Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator
[Display omitted] •A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in th...
Saved in:
| Published in | Energy conversion and management Vol. 220; p. 113073 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.09.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2020.113073 |
Cover
| Abstract | [Display omitted]
•A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in the systems is expressed.
Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures. |
|---|---|
| AbstractList | [Display omitted]
•A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied comparatively during the day.•The effects of different parameters on the performance of systems are studied.•The energy proportion of each part in the systems is expressed.
Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures. Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al2O3/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures. Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a possible solution for the improvement of their electrical performance. To evaluate the feasibility of using TEG in PVT systems, a comparison between only the PVT system and PVT system integrated with TEG (PVT-TEG) is conducted using numerical simulation. A semi-transient numerical code is developed by FORTRAN software to simulate both PVT and PVT-TEG systems. The governing equations are solved by Tridiagonal Matrix Algorithm (TDMA) using an implicit formulation discretizing by a center-differencing scheme. In this study, aluminum-oxide/water (Al₂O₃/water) nanofluid is selected as working fluid due to the performance improvement of the systems. Both energy and exergy analysis are conducted to estimate the performance of the nanofluid based PVT-TEG system. The results indicate that the PV unit in both PVT and PVT-TEG systems can generate nearly the same electrical power. However, the PVT-TEG system has 2.5%–4% higher overall electrical energy efficiency compared to only the PVT system. It has been found, in all considered parameters, the PVT-TEG system compared to the PVT system in terms of overall exergy efficiency shows a better performance, while in terms of overall energy efficiency shows poor performance. Furthermore, according to the parametric analysis, there is a direct relation between inlet temperature and photovoltaic (PV) plate temperature, whereas there is an indirect correlation between the inlet temperature and TEG sides difference temperatures. |
| ArticleNumber | 113073 |
| Author | Kazemian, Arash Maadi, Seyed Reza Ma, Tao Kolahan, Arman Schenone, Corrado |
| Author_xml | – sequence: 1 givenname: Arman orcidid: 0000-0001-8530-0704 surname: Kolahan fullname: Kolahan, Arman organization: Department of Mechanical, Energetics, Management and Transport Engineering, University of Genova, via All’Opera Pia 15/A, 16145 Genova, Italy – sequence: 2 givenname: Seyed Reza surname: Maadi fullname: Maadi, Seyed Reza organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Arash surname: Kazemian fullname: Kazemian, Arash organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Corrado orcidid: 0000-0002-4078-1679 surname: Schenone fullname: Schenone, Corrado organization: Department of Mechanical, Energetics, Management and Transport Engineering, University of Genova, via All’Opera Pia 15/A, 16145 Genova, Italy – sequence: 5 givenname: Tao orcidid: 0000-0003-3803-2748 surname: Ma fullname: Ma, Tao email: tao.ma@connect.polyu.hk organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNqFkU9PHCEYh0ljk67bfoWGpBcvs_KvzJD0oNGqTUx6aHsmDLzjsmFgBUbjty-67cWLJxJ4fi9vfs8xOoopAkKfKdlQQuXpbgPRpjibuGGEtUvKSc_foRUdetUxxvojtCJUyW5QRHxAx6XsCCH8K5Er9PgLZt_xS1yzicVDrLj4eQmm-hRxmrDB0cQ0hcW7bjQF8H6banpIoRpvcd1Cnk3A5alUmLGPFe6yqeDwo6_bFn4BEgSwNTf-DiK095Q_oveTCQU-_TvX6M_V998XN93tz-sfF-e3neU9rx3v1aiU4UxSN1LJRg6uHwhXDtjALZXckUkpRoywVIzMTEJyAeCmYQSQjq_RyWHuPqf7BUrVsy8WQjAR0lI0E2pgQy_ab2v05RW6S0uObbtGCSV7KTht1LcDZXMqJcOkra8vbbUGfdCU6Gcreqf_W9HPVvTBSovLV_F99rPJT28Hzw5BaG09eMi62KbLgvO5latd8m-N-At3c69K |
| CitedBy_id | crossref_primary_10_1093_ijlct_ctae277 crossref_primary_10_1016_j_solener_2020_10_011 crossref_primary_10_3390_sym14010036 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122232 crossref_primary_10_1016_j_enconman_2022_116432 crossref_primary_10_1016_j_rser_2022_112740 crossref_primary_10_1016_j_apenergy_2021_116859 crossref_primary_10_1016_j_apenergy_2023_122062 crossref_primary_10_1016_j_applthermaleng_2022_118594 crossref_primary_10_1016_j_rser_2021_111738 crossref_primary_10_3390_su15065424 crossref_primary_10_1016_j_enconman_2023_117591 crossref_primary_10_1016_j_apenergy_2022_120209 crossref_primary_10_1016_j_enconman_2024_118066 crossref_primary_10_1016_j_solener_2022_04_016 crossref_primary_10_1016_j_solener_2021_01_006 crossref_primary_10_1016_j_renene_2024_120573 crossref_primary_10_1016_j_seta_2022_102998 crossref_primary_10_1115_1_4066300 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125093 crossref_primary_10_1016_j_gloei_2023_10_005 crossref_primary_10_1016_j_enconman_2022_115555 crossref_primary_10_1016_j_enconman_2022_115790 crossref_primary_10_3390_en13226045 crossref_primary_10_1016_j_csite_2024_105300 crossref_primary_10_1016_j_jclepro_2020_125748 crossref_primary_10_1016_j_enconman_2024_118712 crossref_primary_10_1016_j_jtice_2021_01_032 crossref_primary_10_1016_j_rser_2021_110785 crossref_primary_10_1016_j_seta_2022_102105 crossref_primary_10_1016_j_apenergy_2025_125438 crossref_primary_10_1016_j_enganabound_2022_04_005 crossref_primary_10_1016_j_enconman_2021_113940 crossref_primary_10_1016_j_energy_2022_123777 crossref_primary_10_1177_0958305X221146947 crossref_primary_10_1016_j_renene_2022_04_153 crossref_primary_10_1016_j_energy_2023_129351 crossref_primary_10_3390_en18030546 crossref_primary_10_1016_j_tsep_2023_101909 crossref_primary_10_1016_j_enconman_2021_113968 crossref_primary_10_1016_j_applthermaleng_2024_123436 crossref_primary_10_1016_j_applthermaleng_2024_124608 crossref_primary_10_1016_j_jpowsour_2024_234151 crossref_primary_10_1016_j_solener_2023_112025 crossref_primary_10_1016_j_energy_2021_121190 crossref_primary_10_1016_j_rser_2023_113705 crossref_primary_10_1177_09544062211055651 crossref_primary_10_1016_j_energy_2024_132295 crossref_primary_10_1016_j_energy_2022_124515 crossref_primary_10_1016_j_scs_2021_103316 crossref_primary_10_1016_j_tsep_2022_101207 |
| Cites_doi | 10.1166/jctn.2012.2249 10.1016/j.energy.2018.06.089 10.1016/j.enconman.2019.112384 10.1016/j.enconman.2018.01.006 10.1016/j.nanoen.2017.05.023 10.1016/j.rser.2019.03.024 10.1016/j.applthermaleng.2016.12.104 10.1016/j.enconman.2017.08.039 10.1016/j.energy.2018.01.073 10.1016/j.energy.2017.07.046 10.1016/j.solener.2018.07.051 10.1016/j.jmat.2015.01.001 10.1016/j.apenergy.2016.11.087 10.1016/j.ijhydene.2015.09.023 10.1016/j.renene.2018.10.105 10.1016/j.enbuild.2012.09.032 10.1016/j.rser.2014.10.009 10.1016/j.renene.2016.07.004 10.1007/s11051-004-3170-5 10.1016/j.apenergy.2019.114380 10.1016/j.energy.2015.05.040 10.1109/ISIE.2012.6237058 10.1063/1.1700493 10.1016/j.solener.2015.04.038 10.1016/j.apenergy.2019.01.103 10.1016/j.enconman.2017.05.017 10.1016/j.solener.2019.01.088 10.1016/j.rser.2017.01.177 10.1016/j.enconman.2019.111781 10.1016/j.rser.2010.11.035 10.1016/j.enconman.2015.12.069 10.1016/j.enpol.2008.02.016 10.1016/j.rser.2017.08.013 10.1016/j.solener.2018.03.030 10.1016/j.solener.2006.08.014 10.1016/j.apenergy.2020.114581 10.1016/j.nanoen.2016.02.018 10.1615/JEnhHeatTransf.v15.i4.60 10.1016/j.enconman.2018.07.104 10.1039/C7EE02007D 10.1016/j.enconman.2017.02.070 10.1557/mrs2006.49 10.1016/j.enconman.2019.02.052 10.1155/2018/6978130 10.1016/j.enconman.2020.112479 10.1016/j.solener.2018.02.055 10.1016/j.rser.2018.04.067 10.1016/j.renene.2018.01.014 10.1016/j.enconman.2017.06.075 10.1016/j.rser.2018.04.061 10.1016/j.rser.2005.06.005 10.1016/j.rser.2017.03.127 10.1002/ep.12493 10.1016/j.energy.2018.07.069 10.1016/j.energy.2013.01.040 10.1016/j.energy.2014.01.102 10.1016/j.solener.2020.02.096 10.1016/j.apenergy.2010.02.013 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Sep 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Sep 15, 2020 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2020.113073 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2020_113073 S0196890420306178 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-379b99a3261db162b3ed78039de283c163d0f9920a4c14b2af4634eedf8bee6d3 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Sat Sep 27 20:38:48 EDT 2025 Wed Aug 13 09:31:01 EDT 2025 Thu Oct 09 00:38:50 EDT 2025 Thu Apr 24 23:16:12 EDT 2025 Fri Feb 23 02:45:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parametric analysis Thermoelectric generators (TEGs) Photovoltaic thermal system (PVT) Energy and exergy analysis Aluminum-oxide/water (Al2O3/water) nanofluid |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c373t-379b99a3261db162b3ed78039de283c163d0f9920a4c14b2af4634eedf8bee6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3803-2748 0000-0002-4078-1679 0000-0001-8530-0704 |
| PQID | 2449676431 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2498287437 proquest_journals_2449676431 crossref_citationtrail_10_1016_j_enconman_2020_113073 crossref_primary_10_1016_j_enconman_2020_113073 elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113073 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-15 |
| PublicationDateYYYYMMDD | 2020-09-15 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Koo, Kleinstreuer (b0265) 2005; 6 Qiu, Zhao, Li, Zhang, Ali (b0220) 2015; 87 Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0085) 2018; 173 Zhou, Yang, Jiang, Li, Luo, Hou (b0165) 2016; 22 Kazemian, Taheri, Sardarabadi, Ma, Passandideh-Fard, Peng (b0090) 2020; 201 Yang, Caillat (b0240) 2011; 31 Siddique, Mahmud, Van Heyst (b0115) 2017; 73 Abdallah, Saidani-Scott, Abdellatif (b0250) 2019; 181 Yazdanifard, Ebrahimnia-Bajestan, Ameri (b0045) 2017; 148 A. Kolahan, S. Maadi, M. Passandideh Fard, M. Sardarabadi. Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. 17th Conference On Fluid Dynamics, fd20172017. Joshi, Dhoble (b0080) 2018; 92 Lu, Yao (b0200) 2007; 81 Nazri, Fudholi, Mustafa, Yen, Mohammad, Ruslan (b0180) 2019; 111 Moradgholi, Nowee, Farzaneh (b0015) 2018; 164 Shoeibi, Rahbar, Esfahlani, Kargarsharifabad (b0135) 2020; 263 Makki, Omer, Su, Sabir (b0150) 2016; 112 Hasani, Rahbar (b0140) 2015; 40 Dimri, Tiwari, Tiwari (b0175) 2018; 166 Kil, Kim, Jeong, Geum, Lee, Jung (b0155) 2017; 37 Zhang, Zhao (b0235) 2015; 1 Moghaddami, Shahidi, Siavashi (b0270) 2012; 9 Hosseinzadeh, Mohammad, M. Sardarabadi, a.M. Passandideh-Fard. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. (2018). Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy. 121 (2018) S0960148118300144. Abdolzadeh, Zarei (b0195) 2017; 36 Dimri, Tiwari, Tiwari (b0170) 2017; 146 Maadi, Khatibi, Ebrahimnia-Bajestan, Wood (b0290) 2019; 198 Kane, Verma (b0035) 2013; 3 Ali, Teixeira, Addali (b0095) 2018; 2018 Ni L-x, Sun K, Wu H-f, Chen Z, Xing Y. A high efficiency step-up DC-DC converter for thermoelectric generator with wide input voltage range. 2012 IEEE International Symposium on Industrial Electronics. IEEE 2012. pp. 52–7. Drew, Passman (b0255) 2006 Yazdanifard, Ebrahimnia-Bajestan, Ameri (b0295) 2016 Sardarabadi, Hosseinzadeh, Kazemian, Passandideh-Fard (b0020) 2017; 138 Seng, Lalchand, Lin (b0330) 2008; 36 Raisee, Moghaddami (b0275) 2008; 15 Khanjari, Kasaeian, Pourfayaz (b0060) 2017; 115 Bergman, Incropera, DeWitt, Lavine (b0225) 2011 Sardarabadi, Passandideh-Fard, Zeinali (b0300) 2014; 66 Maadi, Kolahan, Passandideh-Fard, Sardarabadi, Moloudi (b0190) 2017; 150 White (b0285) 2011 Sahay, Sethi, Tiwari, Pandey (b0040) 2015; 42 Gou, Xiao, Yang (b0125) 2010; 87 Bejan (b0320) 2016 Gou, Yang, Xiao, Ou (b0130) 2013; 52 Xing, Chao, Xue, Du, Wei, Yang (b0030) 2017; 187 Snyder, Snyder (b0245) 2017; 10 Dimri, Tiwari, Tiwari (b0105) 2019; 134 Daneshazarian, Cuce, Cuce, Sher (b0065) 2018; 81 Ma, Li, Kazemian (b0210) 2020; 261 Saidur, Leong, Mohammad (b0100) 2011; 15 Daungthongsuk, Wongwises (b0230) 2007; 11 George, Pandey, Rahim, Tyagi, Shahabuddin, Saidur (b0075) 2019; 186 Yazdanpanahi, Sarhaddi, Adeli (b0310) 2015; 118 Jaaz, Hasan, Sopian, Ruslan, Zaidi (b0070) 2017; 76 Salari, Kazemian, Ma, Hakkaki-Fard, Peng (b0010) 2020; 205 S. Maadi, A. Kolahan, M. Passandideh Fard, M. Sardarabadi. Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, fd20172017. Dupeyrat, Ménézo, Fortuin (b0005) 2014; 68 Brinkman HC. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys. 20 (1952) 571. Babu, Ponnambalam (b0160) 2018; 173 Li, Zhong, Ma, Kazemian, Gu (b0215) 2020; 206 Hosseinzadeh, Salari, Sardarabadi, Passandideh-Fard (b0205) 2018; 160 Champier (b0110) 2017; 140 Kazemian, Hosseinzadeh, Sardarabadi, Passandideh-Fard (b0025) 2018; 162 Kazemian, Salari, Hakkaki-Fard, Ma (b0050) 2019; 238 Abadeh, Rejeb, Sardarabadi, Menezo, Passandideh-Fard, Jemni (b0325) 2018; 159 Nazri, Fudholi, Bakhtyar, Yen, Ibrahim, Ruslan (b0185) 2018; 92 Kazemian (10.1016/j.enconman.2020.113073_b0085) 2018; 173 Yazdanifard (10.1016/j.enconman.2020.113073_b0295) 2016 Yang (10.1016/j.enconman.2020.113073_b0240) 2011; 31 Bergman (10.1016/j.enconman.2020.113073_b0225) 2011 Nazri (10.1016/j.enconman.2020.113073_b0180) 2019; 111 Snyder (10.1016/j.enconman.2020.113073_b0245) 2017; 10 Nazri (10.1016/j.enconman.2020.113073_b0185) 2018; 92 Moradgholi (10.1016/j.enconman.2020.113073_b0015) 2018; 164 Kane (10.1016/j.enconman.2020.113073_b0035) 2013; 3 Dimri (10.1016/j.enconman.2020.113073_b0105) 2019; 134 George (10.1016/j.enconman.2020.113073_b0075) 2019; 186 Yazdanifard (10.1016/j.enconman.2020.113073_b0045) 2017; 148 10.1016/j.enconman.2020.113073_b0260 Dupeyrat (10.1016/j.enconman.2020.113073_b0005) 2014; 68 Joshi (10.1016/j.enconman.2020.113073_b0080) 2018; 92 10.1016/j.enconman.2020.113073_b0055 Kazemian (10.1016/j.enconman.2020.113073_b0090) 2020; 201 Lu (10.1016/j.enconman.2020.113073_b0200) 2007; 81 Siddique (10.1016/j.enconman.2020.113073_b0115) 2017; 73 Maadi (10.1016/j.enconman.2020.113073_b0190) 2017; 150 Abdolzadeh (10.1016/j.enconman.2020.113073_b0195) 2017; 36 Zhang (10.1016/j.enconman.2020.113073_b0235) 2015; 1 Dimri (10.1016/j.enconman.2020.113073_b0175) 2018; 166 Kil (10.1016/j.enconman.2020.113073_b0155) 2017; 37 Sardarabadi (10.1016/j.enconman.2020.113073_b0300) 2014; 66 Sahay (10.1016/j.enconman.2020.113073_b0040) 2015; 42 Dimri (10.1016/j.enconman.2020.113073_b0170) 2017; 146 Abadeh (10.1016/j.enconman.2020.113073_b0325) 2018; 159 Gou (10.1016/j.enconman.2020.113073_b0125) 2010; 87 Shoeibi (10.1016/j.enconman.2020.113073_b0135) 2020; 263 Champier (10.1016/j.enconman.2020.113073_b0110) 2017; 140 10.1016/j.enconman.2020.113073_b0305 Daungthongsuk (10.1016/j.enconman.2020.113073_b0230) 2007; 11 Makki (10.1016/j.enconman.2020.113073_b0150) 2016; 112 Li (10.1016/j.enconman.2020.113073_b0215) 2020; 206 Seng (10.1016/j.enconman.2020.113073_b0330) 2008; 36 Gou (10.1016/j.enconman.2020.113073_b0130) 2013; 52 10.1016/j.enconman.2020.113073_b0280 Zhou (10.1016/j.enconman.2020.113073_b0165) 2016; 22 Ali (10.1016/j.enconman.2020.113073_b0095) 2018; 2018 Qiu (10.1016/j.enconman.2020.113073_b0220) 2015; 87 White (10.1016/j.enconman.2020.113073_b0285) 2011 Saidur (10.1016/j.enconman.2020.113073_b0100) 2011; 15 Raisee (10.1016/j.enconman.2020.113073_b0275) 2008; 15 Hosseinzadeh (10.1016/j.enconman.2020.113073_b0205) 2018; 160 Koo (10.1016/j.enconman.2020.113073_b0265) 2005; 6 Babu (10.1016/j.enconman.2020.113073_b0160) 2018; 173 10.1016/j.enconman.2020.113073_b0315 Yazdanpanahi (10.1016/j.enconman.2020.113073_b0310) 2015; 118 Xing (10.1016/j.enconman.2020.113073_b0030) 2017; 187 Jaaz (10.1016/j.enconman.2020.113073_b0070) 2017; 76 Drew (10.1016/j.enconman.2020.113073_b0255) 2006 Moghaddami (10.1016/j.enconman.2020.113073_b0270) 2012; 9 Sardarabadi (10.1016/j.enconman.2020.113073_b0020) 2017; 138 Hasani (10.1016/j.enconman.2020.113073_b0140) 2015; 40 Khanjari (10.1016/j.enconman.2020.113073_b0060) 2017; 115 Ma (10.1016/j.enconman.2020.113073_b0210) 2020; 261 Daneshazarian (10.1016/j.enconman.2020.113073_b0065) 2018; 81 Maadi (10.1016/j.enconman.2020.113073_b0290) 2019; 198 Bejan (10.1016/j.enconman.2020.113073_b0320) 2016 10.1016/j.enconman.2020.113073_b0120 Kazemian (10.1016/j.enconman.2020.113073_b0050) 2019; 238 Salari (10.1016/j.enconman.2020.113073_b0010) 2020; 205 Kazemian (10.1016/j.enconman.2020.113073_b0025) 2018; 162 Abdallah (10.1016/j.enconman.2020.113073_b0250) 2019; 181 |
| References_xml | – volume: 87 start-page: 3131 year: 2010 end-page: 3136 ident: b0125 article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system publication-title: Appl Energy – volume: 198 year: 2019 ident: b0290 article-title: Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model publication-title: Energy Convers Manage – reference: Ni L-x, Sun K, Wu H-f, Chen Z, Xing Y. A high efficiency step-up DC-DC converter for thermoelectric generator with wide input voltage range. 2012 IEEE International Symposium on Industrial Electronics. IEEE 2012. pp. 52–7. – volume: 261 year: 2020 ident: b0210 article-title: Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously publication-title: Appl Energy – year: 2011 ident: b0225 article-title: Fundamentals of heat and mass transfer – volume: 263 year: 2020 ident: b0135 article-title: Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis publication-title: Appl Energy – volume: 187 start-page: 534 year: 2017 end-page: 563 ident: b0030 article-title: A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology publication-title: Appl Energy – volume: 160 start-page: 93 year: 2018 end-page: 108 ident: b0205 article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation publication-title: Energy Convers Manage – volume: 164 start-page: 243 year: 2018 end-page: 250 ident: b0015 article-title: Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system publication-title: Sol Energy – volume: 36 start-page: 277 year: 2017 end-page: 293 ident: b0195 article-title: Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance publication-title: Environ Prog Sustainable Energy – volume: 173 start-page: 1002 year: 2018 end-page: 1010 ident: b0085 article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study publication-title: Sol Energy – volume: 138 start-page: 682 year: 2017 end-page: 695 ident: b0020 article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints publication-title: Energy – reference: A. Kolahan, S. Maadi, M. Passandideh Fard, M. Sardarabadi. Numerical and experimental investigations on the effect of adding nanoparticles on entropy generation in PVT systems. 17th Conference On Fluid Dynamics, fd20172017. – volume: 148 start-page: 1265 year: 2017 end-page: 1277 ident: b0045 article-title: Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids publication-title: Energy Convers Manage – year: 2006 ident: b0255 article-title: Theory of multicomponent fluids – year: 2011 ident: b0285 article-title: Fluid mechanics – volume: 68 start-page: 751 year: 2014 end-page: 755 ident: b0005 article-title: Study of the thermal and electrical performances of PVT solar hot water system publication-title: Energy Build – volume: 159 start-page: 1234 year: 2018 end-page: 1243 ident: b0325 article-title: Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs) publication-title: Energy – volume: 15 start-page: 1646 year: 2011 end-page: 1668 ident: b0100 article-title: A review on applications and challenges of nanofluids publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 2130 year: 2008 end-page: 2142 ident: b0330 article-title: Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia publication-title: Energy Policy – volume: 134 start-page: 343 year: 2019 end-page: 356 ident: b0105 article-title: Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors publication-title: Renewable Energy – volume: 92 start-page: 187 year: 2018 end-page: 197 ident: b0185 article-title: Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors publication-title: Renew Sustain Energy Rev – volume: 15 year: 2008 ident: b0275 article-title: Numerical investigation of laminar forced convection of nanofluids through circular pipes publication-title: J Enhanced Heat Transfer – volume: 6 start-page: 577 year: 2005 end-page: 588 ident: b0265 article-title: A new thermal conductivity model for nanofluids publication-title: J Nanopart Res – volume: 140 start-page: 167 year: 2017 end-page: 181 ident: b0110 article-title: Thermoelectric generators: a review of applications publication-title: Energy Convers Manage – volume: 81 start-page: 636 year: 2007 end-page: 647 ident: b0200 article-title: Energy analysis of silicon solar cell modules based on an optical model for arbitrary layers publication-title: Sol Energy – volume: 11 start-page: 797 year: 2007 end-page: 817 ident: b0230 article-title: A critical review of convective heat transfer of nanofluids publication-title: Renew Sustain Energy Rev – reference: Brinkman HC. The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys. 20 (1952) 571. – volume: 87 start-page: 686 year: 2015 end-page: 698 ident: b0220 article-title: Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module publication-title: Energy – volume: 73 start-page: 730 year: 2017 end-page: 744 ident: b0115 article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges publication-title: Renew Sustain Energy Rev – volume: 31 start-page: 224 year: 2011 end-page: 229 ident: b0240 article-title: Thermoelectric materials for space and automotive power generation publication-title: MRS Bull – volume: 3 start-page: 320 year: 2013 end-page: 324 ident: b0035 article-title: Performance enhancement of building integrated photovoltaic module using thermoelectric cooling publication-title: Int J Renewable Energy Res (IJRER) – volume: 201 start-page: 178 year: 2020 end-page: 189 ident: b0090 article-title: Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach publication-title: Sol Energy – volume: 173 start-page: 450 year: 2018 end-page: 460 ident: b0160 article-title: The theoretical performance evaluation of hybrid PV-TEG system publication-title: Energy Convers Manage – volume: 10 start-page: 2280 year: 2017 end-page: 2283 ident: b0245 article-title: Figure of merit ZT of a thermoelectric device defined from materials properties publication-title: Energy Environ Sci – reference: Hosseinzadeh, Mohammad, M. Sardarabadi, a.M. Passandideh-Fard. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. (2018). – volume: 238 start-page: 734 year: 2019 end-page: 746 ident: b0050 article-title: Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material publication-title: Appl Energy – volume: 92 start-page: 848 year: 2018 end-page: 882 ident: b0080 article-title: Photovoltaic-Thermal systems (PVT): Technology review and future trends publication-title: Renew Sustain Energy Rev – volume: 52 start-page: 201 year: 2013 end-page: 209 ident: b0130 article-title: A dynamic model for thermoelectric generator applied in waste heat recovery publication-title: Energy – volume: 81 start-page: 473 year: 2018 end-page: 492 ident: b0065 article-title: Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications publication-title: Renew Sustain Energy Rev – volume: 66 start-page: 264 year: 2014 end-page: 272 ident: b0300 article-title: Heris. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) publication-title: Energy – volume: 2018 year: 2018 ident: b0095 article-title: A review on nanofluids: fabrication, stability, and thermophysical properties publication-title: J Nanomater – volume: 9 start-page: 1586 year: 2012 end-page: 1595 ident: b0270 article-title: Entropy generation analysis of nanofluid flow in turbulent and laminar regimes publication-title: J Comput Theor Nanosci – reference: Nasrin R, Rahim NA, Fayaz H, Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renewable Energy. 121 (2018) S0960148118300144. – volume: 162 start-page: 210 year: 2018 end-page: 223 ident: b0025 article-title: Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints publication-title: Energy – volume: 111 start-page: 132 year: 2019 end-page: 144 ident: b0180 article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector publication-title: Renew Sustain Energy Rev – volume: 40 start-page: 15040 year: 2015 end-page: 15051 ident: b0140 article-title: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – an experimental study publication-title: Int J Hydrogen Energy – volume: 1 start-page: 92 year: 2015 end-page: 105 ident: b0235 article-title: Thermoelectric materials: energy conversion between heat and electricity publication-title: J Materiomics – year: 2016 ident: b0295 article-title: Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime publication-title: Renewable Energy – volume: 42 start-page: 306 year: 2015 end-page: 312 ident: b0040 article-title: A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS) publication-title: Renew Sustain Energy Rev – volume: 146 start-page: 68 year: 2017 end-page: 77 ident: b0170 article-title: Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector publication-title: Energy Convers Manage – volume: 115 start-page: 178 year: 2017 end-page: 187 ident: b0060 article-title: Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid publication-title: Appl Therm Eng – volume: 118 start-page: 197 year: 2015 end-page: 208 ident: b0310 article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses publication-title: Sol Energy – volume: 37 start-page: 242 year: 2017 end-page: 247 ident: b0155 article-title: A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator publication-title: Nano Energy – volume: 181 start-page: 108 year: 2019 end-page: 115 ident: b0250 article-title: Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid publication-title: Sol Energy – volume: 206 year: 2020 ident: b0215 article-title: Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis publication-title: Energy Convers Manage – year: 2016 ident: b0320 article-title: Advanced engineering thermodynamics – volume: 186 start-page: 15 year: 2019 end-page: 41 ident: b0075 article-title: Concentrated photovoltaic thermal systems: a component-by-component view on the developments in the design, heat transfer medium and applications publication-title: Energy Convers Manage – volume: 150 start-page: 515 year: 2017 end-page: 531 ident: b0190 article-title: Characterization of PVT systems equipped with nanofluids-based collector from entropy generation publication-title: Energy Convers Manage – volume: 205 year: 2020 ident: b0010 article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis publication-title: Energy Convers Manage – volume: 76 start-page: 1108 year: 2017 end-page: 1121 ident: b0070 article-title: Design and development of compound parabolic concentrating for photovoltaic solar collector publication-title: Renew Sustain Energy Rev – volume: 22 start-page: 120 year: 2016 end-page: 128 ident: b0165 article-title: Large improvement of device performance by a synergistic effect of photovoltaics and thermoelectrics publication-title: Nano Energy – reference: S. Maadi, A. Kolahan, M. Passandideh Fard, M. Sardarabadi. Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, fd20172017. – volume: 166 start-page: 159 year: 2018 end-page: 170 ident: b0175 article-title: Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency publication-title: Sol Energy – volume: 112 start-page: 274 year: 2016 end-page: 287 ident: b0150 article-title: Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system publication-title: Energy Convers Manage – volume: 9 start-page: 1586 year: 2012 ident: 10.1016/j.enconman.2020.113073_b0270 article-title: Entropy generation analysis of nanofluid flow in turbulent and laminar regimes publication-title: J Comput Theor Nanosci doi: 10.1166/jctn.2012.2249 – volume: 159 start-page: 1234 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0325 article-title: Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs) publication-title: Energy doi: 10.1016/j.energy.2018.06.089 – volume: 205 year: 2020 ident: 10.1016/j.enconman.2020.113073_b0010 article-title: Nanofluid based photovoltaic thermal systems integrated with phase change materials: numerical simulation and thermodynamic analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112384 – volume: 160 start-page: 93 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0205 article-title: Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.01.006 – volume: 37 start-page: 242 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0155 article-title: A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.023 – volume: 111 start-page: 132 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0180 article-title: Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.03.024 – volume: 115 start-page: 178 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0060 article-title: Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.12.104 – volume: 150 start-page: 515 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0190 article-title: Characterization of PVT systems equipped with nanofluids-based collector from entropy generation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.08.039 – ident: 10.1016/j.enconman.2020.113073_b0305 doi: 10.1016/j.energy.2018.01.073 – volume: 138 start-page: 682 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0020 article-title: Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints publication-title: Energy doi: 10.1016/j.energy.2017.07.046 – volume: 173 start-page: 1002 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0085 article-title: Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: an experimental study publication-title: Sol Energy doi: 10.1016/j.solener.2018.07.051 – volume: 3 start-page: 320 year: 2013 ident: 10.1016/j.enconman.2020.113073_b0035 article-title: Performance enhancement of building integrated photovoltaic module using thermoelectric cooling publication-title: Int J Renewable Energy Res (IJRER) – volume: 1 start-page: 92 year: 2015 ident: 10.1016/j.enconman.2020.113073_b0235 article-title: Thermoelectric materials: energy conversion between heat and electricity publication-title: J Materiomics doi: 10.1016/j.jmat.2015.01.001 – year: 2011 ident: 10.1016/j.enconman.2020.113073_b0225 – volume: 187 start-page: 534 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0030 article-title: A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.087 – volume: 40 start-page: 15040 year: 2015 ident: 10.1016/j.enconman.2020.113073_b0140 article-title: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – an experimental study publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.023 – volume: 134 start-page: 343 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0105 article-title: Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors publication-title: Renewable Energy doi: 10.1016/j.renene.2018.10.105 – ident: 10.1016/j.enconman.2020.113073_b0315 – volume: 68 start-page: 751 year: 2014 ident: 10.1016/j.enconman.2020.113073_b0005 article-title: Study of the thermal and electrical performances of PVT solar hot water system publication-title: Energy Build doi: 10.1016/j.enbuild.2012.09.032 – year: 2006 ident: 10.1016/j.enconman.2020.113073_b0255 – volume: 42 start-page: 306 year: 2015 ident: 10.1016/j.enconman.2020.113073_b0040 article-title: A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS) publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.009 – year: 2016 ident: 10.1016/j.enconman.2020.113073_b0295 article-title: Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime publication-title: Renewable Energy doi: 10.1016/j.renene.2016.07.004 – volume: 6 start-page: 577 year: 2005 ident: 10.1016/j.enconman.2020.113073_b0265 article-title: A new thermal conductivity model for nanofluids publication-title: J Nanopart Res doi: 10.1007/s11051-004-3170-5 – volume: 261 year: 2020 ident: 10.1016/j.enconman.2020.113073_b0210 article-title: Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114380 – volume: 87 start-page: 686 year: 2015 ident: 10.1016/j.enconman.2020.113073_b0220 article-title: Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module publication-title: Energy doi: 10.1016/j.energy.2015.05.040 – ident: 10.1016/j.enconman.2020.113073_b0120 doi: 10.1109/ISIE.2012.6237058 – ident: 10.1016/j.enconman.2020.113073_b0260 doi: 10.1063/1.1700493 – volume: 118 start-page: 197 year: 2015 ident: 10.1016/j.enconman.2020.113073_b0310 article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses publication-title: Sol Energy doi: 10.1016/j.solener.2015.04.038 – volume: 238 start-page: 734 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0050 article-title: Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.103 – volume: 146 start-page: 68 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0170 article-title: Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.05.017 – volume: 181 start-page: 108 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0250 article-title: Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid publication-title: Sol Energy doi: 10.1016/j.solener.2019.01.088 – volume: 73 start-page: 730 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0115 article-title: A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.177 – volume: 198 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0290 article-title: Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.111781 – volume: 15 start-page: 1646 year: 2011 ident: 10.1016/j.enconman.2020.113073_b0100 article-title: A review on applications and challenges of nanofluids publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.11.035 – volume: 112 start-page: 274 year: 2016 ident: 10.1016/j.enconman.2020.113073_b0150 article-title: Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.12.069 – volume: 36 start-page: 2130 year: 2008 ident: 10.1016/j.enconman.2020.113073_b0330 article-title: Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.016 – volume: 81 start-page: 473 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0065 article-title: Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.08.013 – volume: 166 start-page: 159 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0175 article-title: Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency publication-title: Sol Energy doi: 10.1016/j.solener.2018.03.030 – volume: 81 start-page: 636 year: 2007 ident: 10.1016/j.enconman.2020.113073_b0200 article-title: Energy analysis of silicon solar cell modules based on an optical model for arbitrary layers publication-title: Sol Energy doi: 10.1016/j.solener.2006.08.014 – volume: 263 year: 2020 ident: 10.1016/j.enconman.2020.113073_b0135 article-title: Application of simultaneous thermoelectric cooling and heating to improve the performance of a solar still: an experimental study and exergy analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114581 – ident: 10.1016/j.enconman.2020.113073_b0280 – volume: 22 start-page: 120 year: 2016 ident: 10.1016/j.enconman.2020.113073_b0165 article-title: Large improvement of device performance by a synergistic effect of photovoltaics and thermoelectrics publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.018 – volume: 15 year: 2008 ident: 10.1016/j.enconman.2020.113073_b0275 article-title: Numerical investigation of laminar forced convection of nanofluids through circular pipes publication-title: J Enhanced Heat Transfer doi: 10.1615/JEnhHeatTransf.v15.i4.60 – year: 2011 ident: 10.1016/j.enconman.2020.113073_b0285 – volume: 173 start-page: 450 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0160 article-title: The theoretical performance evaluation of hybrid PV-TEG system publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.07.104 – volume: 10 start-page: 2280 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0245 article-title: Figure of merit ZT of a thermoelectric device defined from materials properties publication-title: Energy Environ Sci doi: 10.1039/C7EE02007D – volume: 140 start-page: 167 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0110 article-title: Thermoelectric generators: a review of applications publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.02.070 – volume: 31 start-page: 224 year: 2011 ident: 10.1016/j.enconman.2020.113073_b0240 article-title: Thermoelectric materials for space and automotive power generation publication-title: MRS Bull doi: 10.1557/mrs2006.49 – volume: 186 start-page: 15 year: 2019 ident: 10.1016/j.enconman.2020.113073_b0075 article-title: Concentrated photovoltaic thermal systems: a component-by-component view on the developments in the design, heat transfer medium and applications publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.02.052 – volume: 2018 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0095 article-title: A review on nanofluids: fabrication, stability, and thermophysical properties publication-title: J Nanomater doi: 10.1155/2018/6978130 – year: 2016 ident: 10.1016/j.enconman.2020.113073_b0320 – volume: 206 year: 2020 ident: 10.1016/j.enconman.2020.113073_b0215 article-title: Photovoltaic thermal module and solar thermal collector connected in series: Energy and exergy analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112479 – volume: 164 start-page: 243 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0015 article-title: Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic/thermal system publication-title: Sol Energy doi: 10.1016/j.solener.2018.02.055 – volume: 92 start-page: 848 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0080 article-title: Photovoltaic-Thermal systems (PVT): Technology review and future trends publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.067 – ident: 10.1016/j.enconman.2020.113073_b0055 doi: 10.1016/j.renene.2018.01.014 – volume: 148 start-page: 1265 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0045 article-title: Performance of a parabolic trough concentrating photovoltaic/thermal system: effects of flow regime, design parameters, and using nanofluids publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.06.075 – volume: 92 start-page: 187 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0185 article-title: Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.061 – volume: 11 start-page: 797 year: 2007 ident: 10.1016/j.enconman.2020.113073_b0230 article-title: A critical review of convective heat transfer of nanofluids publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2005.06.005 – volume: 76 start-page: 1108 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0070 article-title: Design and development of compound parabolic concentrating for photovoltaic solar collector publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.127 – volume: 36 start-page: 277 year: 2017 ident: 10.1016/j.enconman.2020.113073_b0195 article-title: Optical and thermal modeling of a photovoltaic module and experimental evaluation of the modeling performance publication-title: Environ Prog Sustainable Energy doi: 10.1002/ep.12493 – volume: 162 start-page: 210 year: 2018 ident: 10.1016/j.enconman.2020.113073_b0025 article-title: Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints publication-title: Energy doi: 10.1016/j.energy.2018.07.069 – volume: 52 start-page: 201 year: 2013 ident: 10.1016/j.enconman.2020.113073_b0130 article-title: A dynamic model for thermoelectric generator applied in waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2013.01.040 – volume: 66 start-page: 264 year: 2014 ident: 10.1016/j.enconman.2020.113073_b0300 article-title: Heris. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) publication-title: Energy doi: 10.1016/j.energy.2014.01.102 – volume: 201 start-page: 178 year: 2020 ident: 10.1016/j.enconman.2020.113073_b0090 article-title: Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach publication-title: Sol Energy doi: 10.1016/j.solener.2020.02.096 – volume: 87 start-page: 3131 year: 2010 ident: 10.1016/j.enconman.2020.113073_b0125 article-title: Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.02.013 |
| SSID | ssj0003506 |
| Score | 2.5417707 |
| Snippet | [Display omitted]
•A semi-3D transient code is developed to study feasibility of PVT-TEG system.•The performance of PVT-TEG and PVT system are studied... Thermoelectric generators (TEGs) can produce electricity from the temperature gradients. A combination of TEG with photovoltaic thermal (PVT) systems can be a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113073 |
| SubjectTerms | administrative management Algorithms Aluminum Aluminum oxide Aluminum-oxide/water (Al2O3/water) nanofluid Computer simulation computer software correlation Electric power electricity Energy and exergy analysis Energy efficiency equations Exergy exhibitions Inlet temperature Mathematical models Nanofluids Parametric analysis Performance evaluation Photovoltaic cells Photovoltaic thermal system (PVT) Photovoltaics Temperature Temperature gradients temperature profiles Thermodynamics Thermoelectric generators Thermoelectric generators (TEGs) Thermoelectricity Working fluids |
| Title | Semi-3D transient simulation of a nanofluid-base photovoltaic thermal system integrated with a thermoelectric generator |
| URI | https://dx.doi.org/10.1016/j.enconman.2020.113073 https://www.proquest.com/docview/2449676431 https://www.proquest.com/docview/2498287437 |
| Volume | 220 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcmkPCCioC6VyJa7uJrETx8eqUC1U9FIq9Wb5s03VTVY0K278dmacZClIqAeOSWbkyGPPPCczbwj5ELmxwpuKuRgdE8E6Zl1pmYTgELyyhUw83V8vqsWV-HJdXm-R06kWBtMqR98_-PTkrcc783E256ummV8is0utYNEh7M0lFvwKIbGLwfHP32kevEz9NVGYofSjKuG7Y-SKbJcGeVCL1N4kk_xfAeovV53iz9kL8nwEjvRkeLeXZCu0r8juIzrBPfLjMiwbxj_SHgMQFjrSh2Y59ueiXaSGtqbt4v268QzDF13ddn0HDqo3jaMIBZcwxEDuTDdEEp7ix1pQTgLd0DgH5G8SYzWc2V-Tq7NP304XbGyswByXvAenoqxSBpBb7m1eFZYHL-uMKx8AbTiAaD6LShWZES4XtjBRVFxANI21DaHy_A3Zbrs27BNaCaN8Xdis9nCwgsOmMaZW1rgoM1OoYkbKaTa1G1nHsfnFvZ7Sy-70ZAWNVtCDFWZkvtFbDbwbT2qoyVj6jxWkITg8qXswWVePe_hBA_BRlQTEls_I0eYx7D78pWLa0K1RRqWOAVy-_Y_h35EdvMI0lLw8INv993V4D1int4dpMR-SZyefzxcXvwArCAI9 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFMsFDASV3cT24njIypUC7S9tJV6s_ykqbrJimbVW387M3ksBQn1wDWekSOPPfNNMv6GkI9JWCeDLZlPyTMZnWfOF44pCA4xaMdVz9N9eFQuTuW3s-Jsi-xNd2GwrHL0_YNP7731-GQ-ruZ8VdfzY2R2qTRsOoS9uarukfuy4AozsN2b33UeougbbKI0Q_Fb14QvdpEssllaJELlfX-TTIl_Rai_fHUfgPafkMcjcqSfhpd7SrZi84w8usUn-JxcH8dlzcRn2mEEwpuO9Kpejg26aJuopY1t2nS5rgPD-EVX523XgofqbO0pYsElTDGwO9MNk0Sg-LUWlHuBduicA_I_espqSNpfkNP9Lyd7CzZ2VmBeKNGBV9FOawvQLQ8uL7kTMagqEzpEgBseMFrIktY8s9Ln0nGbZCkkhNNUuRjLIF6S7aZt4itCS2l1qLjLqgCZFWSb1tpKO-uTyizXfEaKaTWNH2nHsfvFpZnqyy7MZAWDVjCDFWZkvtFbDcQbd2royVjmjy1kIDrcqbszWdeMh_jKAPLRpQLIls_Ih80wHD_8p2Kb2K5RRvctA4R6_R_TvycPFieHB-bg69H3N-QhjmBNSl7skO3u5zq-BeDTuXf9xv4FEkgD0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-3D+transient+simulation+of+a+nanofluid-base+photovoltaic+thermal+system+integrated+with+a+thermoelectric+generator&rft.jtitle=Energy+conversion+and+management&rft.au=Kolahan%2C+Arman&rft.au=Maadi%2C+Seyed+Reza&rft.au=Kazemian%2C+Arash&rft.au=Schenone%2C+Corrado&rft.date=2020-09-15&rft.issn=0196-8904&rft.volume=220&rft.spage=113073&rft_id=info:doi/10.1016%2Fj.enconman.2020.113073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2020_113073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |