Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator

[Display omitted] •A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in th...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 220; p. 113073
Main Authors Kolahan, Arman, Maadi, Seyed Reza, Kazemian, Arash, Schenone, Corrado, Ma, Tao
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.09.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2020.113073

Cover

Abstract [Display omitted] •A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in the systems is expressed. Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures.
AbstractList [Display omitted] •A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in the systems is expressed. Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures.
Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures.
Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al₂O₃/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures.
ArticleNumber 113073
Author Kazemian, Arash
Maadi, Seyed Reza
Ma, Tao
Kolahan, Arman
Schenone, Corrado
Author_xml – sequence: 1
  givenname: Arman
  orcidid: 0000-0001-8530-0704
  surname: Kolahan
  fullname: Kolahan, Arman
  organization: Department of Mechanical, Energetics, Management and Transport Engineering, University of Genova, via All’Opera Pia 15/A, 16145 Genova, Italy
– sequence: 2
  givenname: Seyed Reza
  surname: Maadi
  fullname: Maadi, Seyed Reza
  organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Arash
  surname: Kazemian
  fullname: Kazemian, Arash
  organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Corrado
  orcidid: 0000-0002-4078-1679
  surname: Schenone
  fullname: Schenone, Corrado
  organization: Department of Mechanical, Energetics, Management and Transport Engineering, University of Genova, via All’Opera Pia 15/A, 16145 Genova, Italy
– sequence: 5
  givenname: Tao
  orcidid: 0000-0003-3803-2748
  surname: Ma
  fullname: Ma, Tao
  email: tao.ma@connect.polyu.hk
  organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNqFkU9PHCEYh0ljk67bfoWGpBcvs_KvzJD0oNGqTUx6aHsmDLzjsmFgBUbjty-67cWLJxJ4fi9vfs8xOoopAkKfKdlQQuXpbgPRpjibuGGEtUvKSc_foRUdetUxxvojtCJUyW5QRHxAx6XsCCH8K5Er9PgLZt_xS1yzicVDrLj4eQmm-hRxmrDB0cQ0hcW7bjQF8H6banpIoRpvcd1Cnk3A5alUmLGPFe6yqeDwo6_bFn4BEgSwNTf-DiK095Q_oveTCQU-_TvX6M_V998XN93tz-sfF-e3neU9rx3v1aiU4UxSN1LJRg6uHwhXDtjALZXckUkpRoywVIzMTEJyAeCmYQSQjq_RyWHuPqf7BUrVsy8WQjAR0lI0E2pgQy_ab2v05RW6S0uObbtGCSV7KTht1LcDZXMqJcOkra8vbbUGfdCU6Gcreqf_W9HPVvTBSovLV_F99rPJT28Hzw5BaG09eMi62KbLgvO5latd8m-N-At3c69K
CitedBy_id crossref_primary_10_1093_ijlct_ctae277
crossref_primary_10_1016_j_solener_2020_10_011
crossref_primary_10_3390_sym14010036
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122232
crossref_primary_10_1016_j_enconman_2022_116432
crossref_primary_10_1016_j_rser_2022_112740
crossref_primary_10_1016_j_apenergy_2021_116859
crossref_primary_10_1016_j_apenergy_2023_122062
crossref_primary_10_1016_j_applthermaleng_2022_118594
crossref_primary_10_1016_j_rser_2021_111738
crossref_primary_10_3390_su15065424
crossref_primary_10_1016_j_enconman_2023_117591
crossref_primary_10_1016_j_apenergy_2022_120209
crossref_primary_10_1016_j_enconman_2024_118066
crossref_primary_10_1016_j_solener_2022_04_016
crossref_primary_10_1016_j_solener_2021_01_006
crossref_primary_10_1016_j_renene_2024_120573
crossref_primary_10_1016_j_seta_2022_102998
crossref_primary_10_1115_1_4066300
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125093
crossref_primary_10_1016_j_gloei_2023_10_005
crossref_primary_10_1016_j_enconman_2022_115555
crossref_primary_10_1016_j_enconman_2022_115790
crossref_primary_10_3390_en13226045
crossref_primary_10_1016_j_csite_2024_105300
crossref_primary_10_1016_j_jclepro_2020_125748
crossref_primary_10_1016_j_enconman_2024_118712
crossref_primary_10_1016_j_jtice_2021_01_032
crossref_primary_10_1016_j_rser_2021_110785
crossref_primary_10_1016_j_seta_2022_102105
crossref_primary_10_1016_j_apenergy_2025_125438
crossref_primary_10_1016_j_enganabound_2022_04_005
crossref_primary_10_1016_j_enconman_2021_113940
crossref_primary_10_1016_j_energy_2022_123777
crossref_primary_10_1177_0958305X221146947
crossref_primary_10_1016_j_renene_2022_04_153
crossref_primary_10_1016_j_energy_2023_129351
crossref_primary_10_3390_en18030546
crossref_primary_10_1016_j_tsep_2023_101909
crossref_primary_10_1016_j_enconman_2021_113968
crossref_primary_10_1016_j_applthermaleng_2024_123436
crossref_primary_10_1016_j_applthermaleng_2024_124608
crossref_primary_10_1016_j_jpowsour_2024_234151
crossref_primary_10_1016_j_solener_2023_112025
crossref_primary_10_1016_j_energy_2021_121190
crossref_primary_10_1016_j_rser_2023_113705
crossref_primary_10_1177_09544062211055651
crossref_primary_10_1016_j_energy_2024_132295
crossref_primary_10_1016_j_energy_2022_124515
crossref_primary_10_1016_j_scs_2021_103316
crossref_primary_10_1016_j_tsep_2022_101207
Cites_doi 10.1166/jctn.2012.2249
10.1016/j.energy.2018.06.089
10.1016/j.enconman.2019.112384
10.1016/j.enconman.2018.01.006
10.1016/j.nanoen.2017.05.023
10.1016/j.rser.2019.03.024
10.1016/j.applthermaleng.2016.12.104
10.1016/j.enconman.2017.08.039
10.1016/j.energy.2018.01.073
10.1016/j.energy.2017.07.046
10.1016/j.solener.2018.07.051
10.1016/j.jmat.2015.01.001
10.1016/j.apenergy.2016.11.087
10.1016/j.ijhydene.2015.09.023
10.1016/j.renene.2018.10.105
10.1016/j.enbuild.2012.09.032
10.1016/j.rser.2014.10.009
10.1016/j.renene.2016.07.004
10.1007/s11051-004-3170-5
10.1016/j.apenergy.2019.114380
10.1016/j.energy.2015.05.040
10.1109/ISIE.2012.6237058
10.1063/1.1700493
10.1016/j.solener.2015.04.038
10.1016/j.apenergy.2019.01.103
10.1016/j.enconman.2017.05.017
10.1016/j.solener.2019.01.088
10.1016/j.rser.2017.01.177
10.1016/j.enconman.2019.111781
10.1016/j.rser.2010.11.035
10.1016/j.enconman.2015.12.069
10.1016/j.enpol.2008.02.016
10.1016/j.rser.2017.08.013
10.1016/j.solener.2018.03.030
10.1016/j.solener.2006.08.014
10.1016/j.apenergy.2020.114581
10.1016/j.nanoen.2016.02.018
10.1615/JEnhHeatTransf.v15.i4.60
10.1016/j.enconman.2018.07.104
10.1039/C7EE02007D
10.1016/j.enconman.2017.02.070
10.1557/mrs2006.49
10.1016/j.enconman.2019.02.052
10.1155/2018/6978130
10.1016/j.enconman.2020.112479
10.1016/j.solener.2018.02.055
10.1016/j.rser.2018.04.067
10.1016/j.renene.2018.01.014
10.1016/j.enconman.2017.06.075
10.1016/j.rser.2018.04.061
10.1016/j.rser.2005.06.005
10.1016/j.rser.2017.03.127
10.1002/ep.12493
10.1016/j.energy.2018.07.069
10.1016/j.energy.2013.01.040
10.1016/j.energy.2014.01.102
10.1016/j.solener.2020.02.096
10.1016/j.apenergy.2010.02.013
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Sep 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Sep 15, 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2020.113073
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2020_113073
S0196890420306178
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-379b99a3261db162b3ed78039de283c163d0f9920a4c14b2af4634eedf8bee6d3
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sat Sep 27 20:38:48 EDT 2025
Wed Aug 13 09:31:01 EDT 2025
Thu Oct 09 00:38:50 EDT 2025
Thu Apr 24 23:16:12 EDT 2025
Fri Feb 23 02:45:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parametric analysis
Thermoelectric generators (TEGs)
Photovoltaic thermal system (PVT)
Energy and exergy analysis
Aluminum-oxide/water (Al2O3/water) nanofluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-379b99a3261db162b3ed78039de283c163d0f9920a4c14b2af4634eedf8bee6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3803-2748
0000-0002-4078-1679
0000-0001-8530-0704
PQID 2449676431
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2498287437
proquest_journals_2449676431
crossref_citationtrail_10_1016_j_enconman_2020_113073
crossref_primary_10_1016_j_enconman_2020_113073
elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113073
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Koo, Kleinstreuer (b0265) 2005; 6
Qiu, Zhao, Li, Zhang, Ali (b0220) 2015; 87
Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0085) 2018; 173
Zhou, Yang, Jiang, Li, Luo, Hou (b0165) 2016; 22
Kazemian, Taheri, Sardarabadi, Ma, Passandideh-Fard, Peng (b0090) 2020; 201
Yang, Caillat (b0240) 2011; 31
Siddique, Mahmud, Van Heyst (b0115) 2017; 73
Abdallah, Saidani-Scott, Abdellatif (b0250) 2019; 181
Yazdanifard, Ebrahimnia-Bajestan, Ameri (b0045) 2017; 148
A. Kolahan, S. Maadi, M. Passandideh Fard, M. Sardarabadi. Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. 17th Conference On Fluid Dynamics, fd20172017.
Joshi, Dhoble (b0080) 2018; 92
Lu, Yao (b0200) 2007; 81
Nazri, Fudholi, Mustafa, Yen, Mohammad, Ruslan (b0180) 2019; 111
Moradgholi, Nowee, Farzaneh (b0015) 2018; 164
Shoeibi, Rahbar, Esfahlani, Kargarsharifabad (b0135) 2020; 263
Makki, Omer, Su, Sabir (b0150) 2016; 112
Hasani, Rahbar (b0140) 2015; 40
Dimri, Tiwari, Tiwari (b0175) 2018; 166
Kil, Kim, Jeong, Geum, Lee, Jung (b0155) 2017; 37
Zhang, Zhao (b0235) 2015; 1
Moghaddami, Shahidi, Siavashi (b0270) 2012; 9
Hosseinzadeh, Mohammad, M. Sardarabadi, a.M. Passandideh-Fard. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. (2018).
Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy. 121 (2018) S0960148118300144.
Abdolzadeh, Zarei (b0195) 2017; 36
Dimri, Tiwari, Tiwari (b0170) 2017; 146
Maadi, Khatibi, Ebrahimnia-Bajestan, Wood (b0290) 2019; 198
Kane, Verma (b0035) 2013; 3
Ali, Teixeira, Addali (b0095) 2018; 2018
Ni L-x, Sun K, Wu H-f, Chen Z, Xing Y. A high efficiency step-up DC-DC converter for thermoelectric generator with wide input voltage range. 2012 IEEE International Symposium on Industrial Electronics. IEEE 2012. pp. 52–7.
Drew, Passman (b0255) 2006
Yazdanifard, Ebrahimnia-Bajestan, Ameri (b0295) 2016
Sardarabadi, Hosseinzadeh, Kazemian, Passandideh-Fard (b0020) 2017; 138
Seng, Lalchand, Lin (b0330) 2008; 36
Raisee, Moghaddami (b0275) 2008; 15
Khanjari, Kasaeian, Pourfayaz (b0060) 2017; 115
Bergman, Incropera, DeWitt, Lavine (b0225) 2011
Sardarabadi, Passandideh-Fard, Zeinali (b0300) 2014; 66
Maadi, Kolahan, Passandideh-Fard, Sardarabadi, Moloudi (b0190) 2017; 150
White (b0285) 2011
Sahay, Sethi, Tiwari, Pandey (b0040) 2015; 42
Gou, Xiao, Yang (b0125) 2010; 87
Bejan (b0320) 2016
Gou, Yang, Xiao, Ou (b0130) 2013; 52
Xing, Chao, Xue, Du, Wei, Yang (b0030) 2017; 187
Snyder, Snyder (b0245) 2017; 10
Dimri, Tiwari, Tiwari (b0105) 2019; 134
Daneshazarian, Cuce, Cuce, Sher (b0065) 2018; 81
Ma, Li, Kazemian (b0210) 2020; 261
Saidur, Leong, Mohammad (b0100) 2011; 15
Daungthongsuk, Wongwises (b0230) 2007; 11
George, Pandey, Rahim, Tyagi, Shahabuddin, Saidur (b0075) 2019; 186
Yazdanpanahi, Sarhaddi, Adeli (b0310) 2015; 118
Jaaz, Hasan, Sopian, Ruslan, Zaidi (b0070) 2017; 76
Salari, Kazemian, Ma, Hakkaki-Fard, Peng (b0010) 2020; 205
S. Maadi, A. Kolahan, M. Passandideh Fard, M. Sardarabadi. Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, fd20172017.
Dupeyrat, Ménézo, Fortuin (b0005) 2014; 68
Brinkman HC. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys. 20 (1952) 571.
Babu, Ponnambalam (b0160) 2018; 173
Li, Zhong, Ma, Kazemian, Gu (b0215) 2020; 206
Hosseinzadeh, Salari, Sardarabadi, Passandideh-Fard (b0205) 2018; 160
Champier (b0110) 2017; 140
Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0025) 2018; 162
Kazemian, Salari, Hakkaki-Fard, Ma (b0050) 2019; 238
Abadeh, Rejeb, Sardarabadi, Menezo, Passandideh-Fard, Jemni (b0325) 2018; 159
Nazri, Fudholi, Bakhtyar, Yen, Ibrahim, Ruslan (b0185) 2018; 92
Kazemian (10.1016/j.enconman.2020.113073_b0085) 2018; 173
Yazdanifard (10.1016/j.enconman.2020.113073_b0295) 2016
Yang (10.1016/j.enconman.2020.113073_b0240) 2011; 31
Bergman (10.1016/j.enconman.2020.113073_b0225) 2011
Nazri (10.1016/j.enconman.2020.113073_b0180) 2019; 111
Snyder (10.1016/j.enconman.2020.113073_b0245) 2017; 10
Nazri (10.1016/j.enconman.2020.113073_b0185) 2018; 92
Moradgholi (10.1016/j.enconman.2020.113073_b0015) 2018; 164
Kane (10.1016/j.enconman.2020.113073_b0035) 2013; 3
Dimri (10.1016/j.enconman.2020.113073_b0105) 2019; 134
George (10.1016/j.enconman.2020.113073_b0075) 2019; 186
Yazdanifard (10.1016/j.enconman.2020.113073_b0045) 2017; 148
10.1016/j.enconman.2020.113073_b0260
Dupeyrat (10.1016/j.enconman.2020.113073_b0005) 2014; 68
Joshi (10.1016/j.enconman.2020.113073_b0080) 2018; 92
10.1016/j.enconman.2020.113073_b0055
Kazemian (10.1016/j.enconman.2020.113073_b0090) 2020; 201
Lu (10.1016/j.enconman.2020.113073_b0200) 2007; 81
Siddique (10.1016/j.enconman.2020.113073_b0115) 2017; 73
Maadi (10.1016/j.enconman.2020.113073_b0190) 2017; 150
Abdolzadeh (10.1016/j.enconman.2020.113073_b0195) 2017; 36
Zhang (10.1016/j.enconman.2020.113073_b0235) 2015; 1
Dimri (10.1016/j.enconman.2020.113073_b0175) 2018; 166
Kil (10.1016/j.enconman.2020.113073_b0155) 2017; 37
Sardarabadi (10.1016/j.enconman.2020.113073_b0300) 2014; 66
Sahay (10.1016/j.enconman.2020.113073_b0040) 2015; 42
Dimri (10.1016/j.enconman.2020.113073_b0170) 2017; 146
Abadeh (10.1016/j.enconman.2020.113073_b0325) 2018; 159
Gou (10.1016/j.enconman.2020.113073_b0125) 2010; 87
Shoeibi (10.1016/j.enconman.2020.113073_b0135) 2020; 263
Champier (10.1016/j.enconman.2020.113073_b0110) 2017; 140
10.1016/j.enconman.2020.113073_b0305
Daungthongsuk (10.1016/j.enconman.2020.113073_b0230) 2007; 11
Makki (10.1016/j.enconman.2020.113073_b0150) 2016; 112
Li (10.1016/j.enconman.2020.113073_b0215) 2020; 206
Seng (10.1016/j.enconman.2020.113073_b0330) 2008; 36
Gou (10.1016/j.enconman.2020.113073_b0130) 2013; 52
10.1016/j.enconman.2020.113073_b0280
Zhou (10.1016/j.enconman.2020.113073_b0165) 2016; 22
Ali (10.1016/j.enconman.2020.113073_b0095) 2018; 2018
Qiu (10.1016/j.enconman.2020.113073_b0220) 2015; 87
White (10.1016/j.enconman.2020.113073_b0285) 2011
Saidur (10.1016/j.enconman.2020.113073_b0100) 2011; 15
Raisee (10.1016/j.enconman.2020.113073_b0275) 2008; 15
Hosseinzadeh (10.1016/j.enconman.2020.113073_b0205) 2018; 160
Koo (10.1016/j.enconman.2020.113073_b0265) 2005; 6
Babu (10.1016/j.enconman.2020.113073_b0160) 2018; 173
10.1016/j.enconman.2020.113073_b0315
Yazdanpanahi (10.1016/j.enconman.2020.113073_b0310) 2015; 118
Xing (10.1016/j.enconman.2020.113073_b0030) 2017; 187
Jaaz (10.1016/j.enconman.2020.113073_b0070) 2017; 76
Drew (10.1016/j.enconman.2020.113073_b0255) 2006
Moghaddami (10.1016/j.enconman.2020.113073_b0270) 2012; 9
Sardarabadi (10.1016/j.enconman.2020.113073_b0020) 2017; 138
Hasani (10.1016/j.enconman.2020.113073_b0140) 2015; 40
Khanjari (10.1016/j.enconman.2020.113073_b0060) 2017; 115
Ma (10.1016/j.enconman.2020.113073_b0210) 2020; 261
Daneshazarian (10.1016/j.enconman.2020.113073_b0065) 2018; 81
Maadi (10.1016/j.enconman.2020.113073_b0290) 2019; 198
Bejan (10.1016/j.enconman.2020.113073_b0320) 2016
10.1016/j.enconman.2020.113073_b0120
Kazemian (10.1016/j.enconman.2020.113073_b0050) 2019; 238
Salari (10.1016/j.enconman.2020.113073_b0010) 2020; 205
Kazemian (10.1016/j.enconman.2020.113073_b0025) 2018; 162
Abdallah (10.1016/j.enconman.2020.113073_b0250) 2019; 181
References_xml – volume: 87
  start-page: 3131
  year: 2010
  end-page: 3136
  ident: b0125
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl Energy
– volume: 198
  year: 2019
  ident: b0290
  article-title: Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model
  publication-title: Energy Convers Manage
– reference: Ni L-x, Sun K, Wu H-f, Chen Z, Xing Y. A high efficiency step-up DC-DC converter for thermoelectric generator with wide input voltage range. 2012 IEEE International Symposium on Industrial Electronics. IEEE 2012. pp. 52–7.
– volume: 261
  year: 2020
  ident: b0210
  article-title: Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously
  publication-title: Appl Energy
– year: 2011
  ident: b0225
  article-title: Fundamentals of heat and mass transfer
– volume: 263
  year: 2020
  ident: b0135
  article-title: Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis
  publication-title: Appl Energy
– volume: 187
  start-page: 534
  year: 2017
  end-page: 563
  ident: b0030
  article-title: A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology
  publication-title: Appl Energy
– volume: 160
  start-page: 93
  year: 2018
  end-page: 108
  ident: b0205
  article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation
  publication-title: Energy Convers Manage
– volume: 164
  start-page: 243
  year: 2018
  end-page: 250
  ident: b0015
  article-title: Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system
  publication-title: Sol Energy
– volume: 36
  start-page: 277
  year: 2017
  end-page: 293
  ident: b0195
  article-title: Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance
  publication-title: Environ Prog Sustainable Energy
– volume: 173
  start-page: 1002
  year: 2018
  end-page: 1010
  ident: b0085
  article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study
  publication-title: Sol Energy
– volume: 138
  start-page: 682
  year: 2017
  end-page: 695
  ident: b0020
  article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints
  publication-title: Energy
– reference: A. Kolahan, S. Maadi, M. Passandideh Fard, M. Sardarabadi. Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. 17th Conference On Fluid Dynamics, fd20172017.
– volume: 148
  start-page: 1265
  year: 2017
  end-page: 1277
  ident: b0045
  article-title: Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids
  publication-title: Energy Convers Manage
– year: 2006
  ident: b0255
  article-title: Theory of multicomponent fluids
– year: 2011
  ident: b0285
  article-title: Fluid mechanics
– volume: 68
  start-page: 751
  year: 2014
  end-page: 755
  ident: b0005
  article-title: Study of the thermal and electrical performances of PVT solar hot water system
  publication-title: Energy Build
– volume: 159
  start-page: 1234
  year: 2018
  end-page: 1243
  ident: b0325
  article-title: Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)
  publication-title: Energy
– volume: 15
  start-page: 1646
  year: 2011
  end-page: 1668
  ident: b0100
  article-title: A review on applications and challenges of nanofluids
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 2130
  year: 2008
  end-page: 2142
  ident: b0330
  article-title: Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia
  publication-title: Energy Policy
– volume: 134
  start-page: 343
  year: 2019
  end-page: 356
  ident: b0105
  article-title: Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors
  publication-title: Renewable Energy
– volume: 92
  start-page: 187
  year: 2018
  end-page: 197
  ident: b0185
  article-title: Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors
  publication-title: Renew Sustain Energy Rev
– volume: 15
  year: 2008
  ident: b0275
  article-title: Numerical investigation of laminar forced convection of nanofluids through circular pipes
  publication-title: J Enhanced Heat Transfer
– volume: 6
  start-page: 577
  year: 2005
  end-page: 588
  ident: b0265
  article-title: A new thermal conductivity model for nanofluids
  publication-title: J Nanopart Res
– volume: 140
  start-page: 167
  year: 2017
  end-page: 181
  ident: b0110
  article-title: Thermoelectric generators: a review of applications
  publication-title: Energy Convers Manage
– volume: 81
  start-page: 636
  year: 2007
  end-page: 647
  ident: b0200
  article-title: Energy analysis of silicon solar cell modules based on an optical model for arbitrary layers
  publication-title: Sol Energy
– volume: 11
  start-page: 797
  year: 2007
  end-page: 817
  ident: b0230
  article-title: A critical review of convective heat transfer of nanofluids
  publication-title: Renew Sustain Energy Rev
– reference: Brinkman HC. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys. 20 (1952) 571.
– volume: 87
  start-page: 686
  year: 2015
  end-page: 698
  ident: b0220
  article-title: Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module
  publication-title: Energy
– volume: 73
  start-page: 730
  year: 2017
  end-page: 744
  ident: b0115
  article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges
  publication-title: Renew Sustain Energy Rev
– volume: 31
  start-page: 224
  year: 2011
  end-page: 229
  ident: b0240
  article-title: Thermoelectric materials for space and automotive power generation
  publication-title: MRS Bull
– volume: 3
  start-page: 320
  year: 2013
  end-page: 324
  ident: b0035
  article-title: Performance enhancement of building integrated photovoltaic module using thermoelectric cooling
  publication-title: Int J Renewable Energy Res (IJRER)
– volume: 201
  start-page: 178
  year: 2020
  end-page: 189
  ident: b0090
  article-title: Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach
  publication-title: Sol Energy
– volume: 173
  start-page: 450
  year: 2018
  end-page: 460
  ident: b0160
  article-title: The theoretical performance evaluation of hybrid PV-TEG system
  publication-title: Energy Convers Manage
– volume: 10
  start-page: 2280
  year: 2017
  end-page: 2283
  ident: b0245
  article-title: Figure of merit ZT of a thermoelectric device defined from materials properties
  publication-title: Energy Environ Sci
– reference: Hosseinzadeh, Mohammad, M. Sardarabadi, a.M. Passandideh-Fard. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. (2018).
– volume: 238
  start-page: 734
  year: 2019
  end-page: 746
  ident: b0050
  article-title: Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material
  publication-title: Appl Energy
– volume: 92
  start-page: 848
  year: 2018
  end-page: 882
  ident: b0080
  article-title: Photovoltaic-Thermal systems (PVT): Technology review and future trends
  publication-title: Renew Sustain Energy Rev
– volume: 52
  start-page: 201
  year: 2013
  end-page: 209
  ident: b0130
  article-title: A dynamic model for thermoelectric generator applied in waste heat recovery
  publication-title: Energy
– volume: 81
  start-page: 473
  year: 2018
  end-page: 492
  ident: b0065
  article-title: Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications
  publication-title: Renew Sustain Energy Rev
– volume: 66
  start-page: 264
  year: 2014
  end-page: 272
  ident: b0300
  article-title: Heris. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)
  publication-title: Energy
– volume: 2018
  year: 2018
  ident: b0095
  article-title: A review on nanofluids: fabrication, stability, and thermophysical properties
  publication-title: J Nanomater
– volume: 9
  start-page: 1586
  year: 2012
  end-page: 1595
  ident: b0270
  article-title: Entropy generation analysis of nanofluid flow in turbulent and laminar regimes
  publication-title: J Comput Theor Nanosci
– reference: Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy. 121 (2018) S0960148118300144.
– volume: 162
  start-page: 210
  year: 2018
  end-page: 223
  ident: b0025
  article-title: Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints
  publication-title: Energy
– volume: 111
  start-page: 132
  year: 2019
  end-page: 144
  ident: b0180
  article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector
  publication-title: Renew Sustain Energy Rev
– volume: 40
  start-page: 15040
  year: 2015
  end-page: 15051
  ident: b0140
  article-title: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – an experimental study
  publication-title: Int J Hydrogen Energy
– volume: 1
  start-page: 92
  year: 2015
  end-page: 105
  ident: b0235
  article-title: Thermoelectric materials: energy conversion between heat and electricity
  publication-title: J Materiomics
– year: 2016
  ident: b0295
  article-title: Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime
  publication-title: Renewable Energy
– volume: 42
  start-page: 306
  year: 2015
  end-page: 312
  ident: b0040
  article-title: A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS)
  publication-title: Renew Sustain Energy Rev
– volume: 146
  start-page: 68
  year: 2017
  end-page: 77
  ident: b0170
  article-title: Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector
  publication-title: Energy Convers Manage
– volume: 115
  start-page: 178
  year: 2017
  end-page: 187
  ident: b0060
  article-title: Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid
  publication-title: Appl Therm Eng
– volume: 118
  start-page: 197
  year: 2015
  end-page: 208
  ident: b0310
  article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses
  publication-title: Sol Energy
– volume: 37
  start-page: 242
  year: 2017
  end-page: 247
  ident: b0155
  article-title: A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator
  publication-title: Nano Energy
– volume: 181
  start-page: 108
  year: 2019
  end-page: 115
  ident: b0250
  article-title: Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid
  publication-title: Sol Energy
– volume: 206
  year: 2020
  ident: b0215
  article-title: Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis
  publication-title: Energy Convers Manage
– year: 2016
  ident: b0320
  article-title: Advanced engineering thermodynamics
– volume: 186
  start-page: 15
  year: 2019
  end-page: 41
  ident: b0075
  article-title: Concentrated photovoltaic thermal systems: a component-by-component view on the developments in the design, heat transfer medium and applications
  publication-title: Energy Convers Manage
– volume: 150
  start-page: 515
  year: 2017
  end-page: 531
  ident: b0190
  article-title: Characterization of PVT systems equipped with nanofluids-based collector from entropy generation
  publication-title: Energy Convers Manage
– volume: 205
  year: 2020
  ident: b0010
  article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis
  publication-title: Energy Convers Manage
– volume: 76
  start-page: 1108
  year: 2017
  end-page: 1121
  ident: b0070
  article-title: Design and development of compound parabolic concentrating for photovoltaic solar collector
  publication-title: Renew Sustain Energy Rev
– volume: 22
  start-page: 120
  year: 2016
  end-page: 128
  ident: b0165
  article-title: Large improvement of device performance by a synergistic effect of photovoltaics and thermoelectrics
  publication-title: Nano Energy
– reference: S. Maadi, A. Kolahan, M. Passandideh Fard, M. Sardarabadi. Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, fd20172017.
– volume: 166
  start-page: 159
  year: 2018
  end-page: 170
  ident: b0175
  article-title: Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency
  publication-title: Sol Energy
– volume: 112
  start-page: 274
  year: 2016
  end-page: 287
  ident: b0150
  article-title: Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system
  publication-title: Energy Convers Manage
– volume: 9
  start-page: 1586
  year: 2012
  ident: 10.1016/j.enconman.2020.113073_b0270
  article-title: Entropy generation analysis of nanofluid flow in turbulent and laminar regimes
  publication-title: J Comput Theor Nanosci
  doi: 10.1166/jctn.2012.2249
– volume: 159
  start-page: 1234
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0325
  article-title: Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs)
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.089
– volume: 205
  year: 2020
  ident: 10.1016/j.enconman.2020.113073_b0010
  article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112384
– volume: 160
  start-page: 93
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0205
  article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.01.006
– volume: 37
  start-page: 242
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0155
  article-title: A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.023
– volume: 111
  start-page: 132
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0180
  article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.03.024
– volume: 115
  start-page: 178
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0060
  article-title: Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.12.104
– volume: 150
  start-page: 515
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0190
  article-title: Characterization of PVT systems equipped with nanofluids-based collector from entropy generation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.039
– ident: 10.1016/j.enconman.2020.113073_b0305
  doi: 10.1016/j.energy.2018.01.073
– volume: 138
  start-page: 682
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0020
  article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.046
– volume: 173
  start-page: 1002
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0085
  article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.07.051
– volume: 3
  start-page: 320
  year: 2013
  ident: 10.1016/j.enconman.2020.113073_b0035
  article-title: Performance enhancement of building integrated photovoltaic module using thermoelectric cooling
  publication-title: Int J Renewable Energy Res (IJRER)
– volume: 1
  start-page: 92
  year: 2015
  ident: 10.1016/j.enconman.2020.113073_b0235
  article-title: Thermoelectric materials: energy conversion between heat and electricity
  publication-title: J Materiomics
  doi: 10.1016/j.jmat.2015.01.001
– year: 2011
  ident: 10.1016/j.enconman.2020.113073_b0225
– volume: 187
  start-page: 534
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0030
  article-title: A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.087
– volume: 40
  start-page: 15040
  year: 2015
  ident: 10.1016/j.enconman.2020.113073_b0140
  article-title: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – an experimental study
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.023
– volume: 134
  start-page: 343
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0105
  article-title: Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.10.105
– ident: 10.1016/j.enconman.2020.113073_b0315
– volume: 68
  start-page: 751
  year: 2014
  ident: 10.1016/j.enconman.2020.113073_b0005
  article-title: Study of the thermal and electrical performances of PVT solar hot water system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.09.032
– year: 2006
  ident: 10.1016/j.enconman.2020.113073_b0255
– volume: 42
  start-page: 306
  year: 2015
  ident: 10.1016/j.enconman.2020.113073_b0040
  article-title: A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS)
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.10.009
– year: 2016
  ident: 10.1016/j.enconman.2020.113073_b0295
  article-title: Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.07.004
– volume: 6
  start-page: 577
  year: 2005
  ident: 10.1016/j.enconman.2020.113073_b0265
  article-title: A new thermal conductivity model for nanofluids
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-004-3170-5
– volume: 261
  year: 2020
  ident: 10.1016/j.enconman.2020.113073_b0210
  article-title: Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114380
– volume: 87
  start-page: 686
  year: 2015
  ident: 10.1016/j.enconman.2020.113073_b0220
  article-title: Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.040
– ident: 10.1016/j.enconman.2020.113073_b0120
  doi: 10.1109/ISIE.2012.6237058
– ident: 10.1016/j.enconman.2020.113073_b0260
  doi: 10.1063/1.1700493
– volume: 118
  start-page: 197
  year: 2015
  ident: 10.1016/j.enconman.2020.113073_b0310
  article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.04.038
– volume: 238
  start-page: 734
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0050
  article-title: Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.103
– volume: 146
  start-page: 68
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0170
  article-title: Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.05.017
– volume: 181
  start-page: 108
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0250
  article-title: Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.01.088
– volume: 73
  start-page: 730
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0115
  article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.177
– volume: 198
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0290
  article-title: Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.111781
– volume: 15
  start-page: 1646
  year: 2011
  ident: 10.1016/j.enconman.2020.113073_b0100
  article-title: A review on applications and challenges of nanofluids
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.11.035
– volume: 112
  start-page: 274
  year: 2016
  ident: 10.1016/j.enconman.2020.113073_b0150
  article-title: Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.12.069
– volume: 36
  start-page: 2130
  year: 2008
  ident: 10.1016/j.enconman.2020.113073_b0330
  article-title: Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.016
– volume: 81
  start-page: 473
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0065
  article-title: Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.08.013
– volume: 166
  start-page: 159
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0175
  article-title: Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.03.030
– volume: 81
  start-page: 636
  year: 2007
  ident: 10.1016/j.enconman.2020.113073_b0200
  article-title: Energy analysis of silicon solar cell modules based on an optical model for arbitrary layers
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2006.08.014
– volume: 263
  year: 2020
  ident: 10.1016/j.enconman.2020.113073_b0135
  article-title: Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114581
– ident: 10.1016/j.enconman.2020.113073_b0280
– volume: 22
  start-page: 120
  year: 2016
  ident: 10.1016/j.enconman.2020.113073_b0165
  article-title: Large improvement of device performance by a synergistic effect of photovoltaics and thermoelectrics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.018
– volume: 15
  year: 2008
  ident: 10.1016/j.enconman.2020.113073_b0275
  article-title: Numerical investigation of laminar forced convection of nanofluids through circular pipes
  publication-title: J Enhanced Heat Transfer
  doi: 10.1615/JEnhHeatTransf.v15.i4.60
– year: 2011
  ident: 10.1016/j.enconman.2020.113073_b0285
– volume: 173
  start-page: 450
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0160
  article-title: The theoretical performance evaluation of hybrid PV-TEG system
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.07.104
– volume: 10
  start-page: 2280
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0245
  article-title: Figure of merit ZT of a thermoelectric device defined from materials properties
  publication-title: Energy Environ Sci
  doi: 10.1039/C7EE02007D
– volume: 140
  start-page: 167
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0110
  article-title: Thermoelectric generators: a review of applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.02.070
– volume: 31
  start-page: 224
  year: 2011
  ident: 10.1016/j.enconman.2020.113073_b0240
  article-title: Thermoelectric materials for space and automotive power generation
  publication-title: MRS Bull
  doi: 10.1557/mrs2006.49
– volume: 186
  start-page: 15
  year: 2019
  ident: 10.1016/j.enconman.2020.113073_b0075
  article-title: Concentrated photovoltaic thermal systems: a component-by-component view on the developments in the design, heat transfer medium and applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.02.052
– volume: 2018
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0095
  article-title: A review on nanofluids: fabrication, stability, and thermophysical properties
  publication-title: J Nanomater
  doi: 10.1155/2018/6978130
– year: 2016
  ident: 10.1016/j.enconman.2020.113073_b0320
– volume: 206
  year: 2020
  ident: 10.1016/j.enconman.2020.113073_b0215
  article-title: Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112479
– volume: 164
  start-page: 243
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0015
  article-title: Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.02.055
– volume: 92
  start-page: 848
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0080
  article-title: Photovoltaic-Thermal systems (PVT): Technology review and future trends
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.04.067
– ident: 10.1016/j.enconman.2020.113073_b0055
  doi: 10.1016/j.renene.2018.01.014
– volume: 148
  start-page: 1265
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0045
  article-title: Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.06.075
– volume: 92
  start-page: 187
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0185
  article-title: Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.04.061
– volume: 11
  start-page: 797
  year: 2007
  ident: 10.1016/j.enconman.2020.113073_b0230
  article-title: A critical review of convective heat transfer of nanofluids
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2005.06.005
– volume: 76
  start-page: 1108
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0070
  article-title: Design and development of compound parabolic concentrating for photovoltaic solar collector
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.127
– volume: 36
  start-page: 277
  year: 2017
  ident: 10.1016/j.enconman.2020.113073_b0195
  article-title: Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance
  publication-title: Environ Prog Sustainable Energy
  doi: 10.1002/ep.12493
– volume: 162
  start-page: 210
  year: 2018
  ident: 10.1016/j.enconman.2020.113073_b0025
  article-title: Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.069
– volume: 52
  start-page: 201
  year: 2013
  ident: 10.1016/j.enconman.2020.113073_b0130
  article-title: A dynamic model for thermoelectric generator applied in waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2013.01.040
– volume: 66
  start-page: 264
  year: 2014
  ident: 10.1016/j.enconman.2020.113073_b0300
  article-title: Heris. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.102
– volume: 201
  start-page: 178
  year: 2020
  ident: 10.1016/j.enconman.2020.113073_b0090
  article-title: Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.02.096
– volume: 87
  start-page: 3131
  year: 2010
  ident: 10.1016/j.enconman.2020.113073_b0125
  article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.02.013
SSID ssj0003506
Score 2.5417707
Snippet [Display omitted] •A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied...
Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113073
SubjectTerms administrative management
Algorithms
Aluminum
Aluminum oxide
Aluminum-oxide/water (Al2O3/water) nanofluid
Computer simulation
computer software
correlation
Electric power
electricity
Energy and exergy analysis
Energy efficiency
equations
Exergy
exhibitions
Inlet temperature
Mathematical models
Nanofluids
Parametric analysis
Performance evaluation
Photovoltaic cells
Photovoltaic thermal system (PVT)
Photovoltaics
Temperature
Temperature gradients
temperature profiles
Thermodynamics
Thermoelectric generators
Thermoelectric generators (TEGs)
Thermoelectricity
Working fluids
Title Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator
URI https://dx.doi.org/10.1016/j.enconman.2020.113073
https://www.proquest.com/docview/2449676431
https://www.proquest.com/docview/2498287437
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcmkPCCioC6VyJa7uJrETx8eqUC1U9FIq9Wb5s03VTVY0K278dmacZClIqAeOSWbkyGPPPCczbwj5ELmxwpuKuRgdE8E6Zl1pmYTgELyyhUw83V8vqsWV-HJdXm-R06kWBtMqR98_-PTkrcc783E256ummV8is0utYNEh7M0lFvwKIbGLwfHP32kevEz9NVGYofSjKuG7Y-SKbJcGeVCL1N4kk_xfAeovV53iz9kL8nwEjvRkeLeXZCu0r8juIzrBPfLjMiwbxj_SHgMQFjrSh2Y59ueiXaSGtqbt4v268QzDF13ddn0HDqo3jaMIBZcwxEDuTDdEEp7ix1pQTgLd0DgH5G8SYzWc2V-Tq7NP304XbGyswByXvAenoqxSBpBb7m1eFZYHL-uMKx8AbTiAaD6LShWZES4XtjBRVFxANI21DaHy_A3Zbrs27BNaCaN8Xdis9nCwgsOmMaZW1rgoM1OoYkbKaTa1G1nHsfnFvZ7Sy-70ZAWNVtCDFWZkvtFbDbwbT2qoyVj6jxWkITg8qXswWVePe_hBA_BRlQTEls_I0eYx7D78pWLa0K1RRqWOAVy-_Y_h35EdvMI0lLw8INv993V4D1int4dpMR-SZyefzxcXvwArCAI9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFMsFDASV3cT24njIypUC7S9tJV6s_ykqbrJimbVW387M3ksBQn1wDWekSOPPfNNMv6GkI9JWCeDLZlPyTMZnWfOF44pCA4xaMdVz9N9eFQuTuW3s-Jsi-xNd2GwrHL0_YNP7731-GQ-ruZ8VdfzY2R2qTRsOoS9uarukfuy4AozsN2b33UeougbbKI0Q_Fb14QvdpEssllaJELlfX-TTIl_Rai_fHUfgPafkMcjcqSfhpd7SrZi84w8usUn-JxcH8dlzcRn2mEEwpuO9Kpejg26aJuopY1t2nS5rgPD-EVX523XgofqbO0pYsElTDGwO9MNk0Sg-LUWlHuBduicA_I_espqSNpfkNP9Lyd7CzZ2VmBeKNGBV9FOawvQLQ8uL7kTMagqEzpEgBseMFrIktY8s9Ln0nGbZCkkhNNUuRjLIF6S7aZt4itCS2l1qLjLqgCZFWSb1tpKO-uTyizXfEaKaTWNH2nHsfvFpZnqyy7MZAWDVjCDFWZkvtFbDcQbd2royVjmjy1kIDrcqbszWdeMh_jKAPLRpQLIls_Ih80wHD_8p2Kb2K5RRvctA4R6_R_TvycPFieHB-bg69H3N-QhjmBNSl7skO3u5zq-BeDTuXf9xv4FEkgD0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-3D+transient+simulation+of+a+nanofluid-base+photovoltaic+thermal+system+integrated+with+a+thermoelectric+generator&rft.jtitle=Energy+conversion+and+management&rft.au=Kolahan%2C+Arman&rft.au=Maadi%2C+Seyed+Reza&rft.au=Kazemian%2C+Arash&rft.au=Schenone%2C+Corrado&rft.date=2020-09-15&rft.issn=0196-8904&rft.volume=220&rft.spage=113073&rft_id=info:doi/10.1016%2Fj.enconman.2020.113073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2020_113073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon