Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states
To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxome...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 53; no. 26; pp. 1188 - 1193 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
02.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-9226 1477-9234 1477-9234 |
DOI | 10.1039/d4dt01218f |
Cover
Abstract | To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru)
via
multidentate polyoxometalate (POM, [SiW
9
O
34
]
10−
) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states
via
a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.
We present a protocol for preparing metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru)
via
multidentate polyoxometalate (POM) modification with enhanced stability and catalytic activity. The electronic states can be modulated by POMs and supports. |
---|---|
AbstractList | To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru)
via
multidentate polyoxometalate (POM, [SiW
9
O
34
]
10−
) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states
via
a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) multidentate polyoxometalate (POM, [SiW O ] ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification.To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10-) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW9O34]10−) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research subject. Herein, we present a viable protocol for preparing small metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM, [SiW 9 O 34 ] 10− ) modification. In addition to enhancing stability, the POMs can modulate the electronic states of metal nanoparticles. Moreover, immobilization of the POM-modified metal nanoparticles on solid supports enables further tuning of the electronic states via a cooperative effect between the POMs and the supports without altering the particle size. Notably, POM-modified Pd nanoparticles on carbon support exhibited superior catalytic activity and selectivity in hydrogenation reactions in comparison with the catalyst without the POM modification. We present a protocol for preparing metal nanoparticles (<5 nm; Ag, Pd, Pt, and Ru) via multidentate polyoxometalate (POM) modification with enhanced stability and catalytic activity. The electronic states can be modulated by POMs and supports. |
Author | Xia, Kang Suzuki, Kosuke Yatabe, Takafumi Yamaguchi, Kazuya |
AuthorAffiliation | School of Engineering Department of Applied Chemistry The University of Tokyo |
AuthorAffiliation_xml | – sequence: 0 name: School of Engineering – sequence: 0 name: The University of Tokyo – sequence: 0 name: Department of Applied Chemistry |
Author_xml | – sequence: 1 givenname: Kang surname: Xia fullname: Xia, Kang – sequence: 2 givenname: Takafumi surname: Yatabe fullname: Yatabe, Takafumi – sequence: 3 givenname: Kazuya surname: Yamaguchi fullname: Yamaguchi, Kazuya – sequence: 4 givenname: Kosuke surname: Suzuki fullname: Suzuki, Kosuke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38885120$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLAzEQB_AgFVsfF-_KghcRqnmtmxzFNyhe9LxksxNMySY1yaJ-e7etVhBPSchvhmH-22jkgweE9gk-JZjJs5a3GRNKhNlAE8Kraiop46P1nZ6P0XZKM4wpxSXdQmMmhCgJxRNUP_Yu2xZ8VhmKeXCf4SN0kJVbvLvQWmO1yjb4Iphi-VF45cNcxWy1g1S82_xa5N6rxkEBDnSOwVtdpEXHtIs2jXIJ9r7PHfRyc_18eTd9eLq9v7x4mGpWsTxlRAljAFqMpdG0KY0oDWfaMKwrqSkTjRRSkwY0F5jwVhlQlaQtaRgDXrIddLzqO4_hrYeU684mDc4pD6FPNcMVHnzF8ECP_tBZ6KMfplsoTqWgkg_q8Fv1TQdtPY-2U_Gz_lndAE5WQMeQUgSzJgTXi1zqK371vMzlZsD4D9Y2L9eao7Lu_5KDVUlMet36N2r2BTukmro |
CitedBy_id | crossref_primary_10_1039_D4MR00130C crossref_primary_10_1039_D4SC04304A |
Cites_doi | 10.1039/c2cs35126a 10.1038/s41467-024-45066-9 10.1038/nchem.1476 10.1039/df9511100055 10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0 10.26599/POM.2023.9140037 10.1002/smll.202004381 10.1021/ja810045y 10.1021/cm4022479 10.1038/nnano.2016.233 10.1021/jacs.4c01661 10.1007/978-3-662-12004-0 10.1016/j.ccr.2024.215687 10.1021/acs.chemrev.8b00341 10.1039/c2jm33128d 10.1021/acs.inorgchem.8b03013 10.1039/c2cs35190k 10.1021/cm7020142 10.1021/ja00097a047 10.1016/j.ccr.2022.214673 10.1021/jacs.7b08903 10.1039/C6CS00724D 10.1021/acsnano.0c10756 10.1021/ja807160f 10.1039/C7DT04728B 10.1039/C3CS60218D 10.1039/C5RA12556A 10.1039/D2CC02472A 10.1002/anie.201000576 10.1038/s41467-019-13679-0 10.1002/anie.200901650 10.1021/acs.chemrev.7b00776 10.1021/acs.chemrev.5b00193 10.1038/s41557-023-01234-w 10.1021/acs.chemrev.8b00733 10.1021/acs.chemrev.0c00237 10.1039/C4EE03749A 10.1002/anie.202205873 10.1002/anie.202005629 10.1021/acscatal.1c00903 10.1021/acsomega.0c01605 10.1038/s41557-022-01018-8 10.1016/j.cct.2003.08.003 10.1039/C5CY00285K 10.1021/acs.chemrev.9b00137 10.1039/C3NR03806H 10.1002/anie.201205923 10.1021/acs.inorgchem.6b02167 10.1038/nmat4281 10.1021/cr960403a 10.1039/b921696k 10.1021/jacs.6b10978 10.1021/acs.accounts.6b00506 10.1016/j.ccr.2024.215730 10.1002/anie.202214506 10.1016/j.colsurfb.2019.110522 10.1007/s10562-007-9388-y 10.1021/ic300431a 10.1039/b507411h |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d4dt01218f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 1193 |
ExternalDocumentID | 38885120 10_1039_D4DT01218F d4dt01218f |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U O9- R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c373t-31a8ffeed009fc2b5f85f43cf30c79c238b989c1bec48014dafea792d1b33e453 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Fri Jul 11 16:11:13 EDT 2025 Mon Jun 30 05:12:36 EDT 2025 Thu Apr 03 07:04:32 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 04:27:41 EDT 2025 Tue Dec 17 20:58:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-31a8ffeed009fc2b5f85f43cf30c79c238b989c1bec48014dafea792d1b33e453 |
Notes | https://doi.org/10.1039/d4dt01218f Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7661-4936 0000-0002-9376-8953 0000-0001-5504-4762 0000-0002-8123-1462 |
OpenAccessLink | https://doi.org/10.1039/d4dt01218f |
PMID | 38885120 |
PQID | 3074298294 |
PQPubID | 2047498 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3070792730 proquest_journals_3074298294 pubmed_primary_38885120 crossref_primary_10_1039_D4DT01218F rsc_primary_d4dt01218f crossref_citationtrail_10_1039_D4DT01218F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-02 |
PublicationDateYYYYMMDD | 2024-07-02 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (D4DT01218F/cit1b/1) 2017; 46 Neyman (D4DT01218F/cit8c/1) 2008; 130 Zhang (D4DT01218F/cit5d/1) 2021; 17 Zhang (D4DT01218F/cit8h/1) 2017; 56 Liu (D4DT01218F/cit2b/1) 2017; 139 Shifrina (D4DT01218F/cit3a/1) 2020; 120 Daima (D4DT01218F/cit8g/1) 2014; 6 Rizzello (D4DT01218F/cit12b/1) 2014; 43 Tsunoyama (D4DT01218F/cit13/1) 2009; 131 Sadakane (D4DT01218F/cit6b/1) 1998; 98 Wang (D4DT01218F/cit10b/1) 2024; 508 Sunada (D4DT01218F/cit10a/1) 2022; 469 Zhang (D4DT01218F/cit7e/1) 2023; 2 Chernousova (D4DT01218F/cit12a/1) 2012; 52 Dong (D4DT01218F/cit12c/1) 2015; 5 Maayan (D4DT01218F/cit11b/1) 2008; 123 Liu (D4DT01218F/cit8f/1) 2015; 5 Colliard (D4DT01218F/cit10d/1) 2022; 14 Pope (D4DT01218F/cit6a/1) 1983 Zhang (D4DT01218F/cit8e/1) 2007; 19 Kitano (D4DT01218F/cit17a/1) 2012; 4 Ye (D4DT01218F/cit17b/1) 2019; 10 Lu (D4DT01218F/cit4b/1) 2021; 11 Wang (D4DT01218F/cit8i/1) 2012; 51 Yonesato (D4DT01218F/cit16a/1) 2023; 15 Xia (D4DT01218F/cit9b/1) 2024; 15 Yuan (D4DT01218F/cit15b/1) 2010; 49 Miras (D4DT01218F/cit6c/1) 2012; 41 Martín (D4DT01218F/cit8d/1) 2019; 58 Streb (D4DT01218F/cit8l/1) 2009; 48 Kikkawa (D4DT01218F/cit11c/1) 2022; 58 Xia (D4DT01218F/cit9a/1) 2022; 61 Chen (D4DT01218F/cit15a/1) 2010; 12 Heuer-Jungemann (D4DT01218F/cit2a/1) 2019; 119 Turkevich (D4DT01218F/cit14/1) 1951; 11 Liu (D4DT01218F/cit10c/1) 2024; 508 Gao (D4DT01218F/cit3b/1) 2021; 121 Maayan (D4DT01218F/cit11a/1) 2005 Wang (D4DT01218F/cit7b/1) 2012; 41 Niu (D4DT01218F/cit4a/1) 2014; 26 Ermini (D4DT01218F/cit5e/1) 2021; 15 Mitchell (D4DT01218F/cit7c/1) 2012; 22 Liu (D4DT01218F/cit1d/1) 2018; 118 Rossi (D4DT01218F/cit5b/1) 2018; 47 Xia (D4DT01218F/cit7d/1) 2023; 62 Koizumi (D4DT01218F/cit16b/1) 2024; 146 Ji (D4DT01218F/cit6d/1) 2015; 8 Troupis (D4DT01218F/cit8b/1) 2002; 41 Guo (D4DT01218F/cit17c/1) 2017; 139 Yang (D4DT01218F/cit1c/1) 2015; 115 Finke (D4DT01218F/cit7a/1) 2004; 248 Repp (D4DT01218F/cit8m/1) 2020; 5 Martin (D4DT01218F/cit8n/1) 2020; 59 Lin (D4DT01218F/cit8a/1) 1994; 116 Umapathi (D4DT01218F/cit8j/1) 2019; 184 Linic (D4DT01218F/cit1a/1) 2015; 14 Chen (D4DT01218F/cit5a/1) 2017; 50 Kang (D4DT01218F/cit5c/1) 2019; 119 Wang (D4DT01218F/cit8k/1) 2017; 12 |
References_xml | – issn: 1983 publication-title: Heteropoly and Isopoly Oxometalates doi: Pope – volume: 41 start-page: 7479 year: 2012 ident: D4DT01218F/cit7b/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35126a – volume: 15 start-page: 851 year: 2024 ident: D4DT01218F/cit9b/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45066-9 – volume: 4 start-page: 934 year: 2012 ident: D4DT01218F/cit17a/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 11 start-page: 55 year: 1951 ident: D4DT01218F/cit14/1 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9511100055 – volume: 41 start-page: 1911 year: 2002 ident: D4DT01218F/cit8b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020603)41:11<1911::AID-ANIE1911>3.0.CO;2-0 – volume: 2 start-page: 9140037 year: 2023 ident: D4DT01218F/cit7e/1 publication-title: Polyoxometalates doi: 10.26599/POM.2023.9140037 – volume: 17 start-page: 2004381 year: 2021 ident: D4DT01218F/cit5d/1 publication-title: Small doi: 10.1002/smll.202004381 – volume: 131 start-page: 7086 year: 2009 ident: D4DT01218F/cit13/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja810045y – volume: 26 start-page: 72 year: 2014 ident: D4DT01218F/cit4a/1 publication-title: Chem. Mater. doi: 10.1021/cm4022479 – volume: 12 start-page: 170 year: 2017 ident: D4DT01218F/cit8k/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.233 – volume: 146 start-page: 13658 year: 2024 ident: D4DT01218F/cit16b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c01661 – volume-title: Heteropoly and Isopoly Oxometalates year: 1983 ident: D4DT01218F/cit6a/1 doi: 10.1007/978-3-662-12004-0 – volume: 508 start-page: 215687 year: 2024 ident: D4DT01218F/cit10c/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215687 – volume: 119 start-page: 664 year: 2019 ident: D4DT01218F/cit5c/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00341 – volume: 22 start-page: 18091 year: 2012 ident: D4DT01218F/cit7c/1 publication-title: J. Mater. Chem. doi: 10.1039/c2jm33128d – volume: 58 start-page: 4110 year: 2019 ident: D4DT01218F/cit8d/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03013 – volume: 41 start-page: 403 year: 2012 ident: D4DT01218F/cit6c/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35190k – volume: 19 start-page: 5821 year: 2007 ident: D4DT01218F/cit8e/1 publication-title: Chem. Mater. doi: 10.1021/cm7020142 – volume: 116 start-page: 8335 year: 1994 ident: D4DT01218F/cit8a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00097a047 – volume: 469 start-page: 214673 year: 2022 ident: D4DT01218F/cit10a/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214673 – volume: 139 start-page: 17964 year: 2017 ident: D4DT01218F/cit17c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08903 – volume: 46 start-page: 4774 year: 2017 ident: D4DT01218F/cit1b/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 15 start-page: 6008 year: 2021 ident: D4DT01218F/cit5e/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c10756 – volume: 130 start-page: 16480 year: 2008 ident: D4DT01218F/cit8c/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja807160f – volume: 47 start-page: 5889 year: 2018 ident: D4DT01218F/cit5b/1 publication-title: Dalton Trans. doi: 10.1039/C7DT04728B – volume: 43 start-page: 1501 year: 2014 ident: D4DT01218F/cit12b/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60218D – volume: 5 start-page: 74447 year: 2015 ident: D4DT01218F/cit8f/1 publication-title: RSC Adv. doi: 10.1039/C5RA12556A – volume: 58 start-page: 9018 year: 2022 ident: D4DT01218F/cit11c/1 publication-title: Chem. Commun. doi: 10.1039/D2CC02472A – volume: 49 start-page: 4054 year: 2010 ident: D4DT01218F/cit15b/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000576 – volume: 10 start-page: 5653 year: 2019 ident: D4DT01218F/cit17b/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13679-0 – volume: 48 start-page: 6490 year: 2009 ident: D4DT01218F/cit8l/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901650 – volume: 118 start-page: 4981 year: 2018 ident: D4DT01218F/cit1d/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 115 start-page: 10410 year: 2015 ident: D4DT01218F/cit1c/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00193 – volume: 15 start-page: 940 year: 2023 ident: D4DT01218F/cit16a/1 publication-title: Nat. Chem. doi: 10.1038/s41557-023-01234-w – volume: 119 start-page: 4819 year: 2019 ident: D4DT01218F/cit2a/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00733 – volume: 121 start-page: 834 year: 2021 ident: D4DT01218F/cit3b/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00237 – volume: 8 start-page: 776 year: 2015 ident: D4DT01218F/cit6d/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03749A – volume: 61 start-page: e202205873 year: 2022 ident: D4DT01218F/cit9a/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202205873 – volume: 59 start-page: 14331 year: 2020 ident: D4DT01218F/cit8n/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005629 – volume: 11 start-page: 6020 year: 2021 ident: D4DT01218F/cit4b/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c00903 – volume: 5 start-page: 25036 year: 2020 ident: D4DT01218F/cit8m/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c01605 – volume: 14 start-page: 1357 year: 2022 ident: D4DT01218F/cit10d/1 publication-title: Nat. Chem. doi: 10.1038/s41557-022-01018-8 – volume: 248 start-page: 135 year: 2004 ident: D4DT01218F/cit7a/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.cct.2003.08.003 – volume: 5 start-page: 2554 year: 2015 ident: D4DT01218F/cit12c/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00285K – volume: 120 start-page: 1350 year: 2020 ident: D4DT01218F/cit3a/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00137 – volume: 6 start-page: 758 year: 2014 ident: D4DT01218F/cit8g/1 publication-title: Nanoscale doi: 10.1039/C3NR03806H – volume: 52 start-page: 1636 year: 2012 ident: D4DT01218F/cit12a/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205923 – volume: 56 start-page: 2400 year: 2017 ident: D4DT01218F/cit8h/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02167 – volume: 14 start-page: 567 year: 2015 ident: D4DT01218F/cit1a/1 publication-title: Nat. Mater. doi: 10.1038/nmat4281 – volume: 98 start-page: 219 year: 1998 ident: D4DT01218F/cit6b/1 publication-title: Chem. Rev. doi: 10.1021/cr960403a – volume: 12 start-page: 414 year: 2010 ident: D4DT01218F/cit15a/1 publication-title: Green Chem. doi: 10.1039/b921696k – volume: 139 start-page: 2122 year: 2017 ident: D4DT01218F/cit2b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10978 – volume: 50 start-page: 310 year: 2017 ident: D4DT01218F/cit5a/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00506 – volume: 508 start-page: 215730 year: 2024 ident: D4DT01218F/cit10b/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215730 – volume: 62 start-page: e202214506 year: 2023 ident: D4DT01218F/cit7d/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202214506 – volume: 184 start-page: 110522 year: 2019 ident: D4DT01218F/cit8j/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2019.110522 – volume: 123 start-page: 41 year: 2008 ident: D4DT01218F/cit11b/1 publication-title: Catal. Lett. doi: 10.1007/s10562-007-9388-y – volume: 51 start-page: 7436 year: 2012 ident: D4DT01218F/cit8i/1 publication-title: Inorg. Chem. doi: 10.1021/ic300431a – start-page: 4595 year: 2005 ident: D4DT01218F/cit11a/1 publication-title: Chem. Commun. doi: 10.1039/b507411h |
SSID | ssj0022052 |
Score | 2.4638531 |
Snippet | To respond to the increasing demands for practical applications, stabilization and property modulation of metal nanoparticles have emerged as a key research... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1188 |
SubjectTerms | Catalytic activity Electron states Nanoparticles Palladium Polyoxometallates Silver |
Title | Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38885120 https://www.proquest.com/docview/3074298294 https://www.proquest.com/docview/3070792730 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaE9AAXhlchpTBi4MJ0Aonkl46dpp3yvJDO5OaRZInplNidxp6h-WX8PFYP20qbQ-HixJIdx9619tuVdj-E3kVprERK2VgkioODYojcdUzHTKVUKkpEKk0c8tv35PQs-ryIF4PBn2DVUlOLD3K9Na_kf6QKbSBXkyX7D5LtfhQa4DvIF7YgYdjeScY2e7aw2UPK0C1cV7-rpQI4bfaXVWGWAXWQ0HYclLwEN9mvhvNR2MblTwWMODbNaBUC1xk39NOGUaKlF1_ZaAIvbcWJPqi4UYrCcUbJA9nSyrXyXZz7VDRvOM24w2suXA1gfsF1szzve5b8pyFtcaesm-vOlvxo1o0j3v5SrZoLFQYxSGQXvAZxzWlkZpIJ8VWxwzYf6_SDtass7JWShEOvyWfIAjtuSqnSrUZiQk2N1Vk0m5uCdtlJbwrb6f8bFrJbt2hn7CnL-3PvoR2SAmobop3D4_mnr52zTyaW7am7sbY0LmUf-7M3wdAtDwfwzlXLQ2PxzvwReugdFXzoVOUxGqjyCbp_1AryKcpD7cM3tA-H2ocrjW0H3tA-bLQPe-3DvfZhp33P0NnJ8fzodOzpOsaSprQGa84zrQFzAWzXkohYZ7GOqNR0IlMmARsKljE5hVHD1iwquFY8ZaSYCkpVFNNdNCyrUr1AWCU6SQQDb14Dwo0zLkQkEgofEnaFGqH37XPLpa9lbyhVfuW3JTRCb7tjL10Fl61H7bePP_cvyiqnJnDEMsKiEXrTdcNjNpNqvFRVY4-ZwE2AoRyh505s3WVoloFDQ6BnF-TYNRdRUdur6r07_beX6EH_zuyjYX3VqFcAhWvx2mvdXwa5ucE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidentate+polyoxometalate+modification+of+metal+nanoparticles+with+tunable+electronic+states&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Xia%2C+Kang&rft.au=Yatabe%2C+Takafumi&rft.au=Yamaguchi%2C+Kazuya&rft.au=Suzuki%2C+Kosuke&rft.date=2024-07-02&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=26&rft.spage=11088&rft.epage=11093&rft_id=info:doi/10.1039%2FD4DT01218F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4DT01218F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |