A high-throughput screening of metal-organic framework based membranes for biogas upgrading

Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for...

Full description

Saved in:
Bibliographic Details
Published inFaraday discussions Vol. 231; pp. 235 - 257
Main Authors Glover, Joseph, Besley, Elena
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 15.10.2021
Subjects
Online AccessGet full text
ISSN1359-6640
1364-5498
1364-5498
DOI10.1039/d1fd00005e

Cover

Abstract Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO 2 , CH 4 and H 2 S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO 2 /CH 4 and H 2 S/CH 4 mixtures. The Henry constant for the adsorption of H 2 O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H 2 O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. High-throughput computational screening methodology designed to identify the most promising porous metal-organic frameworks for biogas upgrading.
AbstractList Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal–organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO 2 , CH 4 and H 2 S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO 2 /CH 4 and H 2 S/CH 4 mixtures. The Henry constant for the adsorption of H 2 O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H 2 O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO 2 , CH 4 and H 2 S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO 2 /CH 4 and H 2 S/CH 4 mixtures. The Henry constant for the adsorption of H 2 O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H 2 O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading. High-throughput computational screening methodology designed to identify the most promising porous metal-organic frameworks for biogas upgrading.
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal–organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO , CH and H S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO /CH and H S/CH mixtures. The Henry constant for the adsorption of H O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.
Author Glover, Joseph
Besley, Elena
AuthorAffiliation School of Chemistry
University of Nottingham
AuthorAffiliation_xml – name: University of Nottingham
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Joseph
  surname: Glover
  fullname: Glover, Joseph
– sequence: 2
  givenname: Elena
  surname: Besley
  fullname: Besley, Elena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34517410$$D View this record in MEDLINE/PubMed
BookMark eNpt0LtPxiAQAHBiNL4Xdw2Ji9FUgQIto_GdmLjo5NBQoP3QFiq0Mf73op-vqCyQ3O-Ou1sDi847A8AWRocY5eJI40ajdJhZAKs45zRjVJSLb28mMs4pWgFrMT4kwlN0GazklOGCYrQK7o_hzLazbJwFP7WzYRphVMEYZ10LfQN7M8ou86GVzirYBNmbZx8eYS2j0Sna10E6E2HjA6ytb2WE09AGqVP-BlhqZBfN5se9Du7Oz25PLrPrm4urk-PrTOVFPmZU1JhLWpYIc6M5ZZqUpaoRaajghijDUa6l4oSyksqiEArXDSOaUFJgwVS-Dg7mdSc3yJdn2XXVEGwvw0uFUfW2oup7RUnvzfUQ_NNk4lj1NirTdWkOP8WKsIKwHGNBE939RR_8FFyaJamSICZKzpLa-VBT3Rv99ffnkhPYnwMVfIzBNH_aO8Xnp-_tnSWMfmFlRzla78Ygbfd_yvY8JUT1VfrHxK_kBaRG
CitedBy_id crossref_primary_10_1002_adfm_202207197
crossref_primary_10_1021_acs_iecr_4c00855
crossref_primary_10_1021_acs_jpcc_2c02237
crossref_primary_10_1016_j_cej_2023_147302
crossref_primary_10_3390_membranes12070700
crossref_primary_10_1134_S0036024424702601
crossref_primary_10_1021_acs_chemmater_3c01940
crossref_primary_10_1016_j_seppur_2022_121463
crossref_primary_10_1088_2053_1591_ad0c07
crossref_primary_10_1038_s42004_024_01166_7
crossref_primary_10_1002_mame_202300225
crossref_primary_10_1039_D1MA00026H
crossref_primary_10_1016_j_cej_2024_150097
crossref_primary_10_1016_j_seppur_2025_131646
crossref_primary_10_1021_acs_energyfuels_4c03493
crossref_primary_10_1016_j_jcou_2022_102077
crossref_primary_10_1021_acs_jctc_4c01478
crossref_primary_10_1016_j_ccst_2021_100026
Cites_doi 10.1016/j.biombioe.2011.02.033
10.1016/j.seppur.2015.08.020
10.1021/acs.jpcc.6b07493
10.1016/j.seppur.2019.05.035
10.1021/cg900504m
10.1021/acs.chemrev.7b00095
10.1016/j.jssc.2009.07.019
10.1016/j.ces.2014.08.003
10.1039/B817050A
10.1016/j.seppur.2017.07.051
10.1039/c3ta00927k
10.1021/la302223m
10.1021/acsami.8b12746
10.1039/C5CS00292C
10.1002/andp.19213690304
10.1021/jp972543+
10.1039/C8CS00829A
10.1002/ejic.201600190
10.1016/j.seppur.2016.09.036
10.1039/C5RA00666J
10.1016/j.ccr.2019.02.032
10.1021/ja910492d
10.1021/acssuschemeng.8b05832
10.1039/c2jm15609a
10.1021/ja909263x
10.1021/acs.jctc.8b00669
10.1039/C6CS00362A
10.1016/j.seppur.2019.116101
10.1016/S0376-7388(99)00073-3
10.1016/j.energy.2006.10.018
10.1080/08927022.2015.1010082
10.1021/ja00051a040
10.1039/C5TA06472D
10.1021/ic800008f
10.1126/science.1228032
10.1039/c2ee23201d
10.1021/acs.chemmater.7b00441
10.1002/adma.201704303
10.1016/j.jiec.2012.09.019
10.1021/ja901587t
10.1021/ja2108239
10.1039/C4CS00070F
10.1021/i160057a011
10.1021/jp3062527
10.1039/C5TA08984K
10.1039/C7CS00033B
10.1021/jz3008485
10.1016/j.memsci.2015.01.007
10.1021/jp9707495
10.1080/08927022.2013.829228
10.1002/aic.690470719
10.1002/andp.18812480110
10.1016/j.memsci.2011.05.041
10.1016/0376-7388(91)80060-J
10.1039/C6TA06262H
10.1039/C7CS00885F
10.1021/cg401583v
10.1021/acs.chemrev.6b00626
10.1016/j.energy.2018.05.106
10.1002/adma.201705189
10.1021/cr200217c
10.1016/j.jhazmat.2007.01.098
10.1016/j.desal.2017.07.023
10.1039/C8TA01547C
10.1021/j100161a070
10.1021/cm9907965
10.1016/j.micromeso.2012.07.008
10.1021/cr200304e
10.1016/j.memsci.2018.10.049
10.1021/ie201885s
10.1021/acs.jpcc.8b05416
10.1039/C8TA04939D
10.1016/j.ces.2014.10.007
10.1016/j.cjche.2018.03.012
10.1021/cm301435j
10.1006/jcph.1995.1039
10.1039/C4CS00159A
10.1016/j.micromeso.2013.09.025
10.1021/ja801294f
10.1038/s41563-017-0013-1
10.1039/c2ee21996d
10.1021/ja8074874
10.1063/1.1683075
10.1039/c2cc31821k
10.1016/j.seppur.2011.06.037
10.1002/aic.16376
10.1039/C4NJ01405G
10.1016/j.memsci.2010.05.032
10.1021/cm301242d
10.1021/ie202038m
10.1016/j.memsci.2008.04.030
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ADTOC
UNPAY
DOI 10.1039/d1fd00005e
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5498
EndPage 257
ExternalDocumentID 10.1039/d1fd00005e
34517410
10_1039_D1FD00005E
d1fd00005e
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
0-7
0R
1TJ
29H
4.4
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GNO
HZ
H~N
IDZ
J3I
JG
N9A
O9-
OK1
P2P
R7B
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SLH
TN5
UPT
VH6
WH7
X
---
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
-JG
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
.-4
.GJ
0UZ
3EH
53G
6TJ
71~
ACHDF
ACRPL
ADNMO
ADTOC
ADXHL
AETEA
AFFNX
AGQPQ
AHGXI
AI.
ALSGL
ANBJS
ANLMG
AQHUZ
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
EEHRC
FEDTE
HF~
HVGLF
IDY
J3G
J3H
L-8
M4U
MVM
NDZJH
OHT
RCLXC
RNS
ROL
RRXOS
UMF
UNPAY
UQL
VH1
WHG
XJT
XOL
ZCG
ZXP
ID FETCH-LOGICAL-c373t-49b16a488016ed645d288cb02f496e2ce603dac624584a779c1bf52d2427195c3
IEDL.DBID UNPAY
ISSN 1359-6640
1364-5498
IngestDate Tue Aug 19 15:18:57 EDT 2025
Wed Oct 01 14:51:47 EDT 2025
Sun Jun 29 15:29:38 EDT 2025
Wed Feb 19 02:27:42 EST 2025
Tue Jul 01 01:50:51 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Sat Jan 08 11:09:41 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-49b16a488016ed645d288cb02f496e2ce603dac624584a779c1bf52d2427195c3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1fd00005e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5281-6664
0000-0002-9910-7603
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2021/fd/d1fd00005e
PMID 34517410
PQID 2582059865
PQPubID 2047504
PageCount 23
ParticipantIDs crossref_primary_10_1039_D1FD00005E
rsc_primary_d1fd00005e
proquest_miscellaneous_2572531194
pubmed_primary_34517410
proquest_journals_2582059865
unpaywall_primary_10_1039_d1fd00005e
crossref_citationtrail_10_1039_D1FD00005E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Faraday discussions
PublicationTitleAlternate Faraday Discuss
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Goh (D1FD00005E/cit14) 2018; 434
Qiu (D1FD00005E/cit28) 2014; 43
Zhao (D1FD00005E/cit23) 2018; 30
Robeson (D1FD00005E/cit12) 2008; 320
Stock (D1FD00005E/cit27) 2012; 112
Liu (D1FD00005E/cit30) 2018; 17
Mowat (D1FD00005E/cit78) 2009; 182
Shah (D1FD00005E/cit69) 2017; 117
Carta (D1FD00005E/cit19) 2013; 339
Horn (D1FD00005E/cit60) 2004; 120
Avci (D1FD00005E/cit66) 2018; 10
Lorentz (D1FD00005E/cit55) 1881; 248
Wang (D1FD00005E/cit26) 2018; 47
Qiao (D1FD00005E/cit37) 2016; 4
Plimpton (D1FD00005E/cit52) 1995; 117
Getman (D1FD00005E/cit64) 2012; 112
Gascon (D1FD00005E/cit16) 2012; 24
Colón (D1FD00005E/cit63) 2014; 43
Habib (D1FD00005E/cit94) 2020; 234
Moghadam (D1FD00005E/cit35) 2017; 29
Lee (D1FD00005E/cit90) 2012; 163
Potoff (D1FD00005E/cit59) 2001; 47
Basu (D1FD00005E/cit33) 2011; 81
Dong (D1FD00005E/cit76) 2000; 12
Frenkel (D1FD00005E/cit47) 2002
Yang (D1FD00005E/cit68) 2012; 22
Song (D1FD00005E/cit92) 2012; 5
Xie (D1FD00005E/cit17) 2019; 572
Sánchez-Laínez (D1FD00005E/cit95) 2019; 224
Rasi (D1FD00005E/cit2) 2007; 32
Gosh (D1FD00005E/cit4) 2007
Dong (D1FD00005E/cit34) 2013; 1
Wu (D1FD00005E/cit36) 2012; 28
Rojas (D1FD00005E/cit24) 2019; 388
Martin (D1FD00005E/cit58) 1998; 102
Khdhayyer (D1FD00005E/cit32) 2017; 173
Rappe (D1FD00005E/cit57) 1992; 114
Ruthven (D1FD00005E/cit6) 1994
Li (D1FD00005E/cit38) 2014; 120
Vougo-Zanda (D1FD00005E/cit77) 2008; 47
University of Vienna (D1FD00005E/cit8) 2012
Yousef (D1FD00005E/cit7) 2018; 156
Ding (D1FD00005E/cit22) 2019; 48
Chen (D1FD00005E/cit1) 2015; 5
Tanh Jeazet (D1FD00005E/cit31) 2016
Rangnekar (D1FD00005E/cit15) 2015; 44
Park (D1FD00005E/cit79) 2014; 14
Shah (D1FD00005E/cit10) 2012; 51
Zhang (D1FD00005E/cit72) 2018; 64
Carreon (D1FD00005E/cit84) 2008; 130
Bohrman (D1FD00005E/cit88) 2012; 48
Huang (D1FD00005E/cit89) 2014; 192
Venna (D1FD00005E/cit18) 2015; 124
Wang (D1FD00005E/cit44) 2016; 45
Guo (D1FD00005E/cit86) 2009; 131
Fischer (D1FD00005E/cit71) 2014; 40
Ongari (D1FD00005E/cit75) 2019; 15
Poshusta (D1FD00005E/cit82) 1999; 160
Harasimowicz (D1FD00005E/cit3) 2007; 144
Guo (D1FD00005E/cit96) 2015; 478
Moghadam (D1FD00005E/cit50) 2016; 4
Erucar (D1FD00005E/cit41) 2011; 50
Hamon (D1FD00005E/cit67) 2009; 131
Chen (D1FD00005E/cit70) 2012; 116
Altintas (D1FD00005E/cit43) 2019; 7
Qiao (D1FD00005E/cit42) 2016; 4
Dubbeldam (D1FD00005E/cit46) 2016; 42
Shi (D1FD00005E/cit85) 2014; 38
Basu (D1FD00005E/cit9) 2010; 39
Altintas (D1FD00005E/cit65) 2018; 6
Haldoupis (D1FD00005E/cit40) 2012; 134
Ryckebosch (D1FD00005E/cit5) 2011; 35
Peng (D1FD00005E/cit51) 1976; 15
Vinoba (D1FD00005E/cit20) 2017; 188
Rogge (D1FD00005E/cit25) 2017; 46
Adatoz (D1FD00005E/cit13) 2015; 152
Aijaz (D1FD00005E/cit80) 2009; 9
Liu (D1FD00005E/cit91) 2011; 379
Rappe (D1FD00005E/cit74) 1991; 95
Ewald (D1FD00005E/cit54) 1921; 369
Kristóf (D1FD00005E/cit61) 1997; 101
Berthelot (D1FD00005E/cit56) 1898; 126
Yuan (D1FD00005E/cit21) 2018; 30
Robeson (D1FD00005E/cit11) 1991; 62
Takamizawa (D1FD00005E/cit83) 2010; 132
Daglar (D1FD00005E/cit48) 2018; 122
Wilmer (D1FD00005E/cit39) 2012; 5
Wilmer (D1FD00005E/cit45) 2012; 3
Qiao (D1FD00005E/cit49) 2018; 6
El Osta (D1FD00005E/cit81) 2012; 24
Kulkarni (D1FD00005E/cit73) 2016; 120
Venna (D1FD00005E/cit87) 2010; 132
Sodeifian (D1FD00005E/cit93) 2019; 27
Yu (D1FD00005E/cit62) 2017; 117
Bastani (D1FD00005E/cit29) 2013; 19
Krishna (D1FD00005E/cit53) 2010; 360
References_xml – issn: 2002
  publication-title: Understanding Molecular Simulation
  doi: Frenkel Smit
– issn: 2012
  publication-title: Biogas to biomethane technology review, Task 3.1.1
  doi: University of Vienna
– issn: 2007
  volume-title: Wet H S cracking problem in oil refinery processes - Material selection and operation control issues
  publication-title: Tri-Service Corrosion Conference
  doi: Gosh
– issn: 1994
  publication-title: Pressure Swing Adsorption
  doi: Ruthven Farooq Knaebel
– volume: 35
  start-page: 1633
  year: 2011
  ident: D1FD00005E/cit5
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.02.033
– volume: 152
  start-page: 207
  year: 2015
  ident: D1FD00005E/cit13
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.08.020
– volume: 120
  start-page: 23044
  year: 2016
  ident: D1FD00005E/cit73
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07493
– volume: 224
  start-page: 456
  year: 2019
  ident: D1FD00005E/cit95
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.05.035
– volume: 9
  start-page: 4480
  year: 2009
  ident: D1FD00005E/cit80
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg900504m
– volume: 117
  start-page: 9755
  year: 2017
  ident: D1FD00005E/cit69
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00095
– volume: 182
  start-page: 2769
  year: 2009
  ident: D1FD00005E/cit78
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2009.07.019
– volume: 120
  start-page: 59
  year: 2014
  ident: D1FD00005E/cit38
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.08.003
– volume-title: Tri-Service Corrosion Conference
  year: 2007
  ident: D1FD00005E/cit4
– volume: 39
  start-page: 750
  year: 2010
  ident: D1FD00005E/cit9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B817050A
– volume: 188
  start-page: 431
  year: 2017
  ident: D1FD00005E/cit20
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.07.051
– volume: 1
  start-page: 4610
  year: 2013
  ident: D1FD00005E/cit34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta00927k
– volume: 28
  start-page: 12094
  year: 2012
  ident: D1FD00005E/cit36
  publication-title: Langmuir
  doi: 10.1021/la302223m
– volume: 10
  start-page: 33693
  year: 2018
  ident: D1FD00005E/cit66
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12746
– volume: 126
  start-page: 1703
  year: 1898
  ident: D1FD00005E/cit56
  publication-title: C. R. Hebd. Seances Acad. Sci.
– volume: 44
  start-page: 7128
  year: 2015
  ident: D1FD00005E/cit15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00292C
– volume: 369
  start-page: 253
  year: 1921
  ident: D1FD00005E/cit54
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19213690304
– volume: 102
  start-page: 2569
  year: 1998
  ident: D1FD00005E/cit58
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp972543+
– volume: 48
  start-page: 2783
  year: 2019
  ident: D1FD00005E/cit22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00829A
– start-page: 4363
  year: 2016
  ident: D1FD00005E/cit31
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600190
– volume: 173
  start-page: 304
  year: 2017
  ident: D1FD00005E/cit32
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.09.036
– volume: 5
  start-page: 24399
  year: 2015
  ident: D1FD00005E/cit1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA00666J
– volume: 388
  start-page: 202
  year: 2019
  ident: D1FD00005E/cit24
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.032
– volume: 132
  start-page: 2862
  year: 2010
  ident: D1FD00005E/cit83
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910492d
– volume: 7
  start-page: 2739
  year: 2019
  ident: D1FD00005E/cit43
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05832
– volume: 22
  start-page: 10210
  year: 2012
  ident: D1FD00005E/cit68
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15609a
– volume-title: Biogas to biomethane technology review, Task 3.1.1
  year: 2012
  ident: D1FD00005E/cit8
– volume: 132
  start-page: 76
  year: 2010
  ident: D1FD00005E/cit87
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909263x
– volume: 15
  start-page: 382
  year: 2019
  ident: D1FD00005E/cit75
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00669
– volume: 45
  start-page: 5107
  year: 2016
  ident: D1FD00005E/cit44
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00362A
– volume: 234
  start-page: 116101
  year: 2020
  ident: D1FD00005E/cit94
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116101
– volume: 160
  start-page: 115
  year: 1999
  ident: D1FD00005E/cit82
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(99)00073-3
– volume: 32
  start-page: 1375
  year: 2007
  ident: D1FD00005E/cit2
  publication-title: Energy
  doi: 10.1016/j.energy.2006.10.018
– volume: 42
  start-page: 81
  year: 2016
  ident: D1FD00005E/cit46
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2015.1010082
– volume: 114
  start-page: 10024
  year: 1992
  ident: D1FD00005E/cit57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 4
  start-page: 529
  year: 2016
  ident: D1FD00005E/cit50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06472D
– volume: 47
  start-page: 11535
  year: 2008
  ident: D1FD00005E/cit77
  publication-title: Inorg. Chem.
  doi: 10.1021/ic800008f
– volume: 339
  start-page: 303
  year: 2013
  ident: D1FD00005E/cit19
  publication-title: Science
  doi: 10.1126/science.1228032
– volume: 5
  start-page: 9849
  year: 2012
  ident: D1FD00005E/cit39
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23201d
– volume: 29
  start-page: 2618
  year: 2017
  ident: D1FD00005E/cit35
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00441
– volume: 30
  start-page: 1704303
  year: 2018
  ident: D1FD00005E/cit21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 19
  start-page: 375
  year: 2013
  ident: D1FD00005E/cit29
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2012.09.019
– volume: 131
  start-page: 8775
  year: 2009
  ident: D1FD00005E/cit67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901587t
– volume: 134
  start-page: 4313
  year: 2012
  ident: D1FD00005E/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2108239
– volume: 43
  start-page: 5735
  year: 2014
  ident: D1FD00005E/cit63
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00070F
– volume: 15
  start-page: 59
  year: 1976
  ident: D1FD00005E/cit51
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160057a011
– volume: 116
  start-page: 18899
  year: 2012
  ident: D1FD00005E/cit70
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3062527
– volume: 4
  start-page: 2105
  year: 2016
  ident: D1FD00005E/cit37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08984K
– volume: 46
  start-page: 3134
  year: 2017
  ident: D1FD00005E/cit25
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 3
  start-page: 2506
  year: 2012
  ident: D1FD00005E/cit45
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3008485
– volume: 478
  start-page: 130
  year: 2015
  ident: D1FD00005E/cit96
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.01.007
– volume: 101
  start-page: 5480
  year: 1997
  ident: D1FD00005E/cit61
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9707495
– volume: 40
  start-page: 537
  year: 2014
  ident: D1FD00005E/cit71
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2013.829228
– volume: 47
  start-page: 1676
  year: 2001
  ident: D1FD00005E/cit59
  publication-title: AIChE J.
  doi: 10.1002/aic.690470719
– volume: 248
  start-page: 127
  year: 1881
  ident: D1FD00005E/cit55
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18812480110
– volume: 379
  start-page: 46
  year: 2011
  ident: D1FD00005E/cit91
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.05.041
– volume: 62
  start-page: 165
  year: 1991
  ident: D1FD00005E/cit11
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(91)80060-J
– volume: 4
  start-page: 15904
  year: 2016
  ident: D1FD00005E/cit42
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06262H
– volume: 47
  start-page: 4729
  year: 2018
  ident: D1FD00005E/cit26
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00885F
– volume: 14
  start-page: 699
  year: 2014
  ident: D1FD00005E/cit79
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg401583v
– volume: 117
  start-page: 9674
  year: 2017
  ident: D1FD00005E/cit62
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00626
– volume: 156
  start-page: 328
  year: 2018
  ident: D1FD00005E/cit7
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.106
– volume: 30
  start-page: 1705189
  year: 2018
  ident: D1FD00005E/cit23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705189
– volume: 112
  start-page: 703
  year: 2012
  ident: D1FD00005E/cit64
  publication-title: Chem. Rev.
  doi: 10.1021/cr200217c
– volume: 144
  start-page: 698
  year: 2007
  ident: D1FD00005E/cit3
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.01.098
– volume: 434
  start-page: 60
  year: 2018
  ident: D1FD00005E/cit14
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.07.023
– volume: 6
  start-page: 5836
  year: 2018
  ident: D1FD00005E/cit65
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01547C
– volume: 95
  start-page: 3358
  year: 1991
  ident: D1FD00005E/cit74
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100161a070
– volume: 12
  start-page: 1156
  year: 2000
  ident: D1FD00005E/cit76
  publication-title: Chem. Mater.
  doi: 10.1021/cm9907965
– volume-title: Pressure Swing Adsorption
  year: 1994
  ident: D1FD00005E/cit6
– volume: 163
  start-page: 169
  year: 2012
  ident: D1FD00005E/cit90
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.07.008
– volume: 112
  start-page: 933
  year: 2012
  ident: D1FD00005E/cit27
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 572
  start-page: 38
  year: 2019
  ident: D1FD00005E/cit17
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.10.049
– volume: 50
  start-page: 12606
  year: 2011
  ident: D1FD00005E/cit41
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201885s
– volume: 122
  start-page: 17347
  year: 2018
  ident: D1FD00005E/cit48
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b05416
– volume: 6
  start-page: 18898
  year: 2018
  ident: D1FD00005E/cit49
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04939D
– volume: 124
  start-page: 3
  year: 2015
  ident: D1FD00005E/cit18
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.10.007
– volume: 27
  start-page: 322
  year: 2019
  ident: D1FD00005E/cit93
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2018.03.012
– volume: 24
  start-page: 2829
  year: 2012
  ident: D1FD00005E/cit16
  publication-title: Chem. Mater.
  doi: 10.1021/cm301435j
– volume: 117
  start-page: 1
  year: 1995
  ident: D1FD00005E/cit52
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 43
  start-page: 6116
  year: 2014
  ident: D1FD00005E/cit28
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00159A
– volume: 192
  start-page: 18
  year: 2014
  ident: D1FD00005E/cit89
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.09.025
– volume: 130
  start-page: 5412
  year: 2008
  ident: D1FD00005E/cit84
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801294f
– volume: 17
  start-page: 283
  year: 2018
  ident: D1FD00005E/cit30
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0013-1
– volume: 5
  start-page: 8359
  year: 2012
  ident: D1FD00005E/cit92
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21996d
– volume: 131
  start-page: 1646
  year: 2009
  ident: D1FD00005E/cit86
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8074874
– volume: 120
  start-page: 9665
  year: 2004
  ident: D1FD00005E/cit60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1683075
– volume: 48
  start-page: 5130
  year: 2012
  ident: D1FD00005E/cit88
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31821k
– volume: 81
  start-page: 31
  year: 2011
  ident: D1FD00005E/cit33
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.06.037
– volume-title: Understanding Molecular Simulation
  year: 2002
  ident: D1FD00005E/cit47
– volume: 64
  start-page: 4089
  year: 2018
  ident: D1FD00005E/cit72
  publication-title: AIChE J.
  doi: 10.1002/aic.16376
– volume: 38
  start-page: 5276
  year: 2014
  ident: D1FD00005E/cit85
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01405G
– volume: 360
  start-page: 323
  year: 2010
  ident: D1FD00005E/cit53
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.05.032
– volume: 24
  start-page: 2781
  year: 2012
  ident: D1FD00005E/cit81
  publication-title: Chem. Mater.
  doi: 10.1021/cm301242d
– volume: 51
  start-page: 2179
  year: 2012
  ident: D1FD00005E/cit10
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202038m
– volume: 320
  start-page: 390
  year: 2008
  ident: D1FD00005E/cit12
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
SSID ssj0006364
Score 2.4343348
Snippet Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of...
SourceID unpaywall
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 235
SubjectTerms Adsorption
Alternative energy sources
Biofuels
Biogas
Carbon Dioxide
Chemical properties
Dilution
Gas mixtures
Gas separation
High-Throughput Screening Assays
Hydrogen sulfide
Hydrophobicity
Mathematical analysis
Membranes
Metal-Organic Frameworks
Methane
Molecular dynamics
Screening
Selectivity
Structural analysis
Upgrading
Title A high-throughput screening of metal-organic framework based membranes for biogas upgrading
URI https://www.ncbi.nlm.nih.gov/pubmed/34517410
https://www.proquest.com/docview/2582059865
https://www.proquest.com/docview/2572531194
https://pubs.rsc.org/en/content/articlepdf/2021/fd/d1fd00005e
UnpaywallVersion publishedVersion
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1364-5498
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006364
  issn: 1359-6640
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BcigceBcMpTKiFw5OvOv12nuM2kQFQcWhkcoBWd5XhUgdK7GF4MR_4B_yS5j1q4VyQFy9Y3k8s_PSzn4DcCBViq5XksCo3AQsoRZtTnOseXLJuKQ0te6i8LsTfrxkb87is643x92FQSa2k822hQg2WL47jKaimnZyLLV15TqZWj3VxGrnbmNzE8bcnS-NYLw8eT_70BRZsQg4by9ERpwFWAelPTxpJK68_HtAupZlYsxBdm7DTl2U-dcv-Wp1Jf4s7rZDVhvOm7aTz5O6khP17Q9Qx__-tXtwp8tM_VlLdx9umOIB7Bz2A-EewseZ78CNg260T1lXPvocrIMx-vlr618YTOR_fv_RDopSvu37vnwXKjWuX2Bpjq7Vx0TZl5_W5_nWr8vzTdPG_wiWi_np4XHQTWcIVJREVcCEJDx39k-40ZzFmqapkiG1THBDleFhpHPFqTuJzZNEKCJtTDXmBAkRsYp2YVSsC_PEtVfZSApik0Qyl9CkoVBCSRnmVDNqUw9e9SrKVAdd7iZorLLmCD0S2RFZHDUCm3vwcqAtW8COv1Lt9ZrOOqPdZjTGdMjh1ccevBiWUcjuDAXFs64dTULRbRHBPHjc7pDhMxFzsN8k9GAX1Tw8vlSmBwfDLrrG3CXZ038jewa33H5xgZTEezCqNrV5jhlSJfdhPJufvn6739nDL5roD_U
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgeygceBcCBRnRC4fsxo7jxMdV21WFRMWBlcoBRfGrQmyz0W4iBCf-A_-QX8JMXi2UA-IaT5TJjOclj78h5ECbDFyvZqEzhQtFyj3YnJVQ8xRaSM155vGi8NtTebIUb86Ss743B-_CABPb6WbbQQQ7KN8Ro6msZ70cK-uxXGczb2eWeYvuNnE3yY7E86UJ2Vmevpt_aIusRIVSdhciYylCqIOyAZ40Vlde_j0gXcsyIeYAO7fJblNWxdcvxWp1Jf4s7nZDVlvO27aTz9Om1lPz7Q9Qx__-tXvkTp-Z0nlHd5_ccOUDsns4DIR7SD7OKYIbh_1on6qpKfgcqIMh-tG1pxcOEvmf3390g6IM9UPfF8VQaWH9AkpzcK0UEmWqP63Piy1tqvNN28b_iCwXx-8PT8J-OkNo4jSuQ6E0kwXaP5POSpFYnmVGR9wLJR03TkaxLYzkeBJbpKkyTPuEW8gJUqYSE--RSbku3RNsr_KxVsynqRaY0GSRMspoHRXcCu6zgLweVJSbHrocJ2is8vYIPVb5EVsctQI7DsirkbbqADv-SrU_aDrvjXab8wTSIcSrTwLyclwGIeMZCohn3SBNysFtMSUC8rjbIeNnYoGw3ywKyB6oeXx8qcyAHIy76Bpzl2RP_43sGbmF-wUDKUv2yaTeNO45ZEi1ftHbwS8jfw5j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-throughput+screening+of+metal-organic+framework+based+membranes+for+biogas+upgrading&rft.jtitle=Faraday+discussions&rft.au=Glover%2C+Joseph&rft.au=Besley%2C+Elena&rft.date=2021-10-15&rft.issn=1364-5498&rft.eissn=1364-5498&rft.volume=231&rft.spage=235&rft_id=info:doi/10.1039%2Fd1fd00005e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6640&client=summon