Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states

To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxome...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 26; pp. 1188 - 1193
Main Authors Xia, Kang, Yatabe, Takafumi, Yamaguchi, Kazuya, Suzuki, Kosuke
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 02.07.2024
Subjects
Online AccessGet full text
ISSN1477-9226
1477-9234
1477-9234
DOI10.1039/d4dt01218f

Cover

Abstract To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW 9 O 34 ] 10− ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. We present a protocol for preparing metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM) modification with enhanced stability and catalytic activity. The electronic states can be modulated by POMs and supports.
AbstractList To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW 9 O 34 ] 10− ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) multidentate polyoxometalate (POM, [SiW O ] ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10−) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW 9 O 34 ] 10− ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. We present a protocol for preparing metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM) modification with enhanced stability and catalytic activity. The electronic states can be modulated by POMs and supports.
Author Xia, Kang
Suzuki, Kosuke
Yatabe, Takafumi
Yamaguchi, Kazuya
AuthorAffiliation School of Engineering
Department of Applied Chemistry
The University of Tokyo
AuthorAffiliation_xml – sequence: 0
  name: School of Engineering
– sequence: 0
  name: The University of Tokyo
– sequence: 0
  name: Department of Applied Chemistry
Author_xml – sequence: 1
  givenname: Kang
  surname: Xia
  fullname: Xia, Kang
– sequence: 2
  givenname: Takafumi
  surname: Yatabe
  fullname: Yatabe, Takafumi
– sequence: 3
  givenname: Kazuya
  surname: Yamaguchi
  fullname: Yamaguchi, Kazuya
– sequence: 4
  givenname: Kosuke
  surname: Suzuki
  fullname: Suzuki, Kosuke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38885120$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLAzEQB_AgFVsfF-_KghcRqnmtmxzFNyhe9LxksxNMySY1yaJ-e7etVhBPSchvhmH-22jkgweE9gk-JZjJs5a3GRNKhNlAE8Kraiop46P1nZ6P0XZKM4wpxSXdQmMmhCgJxRNUP_Yu2xZ8VhmKeXCf4SN0kJVbvLvQWmO1yjb4Iphi-VF45cNcxWy1g1S82_xa5N6rxkEBDnSOwVtdpEXHtIs2jXIJ9r7PHfRyc_18eTd9eLq9v7x4mGpWsTxlRAljAFqMpdG0KY0oDWfaMKwrqSkTjRRSkwY0F5jwVhlQlaQtaRgDXrIddLzqO4_hrYeU684mDc4pD6FPNcMVHnzF8ECP_tBZ6KMfplsoTqWgkg_q8Fv1TQdtPY-2U_Gz_lndAE5WQMeQUgSzJgTXi1zqK371vMzlZsD4D9Y2L9eao7Lu_5KDVUlMet36N2r2BTukmro
CitedBy_id crossref_primary_10_1039_D4MR00130C
crossref_primary_10_1039_D4SC04304A
Cites_doi 10.1039/c2cs35126a
10.1038/s41467-024-45066-9
10.1038/nchem.1476
10.1039/df9511100055
10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0
10.26599/POM.2023.9140037
10.1002/smll.202004381
10.1021/ja810045y
10.1021/cm4022479
10.1038/nnano.2016.233
10.1021/jacs.4c01661
10.1007/978-3-662-12004-0
10.1016/j.ccr.2024.215687
10.1021/acs.chemrev.8b00341
10.1039/c2jm33128d
10.1021/acs.inorgchem.8b03013
10.1039/c2cs35190k
10.1021/cm7020142
10.1021/ja00097a047
10.1016/j.ccr.2022.214673
10.1021/jacs.7b08903
10.1039/C6CS00724D
10.1021/acsnano.0c10756
10.1021/ja807160f
10.1039/C7DT04728B
10.1039/C3CS60218D
10.1039/C5RA12556A
10.1039/D2CC02472A
10.1002/anie.201000576
10.1038/s41467-019-13679-0
10.1002/anie.200901650
10.1021/acs.chemrev.7b00776
10.1021/acs.chemrev.5b00193
10.1038/s41557-023-01234-w
10.1021/acs.chemrev.8b00733
10.1021/acs.chemrev.0c00237
10.1039/C4EE03749A
10.1002/anie.202205873
10.1002/anie.202005629
10.1021/acscatal.1c00903
10.1021/acsomega.0c01605
10.1038/s41557-022-01018-8
10.1016/j.cct.2003.08.003
10.1039/C5CY00285K
10.1021/acs.chemrev.9b00137
10.1039/C3NR03806H
10.1002/anie.201205923
10.1021/acs.inorgchem.6b02167
10.1038/nmat4281
10.1021/cr960403a
10.1039/b921696k
10.1021/jacs.6b10978
10.1021/acs.accounts.6b00506
10.1016/j.ccr.2024.215730
10.1002/anie.202214506
10.1016/j.colsurfb.2019.110522
10.1007/s10562-007-9388-y
10.1021/ic300431a
10.1039/b507411h
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d4dt01218f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 1193
ExternalDocumentID 38885120
10_1039_D4DT01218F
d4dt01218f
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c373t-31a8ffeed009fc2b5f85f43cf30c79c238b989c1bec48014dafea792d1b33e453
ISSN 1477-9226
1477-9234
IngestDate Fri Jul 11 16:11:13 EDT 2025
Mon Jun 30 05:12:36 EDT 2025
Thu Apr 03 07:04:32 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Tue Jul 01 04:27:41 EDT 2025
Tue Dec 17 20:58:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-31a8ffeed009fc2b5f85f43cf30c79c238b989c1bec48014dafea792d1b33e453
Notes https://doi.org/10.1039/d4dt01218f
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7661-4936
0000-0002-9376-8953
0000-0001-5504-4762
0000-0002-8123-1462
OpenAccessLink https://doi.org/10.1039/d4dt01218f
PMID 38885120
PQID 3074298294
PQPubID 2047498
PageCount 6
ParticipantIDs proquest_miscellaneous_3070792730
proquest_journals_3074298294
pubmed_primary_38885120
crossref_primary_10_1039_D4DT01218F
rsc_primary_d4dt01218f
crossref_citationtrail_10_1039_D4DT01218F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-02
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (D4DT01218F/cit1b/1) 2017; 46
Neyman (D4DT01218F/cit8c/1) 2008; 130
Zhang (D4DT01218F/cit5d/1) 2021; 17
Zhang (D4DT01218F/cit8h/1) 2017; 56
Liu (D4DT01218F/cit2b/1) 2017; 139
Shifrina (D4DT01218F/cit3a/1) 2020; 120
Daima (D4DT01218F/cit8g/1) 2014; 6
Rizzello (D4DT01218F/cit12b/1) 2014; 43
Tsunoyama (D4DT01218F/cit13/1) 2009; 131
Sadakane (D4DT01218F/cit6b/1) 1998; 98
Wang (D4DT01218F/cit10b/1) 2024; 508
Sunada (D4DT01218F/cit10a/1) 2022; 469
Zhang (D4DT01218F/cit7e/1) 2023; 2
Chernousova (D4DT01218F/cit12a/1) 2012; 52
Dong (D4DT01218F/cit12c/1) 2015; 5
Maayan (D4DT01218F/cit11b/1) 2008; 123
Liu (D4DT01218F/cit8f/1) 2015; 5
Colliard (D4DT01218F/cit10d/1) 2022; 14
Pope (D4DT01218F/cit6a/1) 1983
Zhang (D4DT01218F/cit8e/1) 2007; 19
Kitano (D4DT01218F/cit17a/1) 2012; 4
Ye (D4DT01218F/cit17b/1) 2019; 10
Lu (D4DT01218F/cit4b/1) 2021; 11
Wang (D4DT01218F/cit8i/1) 2012; 51
Yonesato (D4DT01218F/cit16a/1) 2023; 15
Xia (D4DT01218F/cit9b/1) 2024; 15
Yuan (D4DT01218F/cit15b/1) 2010; 49
Miras (D4DT01218F/cit6c/1) 2012; 41
Martín (D4DT01218F/cit8d/1) 2019; 58
Streb (D4DT01218F/cit8l/1) 2009; 48
Kikkawa (D4DT01218F/cit11c/1) 2022; 58
Xia (D4DT01218F/cit9a/1) 2022; 61
Chen (D4DT01218F/cit15a/1) 2010; 12
Heuer-Jungemann (D4DT01218F/cit2a/1) 2019; 119
Turkevich (D4DT01218F/cit14/1) 1951; 11
Liu (D4DT01218F/cit10c/1) 2024; 508
Gao (D4DT01218F/cit3b/1) 2021; 121
Maayan (D4DT01218F/cit11a/1) 2005
Wang (D4DT01218F/cit7b/1) 2012; 41
Niu (D4DT01218F/cit4a/1) 2014; 26
Ermini (D4DT01218F/cit5e/1) 2021; 15
Mitchell (D4DT01218F/cit7c/1) 2012; 22
Liu (D4DT01218F/cit1d/1) 2018; 118
Rossi (D4DT01218F/cit5b/1) 2018; 47
Xia (D4DT01218F/cit7d/1) 2023; 62
Koizumi (D4DT01218F/cit16b/1) 2024; 146
Ji (D4DT01218F/cit6d/1) 2015; 8
Troupis (D4DT01218F/cit8b/1) 2002; 41
Guo (D4DT01218F/cit17c/1) 2017; 139
Yang (D4DT01218F/cit1c/1) 2015; 115
Finke (D4DT01218F/cit7a/1) 2004; 248
Repp (D4DT01218F/cit8m/1) 2020; 5
Martin (D4DT01218F/cit8n/1) 2020; 59
Lin (D4DT01218F/cit8a/1) 1994; 116
Umapathi (D4DT01218F/cit8j/1) 2019; 184
Linic (D4DT01218F/cit1a/1) 2015; 14
Chen (D4DT01218F/cit5a/1) 2017; 50
Kang (D4DT01218F/cit5c/1) 2019; 119
Wang (D4DT01218F/cit8k/1) 2017; 12
References_xml – issn: 1983
  publication-title: Heteropoly and Isopoly Oxometalates
  doi: Pope
– volume: 41
  start-page: 7479
  year: 2012
  ident: D4DT01218F/cit7b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35126a
– volume: 15
  start-page: 851
  year: 2024
  ident: D4DT01218F/cit9b/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45066-9
– volume: 4
  start-page: 934
  year: 2012
  ident: D4DT01218F/cit17a/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 11
  start-page: 55
  year: 1951
  ident: D4DT01218F/cit14/1
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9511100055
– volume: 41
  start-page: 1911
  year: 2002
  ident: D4DT01218F/cit8b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0
– volume: 2
  start-page: 9140037
  year: 2023
  ident: D4DT01218F/cit7e/1
  publication-title: Polyoxometalates
  doi: 10.26599/POM.2023.9140037
– volume: 17
  start-page: 2004381
  year: 2021
  ident: D4DT01218F/cit5d/1
  publication-title: Small
  doi: 10.1002/smll.202004381
– volume: 131
  start-page: 7086
  year: 2009
  ident: D4DT01218F/cit13/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja810045y
– volume: 26
  start-page: 72
  year: 2014
  ident: D4DT01218F/cit4a/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm4022479
– volume: 12
  start-page: 170
  year: 2017
  ident: D4DT01218F/cit8k/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.233
– volume: 146
  start-page: 13658
  year: 2024
  ident: D4DT01218F/cit16b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c01661
– volume-title: Heteropoly and Isopoly Oxometalates
  year: 1983
  ident: D4DT01218F/cit6a/1
  doi: 10.1007/978-3-662-12004-0
– volume: 508
  start-page: 215687
  year: 2024
  ident: D4DT01218F/cit10c/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215687
– volume: 119
  start-page: 664
  year: 2019
  ident: D4DT01218F/cit5c/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00341
– volume: 22
  start-page: 18091
  year: 2012
  ident: D4DT01218F/cit7c/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33128d
– volume: 58
  start-page: 4110
  year: 2019
  ident: D4DT01218F/cit8d/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b03013
– volume: 41
  start-page: 403
  year: 2012
  ident: D4DT01218F/cit6c/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35190k
– volume: 19
  start-page: 5821
  year: 2007
  ident: D4DT01218F/cit8e/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm7020142
– volume: 116
  start-page: 8335
  year: 1994
  ident: D4DT01218F/cit8a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00097a047
– volume: 469
  start-page: 214673
  year: 2022
  ident: D4DT01218F/cit10a/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214673
– volume: 139
  start-page: 17964
  year: 2017
  ident: D4DT01218F/cit17c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08903
– volume: 46
  start-page: 4774
  year: 2017
  ident: D4DT01218F/cit1b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00724D
– volume: 15
  start-page: 6008
  year: 2021
  ident: D4DT01218F/cit5e/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10756
– volume: 130
  start-page: 16480
  year: 2008
  ident: D4DT01218F/cit8c/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807160f
– volume: 47
  start-page: 5889
  year: 2018
  ident: D4DT01218F/cit5b/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04728B
– volume: 43
  start-page: 1501
  year: 2014
  ident: D4DT01218F/cit12b/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60218D
– volume: 5
  start-page: 74447
  year: 2015
  ident: D4DT01218F/cit8f/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12556A
– volume: 58
  start-page: 9018
  year: 2022
  ident: D4DT01218F/cit11c/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC02472A
– volume: 49
  start-page: 4054
  year: 2010
  ident: D4DT01218F/cit15b/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000576
– volume: 10
  start-page: 5653
  year: 2019
  ident: D4DT01218F/cit17b/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13679-0
– volume: 48
  start-page: 6490
  year: 2009
  ident: D4DT01218F/cit8l/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901650
– volume: 118
  start-page: 4981
  year: 2018
  ident: D4DT01218F/cit1d/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00776
– volume: 115
  start-page: 10410
  year: 2015
  ident: D4DT01218F/cit1c/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00193
– volume: 15
  start-page: 940
  year: 2023
  ident: D4DT01218F/cit16a/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-023-01234-w
– volume: 119
  start-page: 4819
  year: 2019
  ident: D4DT01218F/cit2a/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00733
– volume: 121
  start-page: 834
  year: 2021
  ident: D4DT01218F/cit3b/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00237
– volume: 8
  start-page: 776
  year: 2015
  ident: D4DT01218F/cit6d/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03749A
– volume: 61
  start-page: e202205873
  year: 2022
  ident: D4DT01218F/cit9a/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202205873
– volume: 59
  start-page: 14331
  year: 2020
  ident: D4DT01218F/cit8n/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005629
– volume: 11
  start-page: 6020
  year: 2021
  ident: D4DT01218F/cit4b/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00903
– volume: 5
  start-page: 25036
  year: 2020
  ident: D4DT01218F/cit8m/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01605
– volume: 14
  start-page: 1357
  year: 2022
  ident: D4DT01218F/cit10d/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-022-01018-8
– volume: 248
  start-page: 135
  year: 2004
  ident: D4DT01218F/cit7a/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.cct.2003.08.003
– volume: 5
  start-page: 2554
  year: 2015
  ident: D4DT01218F/cit12c/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00285K
– volume: 120
  start-page: 1350
  year: 2020
  ident: D4DT01218F/cit3a/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00137
– volume: 6
  start-page: 758
  year: 2014
  ident: D4DT01218F/cit8g/1
  publication-title: Nanoscale
  doi: 10.1039/C3NR03806H
– volume: 52
  start-page: 1636
  year: 2012
  ident: D4DT01218F/cit12a/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205923
– volume: 56
  start-page: 2400
  year: 2017
  ident: D4DT01218F/cit8h/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b02167
– volume: 14
  start-page: 567
  year: 2015
  ident: D4DT01218F/cit1a/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4281
– volume: 98
  start-page: 219
  year: 1998
  ident: D4DT01218F/cit6b/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr960403a
– volume: 12
  start-page: 414
  year: 2010
  ident: D4DT01218F/cit15a/1
  publication-title: Green Chem.
  doi: 10.1039/b921696k
– volume: 139
  start-page: 2122
  year: 2017
  ident: D4DT01218F/cit2b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10978
– volume: 50
  start-page: 310
  year: 2017
  ident: D4DT01218F/cit5a/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00506
– volume: 508
  start-page: 215730
  year: 2024
  ident: D4DT01218F/cit10b/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215730
– volume: 62
  start-page: e202214506
  year: 2023
  ident: D4DT01218F/cit7d/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202214506
– volume: 184
  start-page: 110522
  year: 2019
  ident: D4DT01218F/cit8j/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2019.110522
– volume: 123
  start-page: 41
  year: 2008
  ident: D4DT01218F/cit11b/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-007-9388-y
– volume: 51
  start-page: 7436
  year: 2012
  ident: D4DT01218F/cit8i/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300431a
– start-page: 4595
  year: 2005
  ident: D4DT01218F/cit11a/1
  publication-title: Chem. Commun.
  doi: 10.1039/b507411h
SSID ssj0022052
Score 2.4638531
Snippet To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1188
SubjectTerms Catalytic activity
Electron states
Nanoparticles
Palladium
Polyoxometallates
Silver
Title Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states
URI https://www.ncbi.nlm.nih.gov/pubmed/38885120
https://www.proquest.com/docview/3074298294
https://www.proquest.com/docview/3070792730
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaE9AAXhlchpTBi4MJ0Aonkl46dpp3yvJDO5OaRZInplNidxp6h-WX8PFYP20qbQ-HixJIdx9619tuVdj-E3kVprERK2VgkioODYojcdUzHTKVUKkpEKk0c8tv35PQs-ryIF4PBn2DVUlOLD3K9Na_kf6QKbSBXkyX7D5LtfhQa4DvIF7YgYdjeScY2e7aw2UPK0C1cV7-rpQI4bfaXVWGWAXWQ0HYclLwEN9mvhvNR2MblTwWMODbNaBUC1xk39NOGUaKlF1_ZaAIvbcWJPqi4UYrCcUbJA9nSyrXyXZz7VDRvOM24w2suXA1gfsF1szzve5b8pyFtcaesm-vOlvxo1o0j3v5SrZoLFQYxSGQXvAZxzWlkZpIJ8VWxwzYf6_SDtass7JWShEOvyWfIAjtuSqnSrUZiQk2N1Vk0m5uCdtlJbwrb6f8bFrJbt2hn7CnL-3PvoR2SAmobop3D4_mnr52zTyaW7am7sbY0LmUf-7M3wdAtDwfwzlXLQ2PxzvwReugdFXzoVOUxGqjyCbp_1AryKcpD7cM3tA-H2ocrjW0H3tA-bLQPe-3DvfZhp33P0NnJ8fzodOzpOsaSprQGa84zrQFzAWzXkohYZ7GOqNR0IlMmARsKljE5hVHD1iwquFY8ZaSYCkpVFNNdNCyrUr1AWCU6SQQDb14Dwo0zLkQkEgofEnaFGqH37XPLpa9lbyhVfuW3JTRCb7tjL10Fl61H7bePP_cvyiqnJnDEMsKiEXrTdcNjNpNqvFRVY4-ZwE2AoRyh505s3WVoloFDQ6BnF-TYNRdRUdur6r07_beX6EH_zuyjYX3VqFcAhWvx2mvdXwa5ucE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidentate+polyoxometalate+modification+of+metal+nanoparticles+with+tunable+electronic+states&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Xia%2C+Kang&rft.au=Yatabe%2C+Takafumi&rft.au=Yamaguchi%2C+Kazuya&rft.au=Suzuki%2C+Kosuke&rft.date=2024-07-02&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=26&rft.spage=11088&rft.epage=11093&rft_id=info:doi/10.1039%2FD4DT01218F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4DT01218F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon