 Martin (D1FD00005E/cit58) 1998; 102 Khdhayyer (D1FD00005E/cit32) 2017; 173 Rappe (D1FD00005E/cit57) 1992; 114 Ruthven (D1FD00005E/cit6) 1994 Li (D1FD00005E/cit38) 2014; 120 Vougo-Zanda (D1FD00005E/cit77) 2008; 47 University of Vienna (D1FD00005E/cit8) 2012 Yousef (D1FD00005E/cit7) 2018; 156 Ding (D1FD00005E/cit22) 2019; 48 Chen (D1FD00005E/cit1) 2015; 5 Tanh Jeazet (D1FD00005E/cit31) 2016 Rangnekar (D1FD00005E/cit15) 2015; 44 Park (D1FD00005E/cit79) 2014; 14 Shah (D1FD00005E/cit10) 2012; 51 Zhang (D1FD00005E/cit72) 2018; 64 Carreon (D1FD00005E/cit84) 2008; 130 Bohrman (D1FD00005E/cit88) 2012; 48 Huang (D1FD00005E/cit89) 2014; 192 Venna (D1FD00005E/cit18) 2015; 124 Wang (D1FD00005E/cit44) 2016; 45 Guo (D1FD00005E/cit86) 2009; 131 Fischer (D1FD00005E/cit71) 2014; 40 Ongari (D1FD00005E/cit75) 2019; 15 Poshusta (D1FD00005E/cit82) 1999; 160 Harasimowicz (D1FD00005E/cit3) 2007; 144 Guo (D1FD00005E/cit96) 2015; 478 Moghadam (D1FD00005E/cit50) 2016; 4 Erucar (D1FD00005E/cit41) 2011; 50 Hamon (D1FD00005E/cit67) 2009; 131 Chen (D1FD00005E/cit70) 2012; 116 Altintas (D1FD00005E/cit43) 2019; 7 Qiao (D1FD00005E/cit42) 2016; 4 Dubbeldam (D1FD00005E/cit46) 2016; 42 Shi (D1FD00005E/cit85) 2014; 38 Basu (D1FD00005E/cit9) 2010; 39 Altintas (D1FD00005E/cit65) 2018; 6 Haldoupis (D1FD00005E/cit40) 2012; 134 Ryckebosch (D1FD00005E/cit5) 2011; 35 Peng (D1FD00005E/cit51) 1976; 15 Vinoba (D1FD00005E/cit20) 2017; 188 Rogge (D1FD00005E/cit25) 2017; 46 Adatoz (D1FD00005E/cit13) 2015; 152 Aijaz (D1FD00005E/cit80) 2009; 9 Liu (D1FD00005E/cit91) 2011; 379 Rappe (D1FD00005E/cit74) 1991; 95 Ewald (D1FD00005E/cit54) 1921; 369 Kristóf (D1FD00005E/cit61) 1997; 101 Berthelot (D1FD00005E/cit56) 1898; 126 Yuan (D1FD00005E/cit21) 2018; 30 Robeson (D1FD00005E/cit11) 1991; 62 Takamizawa (D1FD00005E/cit83) 2010; 132 Daglar (D1FD00005E/cit48) 2018; 122 Wilmer (D1FD00005E/cit39) 2012; 5 Wilmer (D1FD00005E/cit45) 2012; 3 Qiao (D1FD00005E/cit49) 2018; 6 El Osta (D1FD00005E/cit81) 2012; 24 Kulkarni (D1FD00005E/cit73) 2016; 120 Venna (D1FD00005E/cit87) 2010; 132 Sodeifian (D1FD00005E/cit93) 2019; 27 Yu (D1FD00005E/cit62) 2017; 117 Bastani (D1FD00005E/cit29) 2013; 19 Krishna (D1FD00005E/cit53) 2010; 360 |
References_xml | – issn: 2002 publication-title: Understanding Molecular Simulation doi: Frenkel Smit – issn: 2012 publication-title: Biogas to biomethane technology review, Task 3.1.1 doi: University of Vienna – issn: 2007 volume-title: Wet H S cracking problem in oil refinery processes - Material selection and operation control issues publication-title: Tri-Service Corrosion Conference doi: Gosh – issn: 1994 publication-title: Pressure Swing Adsorption doi: Ruthven Farooq Knaebel – volume: 35 start-page: 1633 year: 2011 ident: D1FD00005E/cit5 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.02.033 – volume: 152 start-page: 207 year: 2015 ident: D1FD00005E/cit13 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.08.020 – volume: 120 start-page: 23044 year: 2016 ident: D1FD00005E/cit73 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07493 – volume: 224 start-page: 456 year: 2019 ident: D1FD00005E/cit95 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.05.035 – volume: 9 start-page: 4480 year: 2009 ident: D1FD00005E/cit80 publication-title: Cryst. Growth Des. doi: 10.1021/cg900504m – volume: 117 start-page: 9755 year: 2017 ident: D1FD00005E/cit69 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00095 – volume: 182 start-page: 2769 year: 2009 ident: D1FD00005E/cit78 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.07.019 – volume: 120 start-page: 59 year: 2014 ident: D1FD00005E/cit38 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.08.003 – volume-title: Tri-Service Corrosion Conference year: 2007 ident: D1FD00005E/cit4 – volume: 39 start-page: 750 year: 2010 ident: D1FD00005E/cit9 publication-title: Chem. Soc. Rev. doi: 10.1039/B817050A – volume: 188 start-page: 431 year: 2017 ident: D1FD00005E/cit20 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.051 – volume: 1 start-page: 4610 year: 2013 ident: D1FD00005E/cit34 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta00927k – volume: 28 start-page: 12094 year: 2012 ident: D1FD00005E/cit36 publication-title: Langmuir doi: 10.1021/la302223m – volume: 10 start-page: 33693 year: 2018 ident: D1FD00005E/cit66 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12746 – volume: 126 start-page: 1703 year: 1898 ident: D1FD00005E/cit56 publication-title: C. R. Hebd. Seances Acad. Sci. – volume: 44 start-page: 7128 year: 2015 ident: D1FD00005E/cit15 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00292C – volume: 369 start-page: 253 year: 1921 ident: D1FD00005E/cit54 publication-title: Ann. Phys. doi: 10.1002/andp.19213690304 – volume: 102 start-page: 2569 year: 1998 ident: D1FD00005E/cit58 publication-title: J. Phys. Chem. B doi: 10.1021/jp972543+ – volume: 48 start-page: 2783 year: 2019 ident: D1FD00005E/cit22 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00829A – start-page: 4363 year: 2016 ident: D1FD00005E/cit31 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600190 – volume: 173 start-page: 304 year: 2017 ident: D1FD00005E/cit32 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.09.036 – volume: 5 start-page: 24399 year: 2015 ident: D1FD00005E/cit1 publication-title: RSC Adv. doi: 10.1039/C5RA00666J – volume: 388 start-page: 202 year: 2019 ident: D1FD00005E/cit24 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.032 – volume: 132 start-page: 2862 year: 2010 ident: D1FD00005E/cit83 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910492d – volume: 7 start-page: 2739 year: 2019 ident: D1FD00005E/cit43 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05832 – volume: 22 start-page: 10210 year: 2012 ident: D1FD00005E/cit68 publication-title: J. Mater. Chem. doi: 10.1039/c2jm15609a – volume-title: Biogas to biomethane technology review, Task 3.1.1 year: 2012 ident: D1FD00005E/cit8 – volume: 132 start-page: 76 year: 2010 ident: D1FD00005E/cit87 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909263x – volume: 15 start-page: 382 year: 2019 ident: D1FD00005E/cit75 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00669 – volume: 45 start-page: 5107 year: 2016 ident: D1FD00005E/cit44 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00362A – volume: 234 start-page: 116101 year: 2020 ident: D1FD00005E/cit94 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116101 – volume: 160 start-page: 115 year: 1999 ident: D1FD00005E/cit82 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00073-3 – volume: 32 start-page: 1375 year: 2007 ident: D1FD00005E/cit2 publication-title: Energy doi: 10.1016/j.energy.2006.10.018 – volume: 42 start-page: 81 year: 2016 ident: D1FD00005E/cit46 publication-title: Mol. Simul. doi: 10.1080/08927022.2015.1010082 – volume: 114 start-page: 10024 year: 1992 ident: D1FD00005E/cit57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 4 start-page: 529 year: 2016 ident: D1FD00005E/cit50 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06472D – volume: 47 start-page: 11535 year: 2008 ident: D1FD00005E/cit77 publication-title: Inorg. Chem. doi: 10.1021/ic800008f – volume: 339 start-page: 303 year: 2013 ident: D1FD00005E/cit19 publication-title: Science doi: 10.1126/science.1228032 – volume: 5 start-page: 9849 year: 2012 ident: D1FD00005E/cit39 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23201d – volume: 29 start-page: 2618 year: 2017 ident: D1FD00005E/cit35 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00441 – volume: 30 start-page: 1704303 year: 2018 ident: D1FD00005E/cit21 publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 19 start-page: 375 year: 2013 ident: D1FD00005E/cit29 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2012.09.019 – volume: 131 start-page: 8775 year: 2009 ident: D1FD00005E/cit67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901587t – volume: 134 start-page: 4313 year: 2012 ident: D1FD00005E/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2108239 – volume: 43 start-page: 5735 year: 2014 ident: D1FD00005E/cit63 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00070F – volume: 15 start-page: 59 year: 1976 ident: D1FD00005E/cit51 publication-title: Ind. Eng. Chem. Fundam. doi: 10.1021/i160057a011 – volume: 116 start-page: 18899 year: 2012 ident: D1FD00005E/cit70 publication-title: J. Phys. Chem. C doi: 10.1021/jp3062527 – volume: 4 start-page: 2105 year: 2016 ident: D1FD00005E/cit37 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08984K – volume: 46 start-page: 3134 year: 2017 ident: D1FD00005E/cit25 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 3 start-page: 2506 year: 2012 ident: D1FD00005E/cit45 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3008485 – volume: 478 start-page: 130 year: 2015 ident: D1FD00005E/cit96 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.01.007 – volume: 101 start-page: 5480 year: 1997 ident: D1FD00005E/cit61 publication-title: J. Phys. Chem. B doi: 10.1021/jp9707495 – volume: 40 start-page: 537 year: 2014 ident: D1FD00005E/cit71 publication-title: Mol. Simul. doi: 10.1080/08927022.2013.829228 – volume: 47 start-page: 1676 year: 2001 ident: D1FD00005E/cit59 publication-title: AIChE J. doi: 10.1002/aic.690470719 – volume: 248 start-page: 127 year: 1881 ident: D1FD00005E/cit55 publication-title: Ann. Phys. doi: 10.1002/andp.18812480110 – volume: 379 start-page: 46 year: 2011 ident: D1FD00005E/cit91 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.05.041 – volume: 62 start-page: 165 year: 1991 ident: D1FD00005E/cit11 publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(91)80060-J – volume: 4 start-page: 15904 year: 2016 ident: D1FD00005E/cit42 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06262H – volume: 47 start-page: 4729 year: 2018 ident: D1FD00005E/cit26 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00885F – volume: 14 start-page: 699 year: 2014 ident: D1FD00005E/cit79 publication-title: Cryst. Growth Des. doi: 10.1021/cg401583v – volume: 117 start-page: 9674 year: 2017 ident: D1FD00005E/cit62 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00626 – volume: 156 start-page: 328 year: 2018 ident: D1FD00005E/cit7 publication-title: Energy doi: 10.1016/j.energy.2018.05.106 – volume: 30 start-page: 1705189 year: 2018 ident: D1FD00005E/cit23 publication-title: Adv. Mater. doi: 10.1002/adma.201705189 – volume: 112 start-page: 703 year: 2012 ident: D1FD00005E/cit64 publication-title: Chem. Rev. doi: 10.1021/cr200217c – volume: 144 start-page: 698 year: 2007 ident: D1FD00005E/cit3 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.098 – volume: 434 start-page: 60 year: 2018 ident: D1FD00005E/cit14 publication-title: Desalination doi: 10.1016/j.desal.2017.07.023 – volume: 6 start-page: 5836 year: 2018 ident: D1FD00005E/cit65 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01547C – volume: 95 start-page: 3358 year: 1991 ident: D1FD00005E/cit74 publication-title: J. Phys. Chem. doi: 10.1021/j100161a070 – volume: 12 start-page: 1156 year: 2000 ident: D1FD00005E/cit76 publication-title: Chem. Mater. doi: 10.1021/cm9907965 – volume-title: Pressure Swing Adsorption year: 1994 ident: D1FD00005E/cit6 – volume: 163 start-page: 169 year: 2012 ident: D1FD00005E/cit90 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.07.008 – volume: 112 start-page: 933 year: 2012 ident: D1FD00005E/cit27 publication-title: Chem. Rev. doi: 10.1021/cr200304e – volume: 572 start-page: 38 year: 2019 ident: D1FD00005E/cit17 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.10.049 – volume: 50 start-page: 12606 year: 2011 ident: D1FD00005E/cit41 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201885s – volume: 122 start-page: 17347 year: 2018 ident: D1FD00005E/cit48 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b05416 – volume: 6 start-page: 18898 year: 2018 ident: D1FD00005E/cit49 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04939D – volume: 124 start-page: 3 year: 2015 ident: D1FD00005E/cit18 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.10.007 – volume: 27 start-page: 322 year: 2019 ident: D1FD00005E/cit93 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2018.03.012 – volume: 24 start-page: 2829 year: 2012 ident: D1FD00005E/cit16 publication-title: Chem. Mater. doi: 10.1021/cm301435j – volume: 117 start-page: 1 year: 1995 ident: D1FD00005E/cit52 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 43 start-page: 6116 year: 2014 ident: D1FD00005E/cit28 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00159A – volume: 192 start-page: 18 year: 2014 ident: D1FD00005E/cit89 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.09.025 – volume: 130 start-page: 5412 year: 2008 ident: D1FD00005E/cit84 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801294f – volume: 17 start-page: 283 year: 2018 ident: D1FD00005E/cit30 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0013-1 – volume: 5 start-page: 8359 year: 2012 ident: D1FD00005E/cit92 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21996d – volume: 131 start-page: 1646 year: 2009 ident: D1FD00005E/cit86 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8074874 – volume: 120 start-page: 9665 year: 2004 ident: D1FD00005E/cit60 publication-title: J. Chem. Phys. doi: 10.1063/1.1683075 – volume: 48 start-page: 5130 year: 2012 ident: D1FD00005E/cit88 publication-title: Chem. Commun. doi: 10.1039/c2cc31821k – volume: 81 start-page: 31 year: 2011 ident: D1FD00005E/cit33 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.06.037 – volume-title: Understanding Molecular Simulation year: 2002 ident: D1FD00005E/cit47 – volume: 64 start-page: 4089 year: 2018 ident: D1FD00005E/cit72 publication-title: AIChE J. doi: 10.1002/aic.16376 – volume: 38 start-page: 5276 year: 2014 ident: D1FD00005E/cit85 publication-title: New J. Chem. doi: 10.1039/C4NJ01405G – volume: 360 start-page: 323 year: 2010 ident: D1FD00005E/cit53 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.05.032 – volume: 24 start-page: 2781 year: 2012 ident: D1FD00005E/cit81 publication-title: Chem. Mater. doi: 10.1021/cm301242d – volume: 51 start-page: 2179 year: 2012 ident: D1FD00005E/cit10 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202038m – volume: 320 start-page: 390 year: 2008 ident: D1FD00005E/cit12 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.04.030 |
SSID | ssj0006364 |
Score | 2.4343348 |
Snippet | Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of... |
SourceID | unpaywall proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 235 |
SubjectTerms | Adsorption Alternative energy sources Biofuels Biogas Carbon Dioxide Chemical properties Dilution Gas mixtures Gas separation High-Throughput Screening Assays Hydrogen sulfide Hydrophobicity Mathematical analysis Membranes Metal-Organic Frameworks Methane Molecular dynamics Screening Selectivity Structural analysis Upgrading |
Title | A high-throughput screening of metal-organic framework based membranes for biogas upgrading |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34517410 https://www.proquest.com/docview/2582059865 https://www.proquest.com/docview/2572531194 https://pubs.rsc.org/en/content/articlepdf/2021/fd/d1fd00005e |
UnpaywallVersion | publishedVersion |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1364-5498 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006364 issn: 1359-6640 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcigceBcMpTKiFw5OvOv12nuM2kQFQcWhkcoBWd5XhUgdK7GF4MR_4B_yS5j1q4VyQFy9Y3k8s_PSzn4DcCBViq5XksCo3AQsoRZtTnOseXLJuKQ0te6i8LsTfrxkb87is643x92FQSa2k822hQg2WL47jKaimnZyLLV15TqZWj3VxGrnbmNzE8bcnS-NYLw8eT_70BRZsQg4by9ERpwFWAelPTxpJK68_HtAupZlYsxBdm7DTl2U-dcv-Wp1Jf4s7rZDVhvOm7aTz5O6khP17Q9Qx__-tXtwp8tM_VlLdx9umOIB7Bz2A-EewseZ78CNg260T1lXPvocrIMx-vlr618YTOR_fv_RDopSvu37vnwXKjWuX2Bpjq7Vx0TZl5_W5_nWr8vzTdPG_wiWi_np4XHQTWcIVJREVcCEJDx39k-40ZzFmqapkiG1THBDleFhpHPFqTuJzZNEKCJtTDXmBAkRsYp2YVSsC_PEtVfZSApik0Qyl9CkoVBCSRnmVDNqUw9e9SrKVAdd7iZorLLmCD0S2RFZHDUCm3vwcqAtW8COv1Lt9ZrOOqPdZjTGdMjh1ccevBiWUcjuDAXFs64dTULRbRHBPHjc7pDhMxFzsN8k9GAX1Tw8vlSmBwfDLrrG3CXZ038jewa33H5xgZTEezCqNrV5jhlSJfdhPJufvn6739nDL5roD_U |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygceBcCBRnRC4fsxo7jxMdV21WFRMWBlcoBRfGrQmyz0W4iBCf-A_-QX8JMXi2UA-IaT5TJjOclj78h5ECbDFyvZqEzhQtFyj3YnJVQ8xRaSM155vGi8NtTebIUb86Ss743B-_CABPb6WbbQQQ7KN8Ro6msZ70cK-uxXGczb2eWeYvuNnE3yY7E86UJ2Vmevpt_aIusRIVSdhciYylCqIOyAZ40Vlde_j0gXcsyIeYAO7fJblNWxdcvxWp1Jf4s7nZDVlvO27aTz9Om1lPz7Q9Qx__-tXvkTp-Z0nlHd5_ccOUDsns4DIR7SD7OKYIbh_1on6qpKfgcqIMh-tG1pxcOEvmf3390g6IM9UPfF8VQaWH9AkpzcK0UEmWqP63Piy1tqvNN28b_iCwXx-8PT8J-OkNo4jSuQ6E0kwXaP5POSpFYnmVGR9wLJR03TkaxLYzkeBJbpKkyTPuEW8gJUqYSE--RSbku3RNsr_KxVsynqRaY0GSRMspoHRXcCu6zgLweVJSbHrocJ2is8vYIPVb5EVsctQI7DsirkbbqADv-SrU_aDrvjXab8wTSIcSrTwLyclwGIeMZCohn3SBNysFtMSUC8rjbIeNnYoGw3ywKyB6oeXx8qcyAHIy76Bpzl2RP_43sGbmF-wUDKUv2yaTeNO45ZEi1ftHbwS8jfw5j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-throughput+screening+of+metal-organic+framework+based+membranes+for+biogas+upgrading&rft.jtitle=Faraday+discussions&rft.au=Glover%2C+Joseph&rft.au=Besley%2C+Elena&rft.date=2021-10-15&rft.issn=1364-5498&rft.eissn=1364-5498&rft.volume=231&rft.spage=235&rft_id=info:doi/10.1039%2Fd1fd00005e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6640&client=summon |