In Situ Raman Probing of Hot‐Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy

Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 5; pp. e202112749 - n/a
Main Authors Yang, Jing‐Liang, Wang, Hong‐Jia, Zhu, Zhenwei, Yue, Mu‐Fei, Yang, Wei‐Min, Zhang, Xia‐Guang, Ruan, Xiangyu, Guan, Zhiqiang, Yang, Zhi‐Lin, Cai, Weiwei, Wu, Yuan‐Fei, Fan, Feng‐Ru, Dong, Jin‐Chao, Zhang, Hua, Xu, Hongxing, Tian, Zhong‐Qun, Li, Jian‐Feng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.01.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202112749

Cover

Abstract Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene. Hot‐electron transfer at Au–graphene interfaces has been investigated in situ with atomic layer accuracy, and it is shown that hot electrons can be injected from plasmonic Au nanoparticles to graphene and penetrate up to four layers of graphene.
AbstractList Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.
Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene. Hot‐electron transfer at Au–graphene interfaces has been investigated in situ with atomic layer accuracy, and it is shown that hot electrons can be injected from plasmonic Au nanoparticles to graphene and penetrate up to four layers of graphene.
Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.
Author Wang, Hong‐Jia
Fan, Feng‐Ru
Tian, Zhong‐Qun
Yang, Wei‐Min
Ruan, Xiangyu
Dong, Jin‐Chao
Yue, Mu‐Fei
Wu, Yuan‐Fei
Zhang, Hua
Zhu, Zhenwei
Li, Jian‐Feng
Cai, Weiwei
Yang, Jing‐Liang
Guan, Zhiqiang
Zhang, Xia‐Guang
Yang, Zhi‐Lin
Xu, Hongxing
Author_xml – sequence: 1
  givenname: Jing‐Liang
  surname: Yang
  fullname: Yang, Jing‐Liang
  organization: Xiamen University
– sequence: 2
  givenname: Hong‐Jia
  surname: Wang
  fullname: Wang, Hong‐Jia
  organization: Xiamen University
– sequence: 3
  givenname: Zhenwei
  surname: Zhu
  fullname: Zhu, Zhenwei
  organization: Xiamen University
– sequence: 4
  givenname: Mu‐Fei
  surname: Yue
  fullname: Yue, Mu‐Fei
  organization: Xiamen University
– sequence: 5
  givenname: Wei‐Min
  surname: Yang
  fullname: Yang, Wei‐Min
  organization: Xiamen University
– sequence: 6
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Henan Normal University
– sequence: 7
  givenname: Xiangyu
  surname: Ruan
  fullname: Ruan, Xiangyu
  organization: Wuhan University
– sequence: 8
  givenname: Zhiqiang
  surname: Guan
  fullname: Guan, Zhiqiang
  organization: Wuhan University
– sequence: 9
  givenname: Zhi‐Lin
  surname: Yang
  fullname: Yang, Zhi‐Lin
  organization: Xiamen University
– sequence: 10
  givenname: Weiwei
  surname: Cai
  fullname: Cai, Weiwei
  organization: Xiamen University
– sequence: 11
  givenname: Yuan‐Fei
  surname: Wu
  fullname: Wu, Yuan‐Fei
  organization: Xiamen University
– sequence: 12
  givenname: Feng‐Ru
  surname: Fan
  fullname: Fan, Feng‐Ru
  email: frfan@xmu.edu.cn
  organization: Xiamen University
– sequence: 13
  givenname: Jin‐Chao
  surname: Dong
  fullname: Dong, Jin‐Chao
  email: jcdong@xmu.edu.cn
  organization: Xiamen University
– sequence: 14
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  organization: Xiamen University
– sequence: 15
  givenname: Hongxing
  surname: Xu
  fullname: Xu, Hongxing
  organization: Wuhan University
– sequence: 16
  givenname: Zhong‐Qun
  surname: Tian
  fullname: Tian, Zhong‐Qun
  organization: Xiamen University
– sequence: 17
  givenname: Jian‐Feng
  orcidid: 0000-0003-1598-6856
  surname: Li
  fullname: Li, Jian‐Feng
  email: Li@xmu.edu.cn
  organization: China Jiliang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34806809$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctqGzEUBmBRUppbt10WQTfdjKubR6OlCa5jMG1pk7U4o9E0CjOSK2kI3uURAnnDPEkVnLQQKF2ds_j-g9B_jA588Bahd5TMKCHsE3hnZ4wwSpkU6hU6onNGKy4lPyi74LySzZweouOUrotvGlK_QYdclNkQdYTc2uMfLk_4O4zg8bcYWud_4tDj85Afbu-WgzU5Bo8vIvjU24gh41UYuofb-1WE7ZX1Fq99trEHYxO-cfkKL3IYncEb2BW_MGaKYHan6HUPQ7Jvn-YJuvy8vDg7rzZfV-uzxaYyXHJVdazrlDSC90qKGlpChRQN5RJaBS3MZctlPe9aEIZ0HFhDWKs464WqCxWKn6CP-7vbGH5NNmU9umTsMIC3YUqa1YQ0jKimLvTDC3odpujL64pipKFECVbU-yc1taPt9Da6EeJOP39iAWIPTAwpRdtr4zJkF3yO4AZNiX7sSj92pf90VWKzF7Hny_8MqH3gxg129x-tF1_Wy7_Z39DFpqc
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c03265
crossref_primary_10_3788_PI_2023_R08
crossref_primary_10_1021_acs_jpclett_3c00701
crossref_primary_10_1021_acscatal_2c05802
crossref_primary_10_1021_acsnano_4c09187
crossref_primary_10_1021_acs_jpclett_3c01737
crossref_primary_10_1021_acs_nanolett_4c04951
crossref_primary_10_1002_adfm_202307298
crossref_primary_10_1016_j_saa_2025_126092
crossref_primary_10_1021_acs_nanolett_3c04979
crossref_primary_10_1021_acsnano_4c02670
crossref_primary_10_1016_j_saa_2022_121995
crossref_primary_10_1021_acsami_4c00709
crossref_primary_10_1002_adfm_202307903
crossref_primary_10_1016_j_saa_2023_123834
crossref_primary_10_1039_D3CS00462G
crossref_primary_10_1016_j_cej_2023_144098
crossref_primary_10_1039_D2NR06010H
crossref_primary_10_1002_cctc_202300919
crossref_primary_10_1021_acs_jpclett_4c02541
crossref_primary_10_1002_cptc_202300049
crossref_primary_10_1039_D3SC05722D
crossref_primary_10_1039_D3CP01118F
crossref_primary_10_1039_D3CP05835B
crossref_primary_10_1021_acsami_3c18409
crossref_primary_10_1039_D3CP00924F
crossref_primary_10_1002_cssc_202402436
crossref_primary_10_1021_acs_jpclett_2c00239
crossref_primary_10_1021_acsaom_4c00247
crossref_primary_10_1002_adfm_202315675
crossref_primary_10_1002_smll_202302410
Cites_doi 10.1021/acs.nanolett.0c01050
10.1039/C4CS00282B
10.1038/ncomms11819
10.1021/jp960669l
10.1038/s41467-019-12853-8
10.1039/C5EE03847B
10.1016/j.nantod.2019.05.006
10.1038/nmat4589
10.1021/acs.jpcc.0c06529
10.1021/nn404985h
10.1039/b707872m
10.1016/j.nanoen.2017.03.014
10.1103/RevModPhys.57.783
10.1021/jacs.7b04011
10.1021/acs.jpcc.8b00651
10.1038/s41566-017-0049-4
10.1002/smll.201400124
10.1021/acs.jpcc.7b06667
10.1021/acsenergylett.9b01617
10.1021/ar800249y
10.1039/C4CC08596E
10.1126/science.aac5443
10.1021/jacs.0c07027
10.1038/ncomms8797
10.1021/acsami.1c12410
10.1002/adom.201700004
10.1021/ja305603t
10.1002/adma.201204355
10.1002/adma.201104846
10.1002/ange.201201847
10.1016/j.chempr.2019.12.015
10.1038/nmat3151
10.1038/s41467-020-18016-4
10.1002/lpor.201600148
10.1103/PhysRevLett.101.026803
10.1016/j.xcrp.2020.100184
10.1016/j.cattod.2013.08.024
10.1007/s12274-008-8036-1
10.1038/ncomms12273
10.1021/jacs.7b01079
10.1021/ja111102u
10.1016/j.jcat.2017.08.007
10.1038/nnano.2013.18
10.1021/jacs.5b11341
10.1021/nl402730m
10.1038/s41586-021-03907-3
10.1002/anie.201201847
10.1038/nphoton.2013.238
10.1016/j.apcatb.2017.06.003
10.1002/adfm.201902101
10.1039/C6CS00195E
10.1039/C7NR00655A
10.1038/ncomms14542
10.1021/jacs.0c02523
10.1103/PhysRevLett.97.187401
10.1080/05704928.2019.1688826
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202112749
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34806809
10_1002_anie_202112749
ANIE202112749
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705400; 2020YFB1505800
– fundername: National Natural Science Foundation of China
  funderid: 21972117; 21925404; 21902137; 21703180; 21991151; 22021001
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2019J01030
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705400
– fundername: National Natural Science Foundation of China
  grantid: 21703180
– fundername: National Natural Science Foundation of China
  grantid: 22021001
– fundername: National Natural Science Foundation of China
  grantid: 21902137
– fundername: National Natural Science Foundation of China
  grantid: 21972117
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2019J01030
– fundername: National Natural Science Foundation of China
  grantid: 21991151
– fundername: National Natural Science Foundation of China
  grantid: 21925404
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1505800
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3739-d2dd97c43f9746ab014748137ab9aba57b3765dba4c0d3a2802b932f496014493
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:30:00 EDT 2025
Sun Jul 13 05:27:53 EDT 2025
Wed Feb 19 02:28:10 EST 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 01:18:12 EDT 2025
Wed Jan 22 16:27:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords hot electrons
plasmon-induced photocatalysis
gold nanoparticles
graphene
surface-enhanced Raman spectroscopy
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3739-d2dd97c43f9746ab014748137ab9aba57b3765dba4c0d3a2802b932f496014493
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1598-6856
PMID 34806809
PQID 2620810942
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2600820986
proquest_journals_2620810942
pubmed_primary_34806809
crossref_citationtrail_10_1002_anie_202112749
crossref_primary_10_1002_anie_202112749
wiley_primary_10_1002_anie_202112749_ANIE202112749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 26, 2022
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 01
  year: 2022
  text: January 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 122
2017; 8
2013; 25
2009; 42
2020; 20
2019; 10
2008; 37
2011; 10
1996; 100
2015; 349
2020; 124
2020; 11
2020; 55
2013; 7
2008; 1
2008; 101
2013; 8
2017; 355
2017; 9
2020; 6
2012; 134
2020; 1
2013; 13
2021; 598
2012 2012; 51 124
2017; 35
2015; 44
2019; 27
2019; 29
2017; 121
2014; 8
2012; 24
2014; 10
2016; 45
1985; 57
2019; 4
2015; 6
2006; 97
2015; 51
2020; 142
2016; 15
2011; 133
2017; 139
2017; 217
2021; 13
2016; 7
2017; 11
2016; 138
2016; 9
2014; 225
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 349
  start-page: 632
  year: 2015
  end-page: 635
  publication-title: Science
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 51 124
  start-page: 8008 8132
  year: 2012 2012
  end-page: 8011 8135
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 6254
  year: 2017
  end-page: 6258
  publication-title: Nanoscale
– volume: 10
  start-page: 3537
  year: 2014
  end-page: 3543
  publication-title: Small
– volume: 4
  start-page: 2552
  year: 2019
  end-page: 2568
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 806
  year: 2017
  end-page: 812
  publication-title: Nat. Photonics
– volume: 138
  start-page: 1114
  year: 2016
  end-page: 1117
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2757
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 928
  year: 2013
  end-page: 933
  publication-title: Adv. Mater.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 247
  year: 2013
  end-page: 251
  publication-title: Nat. Nanotechnol.
– volume: 124
  start-page: 18173
  year: 2020
  end-page: 18180
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 4322
  year: 2020
  end-page: 4329
  publication-title: Nano Lett.
– volume: 139
  start-page: 6160
  year: 2017
  end-page: 6168
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 734
  year: 2009
  end-page: 742
  publication-title: Acc. Chem. Res.
– volume: 133
  start-page: 5660
  year: 2011
  end-page: 5663
  publication-title: J. Am. Chem. Soc.
– volume: 225
  start-page: 177
  year: 2014
  end-page: 184
  publication-title: Catal. Today
– volume: 134
  start-page: 15033
  year: 2012
  end-page: 15041
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 43708
  year: 2021
  end-page: 43714
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 5255
  year: 2013
  end-page: 5263
  publication-title: Nano Lett.
– volume: 57
  start-page: 783
  year: 1985
  end-page: 826
  publication-title: Rev. Mod. Phys.
– volume: 37
  start-page: 1025
  year: 2008
  end-page: 1041
  publication-title: Chem. Soc. Rev.
– volume: 217
  start-page: 388
  year: 2017
  end-page: 406
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 95
  year: 2014
  end-page: 103
  publication-title: Nat. Photonics
– volume: 8
  start-page: 14542
  year: 2017
  publication-title: Nat. Commun.
– volume: 15
  start-page: 611
  year: 2016
  end-page: 615
  publication-title: Nat. Mater.
– volume: 121
  start-page: 24159
  year: 2017
  end-page: 24167
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 4211
  year: 2020
  publication-title: Nat. Commun.
– volume: 598
  start-page: 304
  year: 2021
  end-page: 307
  publication-title: Nature
– volume: 1
  start-page: 273
  year: 2008
  end-page: 291
  publication-title: Nano Res.
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  publication-title: Nat. Mater.
– volume: 7
  start-page: 12273
  year: 2016
  publication-title: Nat. Commun.
– volume: 27
  start-page: 120
  year: 2019
  end-page: 145
  publication-title: Nano Today
– volume: 139
  start-page: 10339
  year: 2017
  end-page: 10346
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 3145
  year: 2016
  end-page: 3187
  publication-title: Chem. Soc. Rev.
– volume: 122
  start-page: 8517
  year: 2018
  end-page: 8527
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 7797
  year: 2015
  publication-title: Nat. Commun.
– volume: 55
  start-page: 558
  year: 2020
  end-page: 573
  publication-title: Appl. Spectrosc. Rev.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 689
  year: 2020
  end-page: 702
  publication-title: Chem
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 355
  start-page: 1
  year: 2017
  end-page: 10
  publication-title: J. Catal.
– volume: 9
  start-page: 1577
  year: 2016
  end-page: 1601
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 7
  start-page: 11819
  year: 2016
  publication-title: Nat. Commun.
– volume: 100
  start-page: 12974
  year: 1996
  end-page: 12980
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 4912
  year: 2019
  publication-title: Nat. Commun.
– volume: 24
  start-page: OP71
  year: 2012
  end-page: OP76
  publication-title: Adv. Mater.
– volume: 35
  start-page: 1
  year: 2017
  end-page: 8
  publication-title: Nano Energy
– volume: 7
  start-page: 11209
  year: 2013
  end-page: 11217
  publication-title: ACS Nano
– volume: 142
  start-page: 17489
  year: 2020
  end-page: 17498
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 8483
  year: 2020
  end-page: 8489
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 5363
  year: 2015
  end-page: 5366
  publication-title: Chem. Commun.
– ident: e_1_2_6_23_1
  doi: 10.1021/acs.nanolett.0c01050
– ident: e_1_2_6_33_1
  doi: 10.1039/C4CS00282B
– ident: e_1_2_6_37_1
  doi: 10.1038/ncomms11819
– ident: e_1_2_6_43_1
  doi: 10.1021/jp960669l
– ident: e_1_2_6_13_1
  doi: 10.1038/s41467-019-12853-8
– ident: e_1_2_6_10_1
  doi: 10.1039/C5EE03847B
– ident: e_1_2_6_27_1
  doi: 10.1016/j.nantod.2019.05.006
– ident: e_1_2_6_1_1
  doi: 10.1038/nmat4589
– ident: e_1_2_6_20_1
  doi: 10.1021/acs.jpcc.0c06529
– ident: e_1_2_6_34_1
  doi: 10.1021/nn404985h
– ident: e_1_2_6_54_1
  doi: 10.1039/b707872m
– ident: e_1_2_6_18_1
  doi: 10.1016/j.nanoen.2017.03.014
– ident: e_1_2_6_39_1
  doi: 10.1103/RevModPhys.57.783
– ident: e_1_2_6_48_1
  doi: 10.1021/jacs.7b04011
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.jpcc.8b00651
– ident: e_1_2_6_42_1
  doi: 10.1038/s41566-017-0049-4
– ident: e_1_2_6_31_1
  doi: 10.1002/smll.201400124
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.jpcc.7b06667
– ident: e_1_2_6_22_1
  doi: 10.1021/acsenergylett.9b01617
– ident: e_1_2_6_55_1
  doi: 10.1021/ar800249y
– ident: e_1_2_6_30_1
  doi: 10.1039/C4CC08596E
– ident: e_1_2_6_15_1
  doi: 10.1126/science.aac5443
– ident: e_1_2_6_52_1
  doi: 10.1021/jacs.0c07027
– ident: e_1_2_6_41_1
  doi: 10.1038/ncomms8797
– ident: e_1_2_6_19_1
  doi: 10.1021/acsami.1c12410
– ident: e_1_2_6_26_1
  doi: 10.1002/adom.201700004
– ident: e_1_2_6_14_1
  doi: 10.1021/ja305603t
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201204355
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.201104846
– ident: e_1_2_6_2_2
  doi: 10.1002/ange.201201847
– ident: e_1_2_6_44_1
  doi: 10.1016/j.chempr.2019.12.015
– ident: e_1_2_6_9_1
  doi: 10.1038/nmat3151
– ident: e_1_2_6_40_1
  doi: 10.1038/s41467-020-18016-4
– ident: e_1_2_6_51_1
  doi: 10.1002/lpor.201600148
– ident: e_1_2_6_50_1
  doi: 10.1103/PhysRevLett.101.026803
– ident: e_1_2_6_24_1
  doi: 10.1016/j.xcrp.2020.100184
– ident: e_1_2_6_25_1
  doi: 10.1016/j.cattod.2013.08.024
– ident: e_1_2_6_45_1
  doi: 10.1007/s12274-008-8036-1
– ident: e_1_2_6_3_1
  doi: 10.1038/ncomms12273
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.7b01079
– ident: e_1_2_6_5_1
  doi: 10.1021/ja111102u
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jcat.2017.08.007
– ident: e_1_2_6_17_1
  doi: 10.1038/nnano.2013.18
– ident: e_1_2_6_11_1
  doi: 10.1021/jacs.5b11341
– ident: e_1_2_6_28_1
  doi: 10.1021/nl402730m
– ident: e_1_2_6_8_1
  doi: 10.1038/s41586-021-03907-3
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.201201847
– ident: e_1_2_6_16_1
  doi: 10.1038/nphoton.2013.238
– ident: e_1_2_6_4_1
  doi: 10.1016/j.apcatb.2017.06.003
– ident: e_1_2_6_6_1
  doi: 10.1002/adfm.201902101
– ident: e_1_2_6_35_1
  doi: 10.1039/C6CS00195E
– ident: e_1_2_6_49_1
  doi: 10.1039/C7NR00655A
– ident: e_1_2_6_12_1
  doi: 10.1038/ncomms14542
– ident: e_1_2_6_53_1
  doi: 10.1021/jacs.0c02523
– ident: e_1_2_6_46_1
  doi: 10.1103/PhysRevLett.97.187401
– ident: e_1_2_6_47_1
  doi: 10.1080/05704928.2019.1688826
SSID ssj0028806
Score 2.562945
Snippet Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202112749
SubjectTerms Chemical reactions
Density functional theory
Electric fields
Electrochemistry
Electron transfer
Gold
gold nanoparticles
Graphene
Graphical user interface
Heavy metals
Hot electrons
Interfaces
Nanoparticles
Photoexcitation
plasmon-induced photocatalysis
Plasmonics
Raman spectroscopy
surface-enhanced Raman spectroscopy
Transportation
Two dimensional materials
Title In Situ Raman Probing of Hot‐Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112749
https://www.ncbi.nlm.nih.gov/pubmed/34806809
https://www.proquest.com/docview/2620810942
https://www.proquest.com/docview/2600820986
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqemgvpS19LKXIlZB6MmzsOI9jgF2WqiBEi8QtGjsxQoUELckBTvyESv2H_JLO5NVuq6pSe4kUxU4cj8f-Zuz5hrENaSPttIpF7kkrEBEHIjK5Fj6uzUGcOS-0FI18cBjMTvwPp_r0pyj-lh9icLiRZjTzNSk4mOutH6ShFIGN9h0aMGhYUQSfpwIiz989HvijJA7ONrxIKUFZ6HvWxrHcWqy-uCr9BjUXkWuz9EyXGfSNbk-cfNmsK7Npb3_hc_yfv3rKnnS4lCftQHrGHuTFc_Zop08Ht8LO9wv-6byq-TFcQsGPiL-pOOOl47Oyur_7Ouny6fBm9XP5nEPF98qL7P7u2x6xYuOkyhv_o6NTYJwcwDypKCiafwQE_jyxtp6DvXnBTqaTzzsz0eVpEFaFKOZMZlkcWl85NE4CMGh1hX7kqRBMDAZ0aHAW05kB344zBTIaS4Ow0floPaE9F6uXbKkoi_w146GNAGgzVnvGd0AOmRjiTGu8SM-pERO9nFLbkZhTLo2LtKVflil1YDp04Ii9H8pftfQdfyy51os97dT4OiW2_shDC1iO2LvhMXY87apAkZc1lWlgVBwFI_aqHS7Dp5QfUW4TfLlshP6XNqTJ4f5kuFv9l0pv2GNJARpjT8hgjS1V8zp_i7CpMuvsYbK9uz1db1TkOwGED08
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78fSAkZC4uR240cex1W17S5sV6i0ErfIdmJUURK0JAc49SdU6j_sL-lMXmhBCAkukaLYiePx2N-MPd8AvBYu1l7LhOeBcBwRcchjm2uucG0Ok8wHkaNo5MNlODtRbz_q_jQhxcK0_BCDw400o5mvScHJIb37kzWUQrDRwEMLBi2r5CbcUog2mp3ao4FBSuDwbAOMpOSUh77nbRyL3fX66-vSb2BzHbs2i8_-XbB9s9szJ5936sruuB-_MDr-13_dgzsdNGWTdizdhxt58QA29_qMcA_hdF6wD6dVzY7MF1Ow90ThVHxipWezsro6v5h2KXVYswD6fMVMxQ7Ks-zq_PKAiLFxXmWNC9LTQTBGPmA2qSgumi0MYn82ca5eGff9EZzsT4_3ZrxL1cCdjFDSmciyJHJKerRPQmPR8IpUHMjI2MRYoyOLE5nOrFFunEkj4rGwiBy9QgMKTbpEPoaNoizyp8AiFxtD-7E6sMob8skkJsm0xosIvBwB7wWVuo7HnNJpnKUtA7NIqQPToQNH8GYo_7Vl8Phjye1e7mmnyd9SIuyPAzSCxQheDY-x42ljxRR5WVOZBkklcTiCJ-14GT4lVUzpTfDlopH6X9qQTpbz6XD37F8qvYTN2fHhIl3Ml--24LageI1xwEW4DRvVqs6fI4qq7ItGT64BcgUR-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd2GhgJGQOLnd-JHEx1XZ7S6UVVWo1FvkR4wqSlItyQFO_QlI_MP-EmbyggUhJLhEimInjsf2fDP2fEPIc-5SFZTQLI-4Y4CIY5baXDEJujnWPkSJw2jkN8t4fiRfHavjn6L4W36IweGGM6NZr3GCn_mw84M0FCOwwb4DAwYMK32ZXJExqDOERYcDgRSH0dnGFwnBMA19T9s45jvr9dfV0m9Ycx26NrpndpOYvtXtkZMP23Vlt92XXwgd_-e3bpEbHTClk3Yk3SaX8uIOubbb54O7S04WBX17UtX00Hw0BT1AAqfiPS0DnZfVxfnXaZdQhzbqL-Qraiq6V576i_Nve0iLDasqbRyQAY-BUfQA00mFUdF03wDypxPn6pVxn--Ro9n03e6cdYkamBMJyNlz73XipAhgncTGgtmVyDQSibHaWKMSC8uY8tZIN_bC8HTMLeDGIMF8AoNOi02yUZRF_oDQxKXG4G6siqwMBj0y2mivFFx4FMSIsF5OmetYzDGZxmnW8i_zDDswGzpwRF4M5c9a_o4_ltzqxZ518_hThnT9aQQmMB-RZ8Nj6HjcVjFFXtZYpsFROo1H5H47XIZPCZlichN4OW-E_pc2ZJPlYjrcPfyXSk_J1YOXs2x_sXz9iFznGKwxjhiPt8hGtarzxwChKvukmSXfASYIEKo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Raman+Probing+of+Hot%E2%80%90Electron+Transfer+at+Gold%E2%80%93Graphene+Interfaces+with+Atomic+Layer+Accuracy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jing%E2%80%90Liang+Yang&rft.au=Hong%E2%80%90Jia+Wang&rft.au=Zhu%2C+Zhenwei&rft.au=Mu%E2%80%90Fei+Yue&rft.date=2022-01-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=5&rft_id=info:doi/10.1002%2Fanie.202112749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon