Regulation of Saccharomyces cerevisiae DNA polymerase η transcript and protein
RAD30 -encoded DNA polymerase η functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae , Rad30 (studied as a Rad30-Myc fusion) is a stable protei...
Saved in:
Published in | Radiation and environmental biophysics Vol. 47; no. 1; pp. 157 - 168 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.02.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-634X 1432-2099 |
DOI | 10.1007/s00411-007-0132-1 |
Cover
Abstract | RAD30
-encoded DNA polymerase η functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in
Saccharomyces cerevisiae
, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete
RAD30
deletion, thus attesting to the significance of the UBZ motif for polymerase η function in vivo. |
---|---|
AbstractList | RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo. RAD30 -encoded DNA polymerase η functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae , Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase η function in vivo. RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo.RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an error-free manner. Although its transcript is UV-inducible in Saccharomyces cerevisiae, Rad30 (studied as a Rad30-Myc fusion) is a stable protein whose levels do not fluctuate following UV treatment or during cell cycle progression. Rad30 protein is subject to monoubiquitination whose level is upregulated in G1 and downregulated during S-phase reentry. This downregulation is accelerated in UV-treated cells. A missense mutation (L577Q) of the ubiquitin binding domain (UBZ) confers a reduced degree of ubiquitination outside of G1 and a complete failure to stably interact with ubiquitinated substrates. This mutation confers a phenotype resembling a complete RAD30 deletion, thus attesting to the significance of the UBZ motif for polymerase eta function in vivo. |
Author | Rozario, Donald Siede, Wolfram Pabla, Ritu |
Author_xml | – sequence: 1 givenname: Ritu surname: Pabla fullname: Pabla, Ritu organization: Dept of Cell Biology and Genetics, University of North Texas Health Science Center – sequence: 2 givenname: Donald surname: Rozario fullname: Rozario, Donald organization: Graduate Program in Biomedical Sciences, University of North Texas Health Science Center – sequence: 3 givenname: Wolfram surname: Siede fullname: Siede, Wolfram email: wsiede@hsc.unt.edu organization: Dept of Cell Biology and Genetics, University of North Texas Health Science Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17874115$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbFOHDEURa2IKCwkH5AGuaIb4jfesdclggSQUJASinTWG88bYjRjL_YM0n5Z_iLfhDcLKVKQyrc49z7r3gO2F2Igxj6COAEh9KcsxBKgKrISIOsK3rAFLIuohTF7bCGkgErJ5Y99dpDzvRCglTLv2D7olS7OZsFuvtHdPODkY-Cx59_RuZ-Y4rhxlLmjRI8-eyR-_vWUr-OwGSlhJv77F58ShuySX08cQ8fXKU7kw3v2tsch04fn95Ddfvl8e3ZZXd9cXJ2dXldOajlVtdF92whNncSOTCuxcQjKaAcoQa5aI3u9bFEQojSN0lB3Ta20JuU66uUhO97FlrMPM-XJjj47GgYMFOdstagbpUrS_0AwUpmVlAU8egbndqTOrpMfMW3sS1UF0DvApZhzot46P_0prjThBwvCbkexu1HsVm5Hsds_wD_Ov-GveOqdJxc23FGy93FOoVT6iukJBHaeyQ |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2012_12_119 crossref_primary_10_1007_s00018_009_0024_4 crossref_primary_10_1016_j_dnarep_2020_102959 crossref_primary_10_1016_j_bbapap_2009_07_004 crossref_primary_10_1016_j_dnarep_2010_08_001 crossref_primary_10_1021_acs_chemrev_7b00046 crossref_primary_10_1128_MMBR_00034_08 crossref_primary_10_3389_fgene_2016_00087 crossref_primary_10_3390_genes8010024 crossref_primary_10_1016_j_dnarep_2015_02_011 crossref_primary_10_1016_j_dnarep_2015_02_015 crossref_primary_10_1007_s00425_008_0698_0 crossref_primary_10_1534_genetics_112_145219 crossref_primary_10_1007_s00294_020_01061_3 crossref_primary_10_1002_yea_1557 crossref_primary_10_1016_j_bbrc_2009_01_012 crossref_primary_10_1128_AEM_01988_18 |
Cites_doi | 10.1038/nature00991 10.1016/j.jmb.2006.11.093 10.1126/science.285.5425.263 10.1038/newbio244129a0 10.1073/pnas.96.4.1486 10.1128/MCB.21.1.185-188.2001 10.1385/0-89603-356-2:383 10.1038/35010014 10.1038/21447 10.1093/genetics/87.2.237 10.1073/pnas.0510924103 10.1038/sj.emboj.7601178 10.1126/science.1140321 10.1038/sj.embor.7400901 10.1016/j.molcel.2005.03.032 10.1128/MCB.14.2.923 10.1073/pnas.261560798 10.1128/MCB.01640-05 10.1093/nar/gkl1102 10.1093/nar/28.13.2473 10.1007/s004380050698 10.1016/S1568-7864(02)00189-1 10.1038/274889a0 10.1128/MCB.26.4.1398-1413.2006 10.1093/emboj/18.12.3491 10.1128/9781555816704 10.1146/annurev.biochem.74.082803.133250 10.1093/genetics/147.4.1557 10.1016/j.molcel.2006.05.038 10.1126/science.283.5404.1001 10.1002/j.1460-2075.1996.tb00765.x 10.1016/0027-5107(77)90056-2 10.1073/pnas.0505949102 10.1002/yea.1446 10.1093/nar/30.5.1262 10.1038/sj.emboj.7601560 10.1016/S1097-2765(04)00259-X 10.1038/nrm1781 10.1007/BF00291998 10.1093/nar/23.5.883 10.1038/nature01965 10.1101/gad.1043203 10.1128/MCB.01118-06 10.1073/pnas.0510167103 10.1126/science.1120615 10.1073/pnas.132275199 10.1128/MCB.9.2.851 10.1016/S1097-2765(01)00278-7 10.1146/annurev.genet.36.060402.113540 10.1038/sj.emboj.7600383 10.1006/jmbi.2001.4937 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U |
ContentType | Journal Article |
Copyright | Springer-Verlag 2007 |
Copyright_xml | – notice: Springer-Verlag 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM M7N 7X8 |
DOI | 10.1007/s00411-007-0132-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1432-2099 |
EndPage | 168 |
ExternalDocumentID | 17874115 10_1007_s00411_007_0132_1 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: ES011163 |
GroupedDBID | --- -54 -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6KP 6NX 78A 7X7 7XC 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBD EBLON EBS EDH EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LK8 LLZTM M0L M1P M2P M4Y M7P MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9T PATMY PF0 PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7R Z7Y Z8M Z8S ZMTXR ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7TM M7N 7X8 |
ID | FETCH-LOGICAL-c373t-297fb507ed3ade9b3a5ca1697c1a3138b93f74ba0eaa3956712d52677e6cdef3 |
IEDL.DBID | AGYKE |
ISSN | 0301-634X |
IngestDate | Fri Sep 05 14:13:06 EDT 2025 Fri Sep 05 06:38:15 EDT 2025 Thu Apr 03 07:09:54 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Wed Oct 01 03:17:01 EDT 2025 Fri Feb 21 02:41:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ubiquitinated Substrate Proliferate Cell Nuclear Antigen Rad30 Protein Haploid Cell Cell Cycle Stage |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-297fb507ed3ade9b3a5ca1697c1a3138b93f74ba0eaa3956712d52677e6cdef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17874115 |
PQID | 19369833 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_70256631 proquest_miscellaneous_19369833 pubmed_primary_17874115 crossref_citationtrail_10_1007_s00411_007_0132_1 crossref_primary_10_1007_s00411_007_0132_1 springer_journals_10_1007_s00411_007_0132_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20080200 2008-2-00 2008-Feb 20080201 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 2 year: 2008 text: 20080200 |
PublicationDecade | 2000 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
PublicationTitle | Radiation and environmental biophysics |
PublicationTitleAbbrev | Radiat Environ Biophys |
PublicationTitleAlternate | Radiat Environ Biophys |
PublicationYear | 2008 |
Publisher | Springer-Verlag |
Publisher_xml | – name: Springer-Verlag |
References | Bachant JB, Elledge SJ (1998) Regulatory networks that control DNA damage-inducible genes in Saccharomyces cerevisiae. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 1. DNA repair in prokaryotes and lower eukaryotes. Humana Press, Totowa, pp 383–410 KaiMWangTSCheckpoint activation regulates mutagenic translesion synthesisGenes Dev200317647610.1101/gad.1043203 RaymondWEKlecknerNExpression of the Saccharomyces cerevisiae RAD50 gene during meiosis: steady-state transcript levels rise and fall while steady-state protein levels remain constantMol Gen Genet199323839040010.1007/BF00291998 GuoCSonodaETangT-SParkerJLBielenABTakedaSUlrichHDFriedbergECREV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivoMol Cell20062326527110.1016/j.molcel.2006.05.038 JohnsonREKondratickCMPrakashSPrakashLhRAD30 mutations in the variant form of xeroderma pigmentosumScience199928526326510.1126/science.285.5425.263 BegleyTJRosenbachASIdekerTSamsonLDDamage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mappingMol Cancer Res20021103112 PloskyBSVidalAEde HenestrosaARMcLeniganMPMcDonaldJPMeadSWoodgateRControlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitinEMBO J2006252847285510.1038/sj.emboj.7601178 OhmoriHFriedbergECFuchsRPPGoodmanMFHanaokaFHinkleDKunkelTALawrenceCWLivnehZNohmiTPrakashLPrakashSTodoTWalkerGCWangZWoodgateRThe Y-family of DNA polymerasesMol Cell200187810.1016/S1097-2765(01)00278-7 MatsuokaSBallifBASmogorzewskaAMcDonaldER3rdHurovKELuoJBakalarskiCEZhaoZSoliminiNLerenthalYShilohYGygiSPElledgeSJATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damageScience20073161160116610.1126/science.11403212007Sci...316.1160M StelterPUlrichHDControl of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugationNature200342518819110.1038/nature019652003Natur.425..188S RoushAASuarezMFriedbergECRadmanMSiedeWDeletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutabilityMol Gen Genet199825768669210.1007/s004380050698 WatanabeKTateishiSKawasujiMTsurimotoTInoueHYamaizumiMRad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitinationEMBO J2004233886389610.1038/sj.emboj.7600383 MasutaniCArakiMYamadaAKusumotoRNogimoriTMaekawaTIwaiSHanaokaFXeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass polymerase activityEMBO J1999183491350110.1093/emboj/18.12.3491 LisETRomesbergFERole of Doa1 in the Saccharomyces cerevisiae DNA damage responseMol Cell Biol2006264122413310.1128/MCB.01640-05 KannouchePLWingJLehmannARInteraction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damageMol Cell20041449150010.1016/S1097-2765(04)00259-X FriedbergECWalkerGCSiedeWWoodRDSchultzRAEllenbergerTDNA repair and mutagenesis20052ndWashington, D.CAmerican Society of Microbiology Press MatsudaTBebenekKMasutaniCHanaokaFKunkelTALow fidelity DNA synthesis by human DNA polymerase-ηNature20004041011101310.1038/350100142000Natur.404.1011M WenzelTJTeunissenAWRHSteensmaHYPDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNANucleic Acids Res19952388388410.1093/nar/23.5.883 FriedbergECLehmannARFuchsRPTrading places: how do DNA polymerases switch during translesion DNA synthesis?Mol Cell20051849950510.1016/j.molcel.2005.03.032 FriedbergECSuffering in silence: the tolerance of DNA damageNat Rev Mol Cell Biol2005694395310.1038/nrm1781 EckardtFHaynesRHInduction of pure and sectored mutant clones in excision-proficient and deficient strains of yeastMutat Res197743327338 JamesAPKilbeyBJThe timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutationGenetics197787237248 MatsudaTBebenekKMasutaniCRogozinIBHanaokaFKunkelTAError rate and specificity of human and murine DNA polymerase ηJ Mol Biol200131233534610.1006/jmbi.2001.4937 FornaceAJJrZmudzkaBHollanderMCWilsonSHInduction of β-polymerase mRNA by DNA damaging agents in Chinese hamster ovary cellsMol Cell Biol19899851853 LeeMWKimBJChoiHKRyuMJKimSBKangKMChoEJYounHDHuhWKKimSTGlobal protein expression profiling of budding yeast in response to DNA damageYeast20072414515410.1002/yea.1446 FoianiMMariniFGambaDLucchiniGPlevaniPThe B subunit of the DNA polymerase α-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replicationMol Cell Biol199414923933 KilbeyBJBrychcyTNasimAInitiation of UV mutagenesis in Saccharomyces cerevisiaeNature197827488989110.1038/274889a01978Natur.274..889K HaracskaLUnkIPrakashLPrakashSUbiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesisProc Natl Acad Sci USA20061036477648210.1073/pnas.05109241032006PNAS..103.6477H AboussekhraAVialardJEMorrisonDEde la Torre-RuizMACernákováLFabreFLowndesNFA novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcriptionEMBO J19961539123922 JelinskySASamsonLDGlobal response of Saccaromyces cerevisiae to an alkylating agentProc Natl Acad Sci USA1999961486149110.1073/pnas.96.4.14861999PNAS...96.1486J PrakashSJohnsonREPrakashLEukaryotic translesion synthesis DNA polymerases: specificity of structure and functionAnnu Rev Biochem20057431735310.1146/annurev.biochem.74.082803.133250 WatersLSWalkerGCThe critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phaseProc Natl Acad Sci USA20061038971897610.1073/pnas.05101671032006PNAS..103.8971W HerefordLMHartwellLHRole of protein synthesis in the replication of yeast DNANat New Biol197324412913110.1038/244129a0 SkonecznaAMcIntyreJSkonecznyMPolicinskaZSledziewska-GojskaEPolymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiaeJ Mol Biol20073661074108610.1016/j.jmb.2006.11.093 GuoCTangT-SBienkoMParkerJLBielenABSonodaETakedaSUlrichHDDikicIFriedbergECUbiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damageMol Cell Biol2006268892890010.1128/MCB.01118-06 HoegeCPfanderBMoldovanG-LPyrowolakisGJentschSRAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMONature200241913514110.1038/nature009912002Natur.419..135H YuS-LJohnsonREPrakashSPrakashLRequirement of DNA polymerase η for error-free bypass of UV-induced CC and TT photoproductsMol Cell Biol20012118518810.1128/MCB.21.1.185-188.2001 BirrellGWBrownJAWuHIGiaeverGChuAMDavisRWBrownJMTranscriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agentsProc Natl Acad Sci USA2002998778878310.1073/pnas.1322751992002PNAS...99.8778B LongtineMSMcKenzieIII ADemariniDJShahNGWachABrachatAPhilippsenPPringleJRAdditional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiaeYeast19981495396110.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U JohnsonREPrakashSPrakashLEfficient bypass of a thymine–thymine dimer by yeast DNA polymerase, PolηScience19992831001100410.1126/science.283.5404.10011999Sci...283.1001J Velasco-MiguelSRichardsonJAGerlachVLLaiWCGaoTRussellLDHladikCLWhiteCLFriedbergECConstitutive and regulated expression of the mouse Dinb (Polκ) gene encoding DNA polymerase kappaDNA Repair200329110610.1016/S1568-7864(02)00189-1 BomarMGPaiMTTzengSRLiSSZhouPStructure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase ηEMBO Rep2007824725110.1038/sj.embor.7400901 MasutaniCKusumotoRYamadaADohmaeNYokoiMYuasaMArakiMIwaiSTakioKHanaokaFThe XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ηNature199939970070410.1038/214471999Natur.399..700M HaracskaLJohnsonREUnkIPhillipsBBHurwitzJPrakashLPrakashSTargeting of human DNA polymerase ι to the replication machinery via interaction with PCNAProc Natl Acad Sci USA200198142561426110.1073/pnas.2615607982001PNAS...9814256H ZhangHSiedeWUV-induced T→C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase η in vivoNucleic Acids Res2002301262126710.1093/nar/30.5.1262 GargPBurgersPMUbiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1Proc Natl Acad Sci USA2005102183611836610.1073/pnas.05059491022005PNAS..10218361G YamadaAMasutaniCIwaiSHanaokaFComplementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase ηNucleic Acids Res2000282473248010.1093/nar/28.13.2473 ParkerJLBielenABDikicIUlrichHDContributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiaeNucleic Acids Res20073588188910.1093/nar/gkl1102 MarchenkoNDWolffSErsterSBeckerKMollUMMonoubiquitylation promotes mitochondrial p53 translocationEMBO J20072692393410.1038/sj.emboj.7601560 McDonaldJPLevineASWoodgateRThe Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanismGenetics199714715571568 LiuGChenXDNA polymerase η, the product of the Xeroderma Pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activationMol Cell Biol2006261398141310.1128/MCB.26.4.1398-1413.2006 AmbergDCBurkeDJStrathernJNMethods in yeast genetics: a cold spring harbor laboratory course manual, 2005 edition2005Cold Spring HarborCold Spring Harbor Laboratory Press NybergKAMichelsonRJPutnamCWWeinertTAToward maintaining the genome: DNA damage and replication checkpointsAnnu Rev Genet20023661765610.1146/annurev.genet.36.060402.113540 BienkoMGreenCMCrosettoNRudolfFZapartGCoullBKannouchePWiderGPeterMLehmannARHofmannKDikicIUbiquitin-binding domains in Y-family polymerases regulate transl SA Jelinsky (132_CR46) 1999; 96 H Ohmori (132_CR4) 2001; 8 BJ Kilbey (132_CR50) 1978; 274 S Velasco-Miguel (132_CR17) 2003; 2 WE Raymond (132_CR42) 1993; 238 AJ Fornace Jr (132_CR47) 1989; 9 132_CR37 TJ Wenzel (132_CR32) 1995; 23 C Masutani (132_CR8) 1999; 399 A Aboussekhra (132_CR38) 1996; 15 F Eckardt (132_CR51) 1977; 43 RE Johnson (132_CR7) 1999; 285 BS Plosky (132_CR26) 2006; 25 M Foiani (132_CR34) 1994; 14 A Yamada (132_CR14) 2000; 28 KA Nyberg (132_CR39) 2002; 36 S Matsuoka (132_CR41) 2007; 316 L Haracska (132_CR29) 2006; 103 ND Marchenko (132_CR53) 2007; 26 M Kai (132_CR16) 2003; 17 AA Roush (132_CR12) 1998; 257 P Garg (132_CR28) 2005; 102 LS Waters (132_CR40) 2006; 103 C Hoege (132_CR19) 2002; 419 K Watanabe (132_CR22) 2004; 23 C Guo (132_CR25) 2006; 23 EC Friedberg (132_CR1) 2005 LM Hereford (132_CR33) 1973; 244 EC Friedberg (132_CR18) 2005; 18 T Matsuda (132_CR10) 2001; 312 G Liu (132_CR15) 2006; 26 DC Amberg (132_CR31) 2005 H Zhang (132_CR52) 2002; 30 AP James (132_CR49) 1977; 87 MG Bomar (132_CR54) 2007; 8 C Guo (132_CR24) 2006; 26 T Matsuda (132_CR11) 2000; 404 MW Lee (132_CR45) 2007; 24 S Prakash (132_CR3) 2005; 74 M Bienko (132_CR23) 2005; 310 C Masutani (132_CR9) 1999; 18 S-L Yu (132_CR5) 2001; 21 JP McDonald (132_CR13) 1997; 147 ET Lis (132_CR48) 2006; 26 P Stelter (132_CR21) 2003; 425 PL Kannouche (132_CR20) 2004; 14 GW Birrell (132_CR43) 2002; 99 EC Friedberg (132_CR2) 2005; 6 L Haracska (132_CR27) 2001; 98 A Skoneczna (132_CR35) 2007; 366 MS Longtine (132_CR30) 1998; 14 JL Parker (132_CR36) 2007; 35 TJ Begley (132_CR44) 2002; 1 RE Johnson (132_CR6) 1999; 283 15916957 - Mol Cell. 2005 May 27;18(5):499-505 17251197 - Nucleic Acids Res. 2007;35(3):881-9 10871396 - Nucleic Acids Res. 2000 Jul 1;28(13):2473-80 10801132 - Nature. 2000 Apr 27;404(6781):1011-3 16357261 - Science. 2005 Dec 16;310(5755):1821-4 16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6 12496357 - Mol Cancer Res. 2002 Dec;1(2):103-12 9604893 - Mol Gen Genet. 1998 Apr;257(6):686-92 10385124 - Nature. 1999 Jun 17;399(6737):700-4 7708509 - Nucleic Acids Res. 1995 Mar 11;23(5):883-4 8289832 - Mol Cell Biol. 1994 Feb;14(2):923-33 12077312 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8778-83 11515498 - Mol Cell. 2001 Jul;8(1):7-8 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 9990050 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1486-91 9717241 - Yeast. 1998 Jul;14(10):953-61 17304240 - EMBO Rep. 2007 Mar;8(3):247-51 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17 ):6477-82 16857592 - Mol Cell. 2006 Jul 21;23(2):265-71 17198712 - J Mol Biol. 2007 Mar 2;366(4):1074-86 8670896 - EMBO J. 1996 Aug 1;15(15):3912-22 4579463 - Nat New Biol. 1973 Aug 1;244(135):129-31 17525332 - Science. 2007 May 25;316(5828):1160-6 17351896 - Yeast. 2007 Mar;24(3):145-54 17268548 - EMBO J. 2007 Feb 21;26(4):923-34 16449651 - Mol Cell Biol. 2006 Feb;26(4):1398-413 9974380 - Science. 1999 Feb 12;283(5404):1001-4 15952890 - Annu Rev Biochem. 2005;74:317-53 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 11724965 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14256-61 2710127 - Mol Cell Biol. 1989 Feb;9(2):851-3 16705165 - Mol Cell Biol. 2006 Jun;26(11):4122-33 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 15359278 - EMBO J. 2004 Oct 1;23 (19):3886-96 12514100 - Genes Dev. 2003 Jan 1;17 (1):64-76 12509270 - DNA Repair (Amst). 2003 Jan 2;2(1):91-106 11861920 - Nucleic Acids Res. 2002 Mar 1;30(5):1262-7 9409821 - Genetics. 1997 Dec;147(4):1557-68 8492807 - Mol Gen Genet. 1993 Apr;238(3):390-400 336459 - Genetics. 1977 Oct;87(2):237-48 16344468 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18361-6 10369688 - EMBO J. 1999 Jun 15;18(12 ):3491-501 15149598 - Mol Cell. 2004 May 21;14 (4):491-500 12226657 - Nature. 2002 Sep 12;419(6903):135-41 355896 - Nature. 1978 Aug 31;274(5674):888-91 10398605 - Science. 1999 Jul 9;285(5425):263-5 12968183 - Nature. 2003 Sep 11;425(6954):188-91 11113193 - Mol Cell Biol. 2001 Jan;21(1):185-8 331093 - Mutat Res. 1977 Jun;43(3):327-38 11554790 - J Mol Biol. 2001 Sep 14;312(2):335-46 12429704 - Annu Rev Genet. 2002;36:617-56 |
References_xml | – reference: WatersLSWalkerGCThe critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phaseProc Natl Acad Sci USA20061038971897610.1073/pnas.05101671032006PNAS..103.8971W – reference: KilbeyBJBrychcyTNasimAInitiation of UV mutagenesis in Saccharomyces cerevisiaeNature197827488989110.1038/274889a01978Natur.274..889K – reference: MatsudaTBebenekKMasutaniCHanaokaFKunkelTALow fidelity DNA synthesis by human DNA polymerase-ηNature20004041011101310.1038/350100142000Natur.404.1011M – reference: JamesAPKilbeyBJThe timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutationGenetics197787237248 – reference: MatsuokaSBallifBASmogorzewskaAMcDonaldER3rdHurovKELuoJBakalarskiCEZhaoZSoliminiNLerenthalYShilohYGygiSPElledgeSJATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damageScience20073161160116610.1126/science.11403212007Sci...316.1160M – reference: LeeMWKimBJChoiHKRyuMJKimSBKangKMChoEJYounHDHuhWKKimSTGlobal protein expression profiling of budding yeast in response to DNA damageYeast20072414515410.1002/yea.1446 – reference: FriedbergECWalkerGCSiedeWWoodRDSchultzRAEllenbergerTDNA repair and mutagenesis20052ndWashington, D.CAmerican Society of Microbiology Press – reference: KaiMWangTSCheckpoint activation regulates mutagenic translesion synthesisGenes Dev200317647610.1101/gad.1043203 – reference: HaracskaLJohnsonREUnkIPhillipsBBHurwitzJPrakashLPrakashSTargeting of human DNA polymerase ι to the replication machinery via interaction with PCNAProc Natl Acad Sci USA200198142561426110.1073/pnas.2615607982001PNAS...9814256H – reference: StelterPUlrichHDControl of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugationNature200342518819110.1038/nature019652003Natur.425..188S – reference: LongtineMSMcKenzieIII ADemariniDJShahNGWachABrachatAPhilippsenPPringleJRAdditional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiaeYeast19981495396110.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – reference: MasutaniCArakiMYamadaAKusumotoRNogimoriTMaekawaTIwaiSHanaokaFXeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass polymerase activityEMBO J1999183491350110.1093/emboj/18.12.3491 – reference: Velasco-MiguelSRichardsonJAGerlachVLLaiWCGaoTRussellLDHladikCLWhiteCLFriedbergECConstitutive and regulated expression of the mouse Dinb (Polκ) gene encoding DNA polymerase kappaDNA Repair200329110610.1016/S1568-7864(02)00189-1 – reference: HerefordLMHartwellLHRole of protein synthesis in the replication of yeast DNANat New Biol197324412913110.1038/244129a0 – reference: FoianiMMariniFGambaDLucchiniGPlevaniPThe B subunit of the DNA polymerase α-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replicationMol Cell Biol199414923933 – reference: MasutaniCKusumotoRYamadaADohmaeNYokoiMYuasaMArakiMIwaiSTakioKHanaokaFThe XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ηNature199939970070410.1038/214471999Natur.399..700M – reference: HaracskaLUnkIPrakashLPrakashSUbiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesisProc Natl Acad Sci USA20061036477648210.1073/pnas.05109241032006PNAS..103.6477H – reference: HoegeCPfanderBMoldovanG-LPyrowolakisGJentschSRAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMONature200241913514110.1038/nature009912002Natur.419..135H – reference: ZhangHSiedeWUV-induced T→C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase η in vivoNucleic Acids Res2002301262126710.1093/nar/30.5.1262 – reference: Bachant JB, Elledge SJ (1998) Regulatory networks that control DNA damage-inducible genes in Saccharomyces cerevisiae. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair, vol 1. DNA repair in prokaryotes and lower eukaryotes. Humana Press, Totowa, pp 383–410 – reference: JohnsonREPrakashSPrakashLEfficient bypass of a thymine–thymine dimer by yeast DNA polymerase, PolηScience19992831001100410.1126/science.283.5404.10011999Sci...283.1001J – reference: LiuGChenXDNA polymerase η, the product of the Xeroderma Pigmentosum variant gene and a target of p53, modulates the DNA damage checkpoint and p53 activationMol Cell Biol2006261398141310.1128/MCB.26.4.1398-1413.2006 – reference: AmbergDCBurkeDJStrathernJNMethods in yeast genetics: a cold spring harbor laboratory course manual, 2005 edition2005Cold Spring HarborCold Spring Harbor Laboratory Press – reference: LisETRomesbergFERole of Doa1 in the Saccharomyces cerevisiae DNA damage responseMol Cell Biol2006264122413310.1128/MCB.01640-05 – reference: YuS-LJohnsonREPrakashSPrakashLRequirement of DNA polymerase η for error-free bypass of UV-induced CC and TT photoproductsMol Cell Biol20012118518810.1128/MCB.21.1.185-188.2001 – reference: FriedbergECSuffering in silence: the tolerance of DNA damageNat Rev Mol Cell Biol2005694395310.1038/nrm1781 – reference: JelinskySASamsonLDGlobal response of Saccaromyces cerevisiae to an alkylating agentProc Natl Acad Sci USA1999961486149110.1073/pnas.96.4.14861999PNAS...96.1486J – reference: MatsudaTBebenekKMasutaniCRogozinIBHanaokaFKunkelTAError rate and specificity of human and murine DNA polymerase ηJ Mol Biol200131233534610.1006/jmbi.2001.4937 – reference: SkonecznaAMcIntyreJSkonecznyMPolicinskaZSledziewska-GojskaEPolymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiaeJ Mol Biol20073661074108610.1016/j.jmb.2006.11.093 – reference: YamadaAMasutaniCIwaiSHanaokaFComplementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase ηNucleic Acids Res2000282473248010.1093/nar/28.13.2473 – reference: WenzelTJTeunissenAWRHSteensmaHYPDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNANucleic Acids Res19952388388410.1093/nar/23.5.883 – reference: BomarMGPaiMTTzengSRLiSSZhouPStructure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase ηEMBO Rep2007824725110.1038/sj.embor.7400901 – reference: OhmoriHFriedbergECFuchsRPPGoodmanMFHanaokaFHinkleDKunkelTALawrenceCWLivnehZNohmiTPrakashLPrakashSTodoTWalkerGCWangZWoodgateRThe Y-family of DNA polymerasesMol Cell200187810.1016/S1097-2765(01)00278-7 – reference: BirrellGWBrownJAWuHIGiaeverGChuAMDavisRWBrownJMTranscriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agentsProc Natl Acad Sci USA2002998778878310.1073/pnas.1322751992002PNAS...99.8778B – reference: RoushAASuarezMFriedbergECRadmanMSiedeWDeletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutabilityMol Gen Genet199825768669210.1007/s004380050698 – reference: GuoCTangT-SBienkoMParkerJLBielenABSonodaETakedaSUlrichHDDikicIFriedbergECUbiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damageMol Cell Biol2006268892890010.1128/MCB.01118-06 – reference: FornaceAJJrZmudzkaBHollanderMCWilsonSHInduction of β-polymerase mRNA by DNA damaging agents in Chinese hamster ovary cellsMol Cell Biol19899851853 – reference: BienkoMGreenCMCrosettoNRudolfFZapartGCoullBKannouchePWiderGPeterMLehmannARHofmannKDikicIUbiquitin-binding domains in Y-family polymerases regulate translesion synthesisScience20053101821182410.1126/science.11206152005Sci...310.1821B – reference: BegleyTJRosenbachASIdekerTSamsonLDDamage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mappingMol Cancer Res20021103112 – reference: PrakashSJohnsonREPrakashLEukaryotic translesion synthesis DNA polymerases: specificity of structure and functionAnnu Rev Biochem20057431735310.1146/annurev.biochem.74.082803.133250 – reference: GargPBurgersPMUbiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1Proc Natl Acad Sci USA2005102183611836610.1073/pnas.05059491022005PNAS..10218361G – reference: ParkerJLBielenABDikicIUlrichHDContributions of ubiquitin- and PCNA-binding domains to the activity of polymerase η in Saccharomyces cerevisiaeNucleic Acids Res20073588188910.1093/nar/gkl1102 – reference: AboussekhraAVialardJEMorrisonDEde la Torre-RuizMACernákováLFabreFLowndesNFA novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcriptionEMBO J19961539123922 – reference: KannouchePLWingJLehmannARInteraction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damageMol Cell20041449150010.1016/S1097-2765(04)00259-X – reference: GuoCSonodaETangT-SParkerJLBielenABTakedaSUlrichHDFriedbergECREV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivoMol Cell20062326527110.1016/j.molcel.2006.05.038 – reference: FriedbergECLehmannARFuchsRPTrading places: how do DNA polymerases switch during translesion DNA synthesis?Mol Cell20051849950510.1016/j.molcel.2005.03.032 – reference: PloskyBSVidalAEde HenestrosaARMcLeniganMPMcDonaldJPMeadSWoodgateRControlling the subcellular localization of DNA polymerases ι and η via interactions with ubiquitinEMBO J2006252847285510.1038/sj.emboj.7601178 – reference: McDonaldJPLevineASWoodgateRThe Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanismGenetics199714715571568 – reference: MarchenkoNDWolffSErsterSBeckerKMollUMMonoubiquitylation promotes mitochondrial p53 translocationEMBO J20072692393410.1038/sj.emboj.7601560 – reference: RaymondWEKlecknerNExpression of the Saccharomyces cerevisiae RAD50 gene during meiosis: steady-state transcript levels rise and fall while steady-state protein levels remain constantMol Gen Genet199323839040010.1007/BF00291998 – reference: JohnsonREKondratickCMPrakashSPrakashLhRAD30 mutations in the variant form of xeroderma pigmentosumScience199928526326510.1126/science.285.5425.263 – reference: NybergKAMichelsonRJPutnamCWWeinertTAToward maintaining the genome: DNA damage and replication checkpointsAnnu Rev Genet20023661765610.1146/annurev.genet.36.060402.113540 – reference: EckardtFHaynesRHInduction of pure and sectored mutant clones in excision-proficient and deficient strains of yeastMutat Res197743327338 – reference: WatanabeKTateishiSKawasujiMTsurimotoTInoueHYamaizumiMRad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitinationEMBO J2004233886389610.1038/sj.emboj.7600383 – volume: 419 start-page: 135 year: 2002 ident: 132_CR19 publication-title: Nature doi: 10.1038/nature00991 – volume: 366 start-page: 1074 year: 2007 ident: 132_CR35 publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.11.093 – volume: 285 start-page: 263 year: 1999 ident: 132_CR7 publication-title: Science doi: 10.1126/science.285.5425.263 – volume: 244 start-page: 129 year: 1973 ident: 132_CR33 publication-title: Nat New Biol doi: 10.1038/newbio244129a0 – volume: 96 start-page: 1486 year: 1999 ident: 132_CR46 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.4.1486 – volume: 21 start-page: 185 year: 2001 ident: 132_CR5 publication-title: Mol Cell Biol doi: 10.1128/MCB.21.1.185-188.2001 – ident: 132_CR37 doi: 10.1385/0-89603-356-2:383 – volume: 404 start-page: 1011 year: 2000 ident: 132_CR11 publication-title: Nature doi: 10.1038/35010014 – volume: 399 start-page: 700 year: 1999 ident: 132_CR8 publication-title: Nature doi: 10.1038/21447 – volume: 87 start-page: 237 year: 1977 ident: 132_CR49 publication-title: Genetics doi: 10.1093/genetics/87.2.237 – volume: 103 start-page: 6477 year: 2006 ident: 132_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510924103 – volume: 25 start-page: 2847 year: 2006 ident: 132_CR26 publication-title: EMBO J doi: 10.1038/sj.emboj.7601178 – volume: 316 start-page: 1160 year: 2007 ident: 132_CR41 publication-title: Science doi: 10.1126/science.1140321 – volume: 8 start-page: 247 year: 2007 ident: 132_CR54 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400901 – volume: 18 start-page: 499 year: 2005 ident: 132_CR18 publication-title: Mol Cell doi: 10.1016/j.molcel.2005.03.032 – volume: 14 start-page: 923 year: 1994 ident: 132_CR34 publication-title: Mol Cell Biol doi: 10.1128/MCB.14.2.923 – volume: 98 start-page: 14256 year: 2001 ident: 132_CR27 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.261560798 – volume: 26 start-page: 4122 year: 2006 ident: 132_CR48 publication-title: Mol Cell Biol doi: 10.1128/MCB.01640-05 – volume: 35 start-page: 881 year: 2007 ident: 132_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl1102 – volume: 28 start-page: 2473 year: 2000 ident: 132_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.13.2473 – volume: 257 start-page: 686 year: 1998 ident: 132_CR12 publication-title: Mol Gen Genet doi: 10.1007/s004380050698 – volume: 2 start-page: 91 year: 2003 ident: 132_CR17 publication-title: DNA Repair doi: 10.1016/S1568-7864(02)00189-1 – volume: 274 start-page: 889 year: 1978 ident: 132_CR50 publication-title: Nature doi: 10.1038/274889a0 – volume: 26 start-page: 1398 year: 2006 ident: 132_CR15 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.4.1398-1413.2006 – volume: 18 start-page: 3491 year: 1999 ident: 132_CR9 publication-title: EMBO J doi: 10.1093/emboj/18.12.3491 – volume-title: DNA repair and mutagenesis year: 2005 ident: 132_CR1 doi: 10.1128/9781555816704 – volume: 74 start-page: 317 year: 2005 ident: 132_CR3 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133250 – volume: 147 start-page: 1557 year: 1997 ident: 132_CR13 publication-title: Genetics doi: 10.1093/genetics/147.4.1557 – volume: 23 start-page: 265 year: 2006 ident: 132_CR25 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.038 – volume: 283 start-page: 1001 year: 1999 ident: 132_CR6 publication-title: Science doi: 10.1126/science.283.5404.1001 – volume: 15 start-page: 3912 year: 1996 ident: 132_CR38 publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00765.x – volume: 43 start-page: 327 year: 1977 ident: 132_CR51 publication-title: Mutat Res doi: 10.1016/0027-5107(77)90056-2 – volume: 102 start-page: 18361 year: 2005 ident: 132_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505949102 – volume: 1 start-page: 103 year: 2002 ident: 132_CR44 publication-title: Mol Cancer Res – volume: 24 start-page: 145 year: 2007 ident: 132_CR45 publication-title: Yeast doi: 10.1002/yea.1446 – volume: 30 start-page: 1262 year: 2002 ident: 132_CR52 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.5.1262 – volume: 26 start-page: 923 year: 2007 ident: 132_CR53 publication-title: EMBO J doi: 10.1038/sj.emboj.7601560 – volume: 14 start-page: 491 year: 2004 ident: 132_CR20 publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00259-X – volume: 6 start-page: 943 year: 2005 ident: 132_CR2 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1781 – volume: 238 start-page: 390 year: 1993 ident: 132_CR42 publication-title: Mol Gen Genet doi: 10.1007/BF00291998 – volume: 23 start-page: 883 year: 1995 ident: 132_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/23.5.883 – volume: 425 start-page: 188 year: 2003 ident: 132_CR21 publication-title: Nature doi: 10.1038/nature01965 – volume: 17 start-page: 64 year: 2003 ident: 132_CR16 publication-title: Genes Dev doi: 10.1101/gad.1043203 – volume: 26 start-page: 8892 year: 2006 ident: 132_CR24 publication-title: Mol Cell Biol doi: 10.1128/MCB.01118-06 – volume: 103 start-page: 8971 year: 2006 ident: 132_CR40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510167103 – volume: 310 start-page: 1821 year: 2005 ident: 132_CR23 publication-title: Science doi: 10.1126/science.1120615 – volume: 99 start-page: 8778 year: 2002 ident: 132_CR43 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.132275199 – volume: 9 start-page: 851 year: 1989 ident: 132_CR47 publication-title: Mol Cell Biol doi: 10.1128/MCB.9.2.851 – volume: 8 start-page: 7 year: 2001 ident: 132_CR4 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00278-7 – volume-title: Methods in yeast genetics: a cold spring harbor laboratory course manual, 2005 edition year: 2005 ident: 132_CR31 – volume: 36 start-page: 617 year: 2002 ident: 132_CR39 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.36.060402.113540 – volume: 23 start-page: 3886 year: 2004 ident: 132_CR22 publication-title: EMBO J doi: 10.1038/sj.emboj.7600383 – volume: 312 start-page: 335 year: 2001 ident: 132_CR10 publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4937 – volume: 14 start-page: 953 year: 1998 ident: 132_CR30 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5 – reference: 12509270 - DNA Repair (Amst). 2003 Jan 2;2(1):91-106 – reference: 331093 - Mutat Res. 1977 Jun;43(3):327-38 – reference: 15359278 - EMBO J. 2004 Oct 1;23 (19):3886-96 – reference: 11515498 - Mol Cell. 2001 Jul;8(1):7-8 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 12077312 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8778-83 – reference: 10871396 - Nucleic Acids Res. 2000 Jul 1;28(13):2473-80 – reference: 12514100 - Genes Dev. 2003 Jan 1;17 (1):64-76 – reference: 10801132 - Nature. 2000 Apr 27;404(6781):1011-3 – reference: 8492807 - Mol Gen Genet. 1993 Apr;238(3):390-400 – reference: 9990050 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1486-91 – reference: 16857592 - Mol Cell. 2006 Jul 21;23(2):265-71 – reference: 12429704 - Annu Rev Genet. 2002;36:617-56 – reference: 17351896 - Yeast. 2007 Mar;24(3):145-54 – reference: 16449651 - Mol Cell Biol. 2006 Feb;26(4):1398-413 – reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 – reference: 15916957 - Mol Cell. 2005 May 27;18(5):499-505 – reference: 4579463 - Nat New Biol. 1973 Aug 1;244(135):129-31 – reference: 17198712 - J Mol Biol. 2007 Mar 2;366(4):1074-86 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 355896 - Nature. 1978 Aug 31;274(5674):888-91 – reference: 16763556 - EMBO J. 2006 Jun 21;25(12):2847-55 – reference: 9409821 - Genetics. 1997 Dec;147(4):1557-68 – reference: 12496357 - Mol Cancer Res. 2002 Dec;1(2):103-12 – reference: 336459 - Genetics. 1977 Oct;87(2):237-48 – reference: 15952890 - Annu Rev Biochem. 2005;74:317-53 – reference: 9604893 - Mol Gen Genet. 1998 Apr;257(6):686-92 – reference: 17268548 - EMBO J. 2007 Feb 21;26(4):923-34 – reference: 11724965 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14256-61 – reference: 9974380 - Science. 1999 Feb 12;283(5404):1001-4 – reference: 16611731 - Proc Natl Acad Sci U S A. 2006 Apr 25;103(17 ):6477-82 – reference: 16705165 - Mol Cell Biol. 2006 Jun;26(11):4122-33 – reference: 16982685 - Mol Cell Biol. 2006 Dec;26(23):8892-900 – reference: 8670896 - EMBO J. 1996 Aug 1;15(15):3912-22 – reference: 16751278 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8971-6 – reference: 11113193 - Mol Cell Biol. 2001 Jan;21(1):185-8 – reference: 11861920 - Nucleic Acids Res. 2002 Mar 1;30(5):1262-7 – reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4 – reference: 8289832 - Mol Cell Biol. 1994 Feb;14(2):923-33 – reference: 17304240 - EMBO Rep. 2007 Mar;8(3):247-51 – reference: 10369688 - EMBO J. 1999 Jun 15;18(12 ):3491-501 – reference: 17251197 - Nucleic Acids Res. 2007;35(3):881-9 – reference: 2710127 - Mol Cell Biol. 1989 Feb;9(2):851-3 – reference: 11554790 - J Mol Biol. 2001 Sep 14;312(2):335-46 – reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91 – reference: 17525332 - Science. 2007 May 25;316(5828):1160-6 – reference: 16344468 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18361-6 – reference: 7708509 - Nucleic Acids Res. 1995 Mar 11;23(5):883-4 – reference: 15149598 - Mol Cell. 2004 May 21;14 (4):491-500 – reference: 9717241 - Yeast. 1998 Jul;14(10):953-61 |
SSID | ssj0017669 |
Score | 1.8480316 |
Snippet | RAD30
-encoded DNA polymerase η functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an... RAD30-encoded DNA polymerase eta functions as a translesion polymerase that can bypass the most frequent types of UV-induced pyrimidine photoproducts in an... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 157 |
SubjectTerms | Amino Acid Motifs Biological and Medical Physics Biophysics DNA Damage - radiation effects DNA Repair - physiology DNA Repair - radiation effects DNA Replication - physiology DNA Replication - radiation effects DNA-Directed DNA Polymerase - biosynthesis DNA-Directed DNA Polymerase - radiation effects Ecosystems Effects of Radiation/Radiation Protection Environmental Physics Enzyme Activators Genes, Fungal - radiation effects Monitoring/Environmental Analysis Original Paper Physics Physics and Astronomy RNA, Fungal - analysis RNA, Fungal - radiation effects Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - radiation effects Saccharomyces cerevisiae Proteins - biosynthesis Saccharomyces cerevisiae Proteins - radiation effects Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - radiation effects Ubiquitination - physiology Ultraviolet Rays - adverse effects |
Title | Regulation of Saccharomyces cerevisiae DNA polymerase η transcript and protein |
URI | https://link.springer.com/article/10.1007/s00411-007-0132-1 https://www.ncbi.nlm.nih.gov/pubmed/17874115 https://www.proquest.com/docview/19369833 https://www.proquest.com/docview/70256631 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-2099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017669 issn: 0301-634X databaseCode: AFBBN dateStart: 19630301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-2099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0017669 issn: 0301-634X databaseCode: BENPR dateStart: 20020601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1432-2099 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0017669 issn: 0301-634X databaseCode: 7X7 dateStart: 20020601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-2099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017669 issn: 0301-634X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-2099 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017669 issn: 0301-634X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVqBeeBQKy2PxgRMo1caTxMlxF3apQF1Q2UrLKbIdW6pok4pkD8sf41_wmxg7ySIoReopUeLEjseeR-abGYCXcUpSgysbuJKYZKCgCVKloiAraIEUAoXlLsD5aJEcnkTvV_Gqi-Oue7R775L0nHob7OZSQ5Hp66GSyAMyeXZiZ58MYGfy7suH2dZ5IBJfyc4p-0GC0ap3Zv7rJX-Ko0s65iX_qBc787uw7Afcok2-HqwbdaC__5XL8ZpfdA_udGoom7Tr5j7cMOUe3GoLU2724PZR53Knix4jqusH8PG4rVtPlGSVZZ-ldiFb1fmGWA3THi9cn0rD3i4m7KI627jfXbVhP3-wxglEz56YLAvmc0Oclg9hOZ8t3xwGXT2GQKPAJuCZsIr0R1OgLEymUMZahkkmdCgxxFRlaEWk5NhIiWR3iZAXMU-EMIkujMV9GJRVaR4DK6xK0VgjQ6MjPdaKTOVQcslDqdCmagjjniq57nKVu5IZZ_k2y7Kfu9ydurnLwyG82j5y0Sbq-F_jFz2pc9pOzkciS1Ot6zx0BQ5TxKtbCKclJkjveNSukd_dEfOjfuIhvO7pnXccob56LE-u1fop7LaIFQeoeQaD5tvaPCe1qFEjuClWYkSbYT6dLkbdpqDjdLb4dEx3T_jkF11TBz4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9swED9NRdt4gQ0GdGzghz2BgupcEiePFWvXAe2krUjdU2Q7toSABJH0oXwxvsU-E7aTdNoYk3iLIsd2fPb98f3uDuBTGBup4Qvt2ZKYxkBB5cVCBF6SmQ2SMWTatwHO40k0Og9OZuGsieMuW7R765J0nHoZ7GZTQxnT10El0feMybMS0DgOOrDS__LzdLB0HrDIVbKzyr4XYTBrnZn_6uRPcfRIx3zkH3ViZ7gO03bCNdrk8mheiSN591cux2f-0RtYa9RQ0q_3zVt4ofINeFkXplxswKtx43I3Lx1GVJab8O17XbfeUJIUmvzg0oZsFdcLw2qIdHjh8oIr8nnSJzfF1cJed5WK_LonlRWIjj0RnmfE5Ya4yN_BdDiYHo-8ph6DJ5Fh5fkJ08LojypDnqlEIA8lp1HCJOVIMRYJahYI3lOco7G7GPWz0I8YU5HMlMYt6ORFrnaAZFrEqLTiVMlA9qQwpjLlPvcpF6hj0YVeS5VUNrnKbcmMq3SZZdmtXWof7dqltAsHy09u6kQd_2u835I6NcfJ-kh4rop5mVJb4DBGfLoFs1pihKaP7XqP_B7OMD8zTtiFw5beacMRyqfn8v5Zrffh9Wg6PkvPvk5Od2G1Rq9YcM0H6FS3c_XRqEiV2GuOxAMvFAVJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBajZWUvY-vWNV236mFPG6aRjm3Zj6Ft6C7JRi-QN6MrBFI7zM5Dfln_xX7TjmQ7Y2Qt7M0YWTLnSOeic_kI-ZBkqDW4cpGHxEQHBWyUKRVHucENYgQIx32B82SaXt7GX2bJrMM5rfts9z4k2dY0-C5NZXO6NO50U_jm20ShGxzSJoFH6P7sxqiqvfd1y0ebMIJIA6adN_ujFOJZH9b81xR_K6Yta3MrUhoU0PgFed5ZjnTUsvoleWLLffK0xZJc75O9SRclx5chrVPXr8j3qxZqHolPK0evpfZVVtXdGqUD1SHFt55LS8-nI7qsFmt_Q1Vb-uueNl6HBYlCZWloaOcwL1-Tm_HFzdll1EEoRBoENBHPhVNo8lkD0thcgUy0ZGkuNJPAIFM5OBErObRSArpKgnGT8FQIm2pjHRyQnbIq7SGhxqkMrLOSWR3roVbo3TLJJWdSgcvUgAx78hW6ay_uUS4WxaYxcqB44R89xQs2IB83nyzb3hqPDT7peVLgCfBhDVnaalUXzGMSZgAPjxDesEsB53jTMvPPciivcJ1kQD713C26Q1w__C9H_zX6hOz9OB8X3z5Pv74lz9p8E58Oc0x2mp8r-w6Nmka9Dxv3NxsS7Ms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Saccharomyces+cerevisiae+DNA+polymerase+%CE%B7+transcript+and+protein&rft.jtitle=Radiation+and+environmental+biophysics&rft.au=Pabla%2C+Ritu&rft.au=Rozario%2C+Donald&rft.au=Siede%2C+Wolfram&rft.date=2008-02-01&rft.issn=0301-634X&rft.eissn=1432-2099&rft.volume=47&rft.issue=1&rft.spage=157&rft.epage=168&rft_id=info:doi/10.1007%2Fs00411-007-0132-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00411_007_0132_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-634X&client=summon |