In Situ Raman Probing of Hot‐Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy
Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 5; pp. e202112749 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.01.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202112749 |
Cover
Abstract | Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.
Hot‐electron transfer at Au–graphene interfaces has been investigated in situ with atomic layer accuracy, and it is shown that hot electrons can be injected from plasmonic Au nanoparticles to graphene and penetrate up to four layers of graphene. |
---|---|
AbstractList | Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene. Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal‐2D material interfaces remain unclear. Herein, hot‐electron transfer at Au‐graphene interfaces has been in situ studied using surface‐enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot‐electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene. Hot‐electron transfer at Au–graphene interfaces has been investigated in situ with atomic layer accuracy, and it is shown that hot electrons can be injected from plasmonic Au nanoparticles to graphene and penetrate up to four layers of graphene. Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene. |
Author | Wang, Hong‐Jia Fan, Feng‐Ru Tian, Zhong‐Qun Yang, Wei‐Min Ruan, Xiangyu Dong, Jin‐Chao Yue, Mu‐Fei Wu, Yuan‐Fei Zhang, Hua Zhu, Zhenwei Li, Jian‐Feng Cai, Weiwei Yang, Jing‐Liang Guan, Zhiqiang Zhang, Xia‐Guang Yang, Zhi‐Lin Xu, Hongxing |
Author_xml | – sequence: 1 givenname: Jing‐Liang surname: Yang fullname: Yang, Jing‐Liang organization: Xiamen University – sequence: 2 givenname: Hong‐Jia surname: Wang fullname: Wang, Hong‐Jia organization: Xiamen University – sequence: 3 givenname: Zhenwei surname: Zhu fullname: Zhu, Zhenwei organization: Xiamen University – sequence: 4 givenname: Mu‐Fei surname: Yue fullname: Yue, Mu‐Fei organization: Xiamen University – sequence: 5 givenname: Wei‐Min surname: Yang fullname: Yang, Wei‐Min organization: Xiamen University – sequence: 6 givenname: Xia‐Guang surname: Zhang fullname: Zhang, Xia‐Guang organization: Henan Normal University – sequence: 7 givenname: Xiangyu surname: Ruan fullname: Ruan, Xiangyu organization: Wuhan University – sequence: 8 givenname: Zhiqiang surname: Guan fullname: Guan, Zhiqiang organization: Wuhan University – sequence: 9 givenname: Zhi‐Lin surname: Yang fullname: Yang, Zhi‐Lin organization: Xiamen University – sequence: 10 givenname: Weiwei surname: Cai fullname: Cai, Weiwei organization: Xiamen University – sequence: 11 givenname: Yuan‐Fei surname: Wu fullname: Wu, Yuan‐Fei organization: Xiamen University – sequence: 12 givenname: Feng‐Ru surname: Fan fullname: Fan, Feng‐Ru email: frfan@xmu.edu.cn organization: Xiamen University – sequence: 13 givenname: Jin‐Chao surname: Dong fullname: Dong, Jin‐Chao email: jcdong@xmu.edu.cn organization: Xiamen University – sequence: 14 givenname: Hua surname: Zhang fullname: Zhang, Hua organization: Xiamen University – sequence: 15 givenname: Hongxing surname: Xu fullname: Xu, Hongxing organization: Wuhan University – sequence: 16 givenname: Zhong‐Qun surname: Tian fullname: Tian, Zhong‐Qun organization: Xiamen University – sequence: 17 givenname: Jian‐Feng orcidid: 0000-0003-1598-6856 surname: Li fullname: Li, Jian‐Feng email: Li@xmu.edu.cn organization: China Jiliang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34806809$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctqGzEUBmBRUppbt10WQTfdjKubR6OlCa5jMG1pk7U4o9E0CjOSK2kI3uURAnnDPEkVnLQQKF2ds_j-g9B_jA588Bahd5TMKCHsE3hnZ4wwSpkU6hU6onNGKy4lPyi74LySzZweouOUrotvGlK_QYdclNkQdYTc2uMfLk_4O4zg8bcYWud_4tDj85Afbu-WgzU5Bo8vIvjU24gh41UYuofb-1WE7ZX1Fq99trEHYxO-cfkKL3IYncEb2BW_MGaKYHan6HUPQ7Jvn-YJuvy8vDg7rzZfV-uzxaYyXHJVdazrlDSC90qKGlpChRQN5RJaBS3MZctlPe9aEIZ0HFhDWKs464WqCxWKn6CP-7vbGH5NNmU9umTsMIC3YUqa1YQ0jKimLvTDC3odpujL64pipKFECVbU-yc1taPt9Da6EeJOP39iAWIPTAwpRdtr4zJkF3yO4AZNiX7sSj92pf90VWKzF7Hny_8MqH3gxg129x-tF1_Wy7_Z39DFpqc |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c03265 crossref_primary_10_3788_PI_2023_R08 crossref_primary_10_1021_acs_jpclett_3c00701 crossref_primary_10_1021_acscatal_2c05802 crossref_primary_10_1021_acsnano_4c09187 crossref_primary_10_1021_acs_jpclett_3c01737 crossref_primary_10_1021_acs_nanolett_4c04951 crossref_primary_10_1002_adfm_202307298 crossref_primary_10_1016_j_saa_2025_126092 crossref_primary_10_1021_acs_nanolett_3c04979 crossref_primary_10_1021_acsnano_4c02670 crossref_primary_10_1016_j_saa_2022_121995 crossref_primary_10_1021_acsami_4c00709 crossref_primary_10_1002_adfm_202307903 crossref_primary_10_1016_j_saa_2023_123834 crossref_primary_10_1039_D3CS00462G crossref_primary_10_1016_j_cej_2023_144098 crossref_primary_10_1039_D2NR06010H crossref_primary_10_1002_cctc_202300919 crossref_primary_10_1021_acs_jpclett_4c02541 crossref_primary_10_1002_cptc_202300049 crossref_primary_10_1039_D3SC05722D crossref_primary_10_1039_D3CP01118F crossref_primary_10_1039_D3CP05835B crossref_primary_10_1021_acsami_3c18409 crossref_primary_10_1039_D3CP00924F crossref_primary_10_1002_cssc_202402436 crossref_primary_10_1021_acs_jpclett_2c00239 crossref_primary_10_1021_acsaom_4c00247 crossref_primary_10_1002_adfm_202315675 crossref_primary_10_1002_smll_202302410 |
Cites_doi | 10.1021/acs.nanolett.0c01050 10.1039/C4CS00282B 10.1038/ncomms11819 10.1021/jp960669l 10.1038/s41467-019-12853-8 10.1039/C5EE03847B 10.1016/j.nantod.2019.05.006 10.1038/nmat4589 10.1021/acs.jpcc.0c06529 10.1021/nn404985h 10.1039/b707872m 10.1016/j.nanoen.2017.03.014 10.1103/RevModPhys.57.783 10.1021/jacs.7b04011 10.1021/acs.jpcc.8b00651 10.1038/s41566-017-0049-4 10.1002/smll.201400124 10.1021/acs.jpcc.7b06667 10.1021/acsenergylett.9b01617 10.1021/ar800249y 10.1039/C4CC08596E 10.1126/science.aac5443 10.1021/jacs.0c07027 10.1038/ncomms8797 10.1021/acsami.1c12410 10.1002/adom.201700004 10.1021/ja305603t 10.1002/adma.201204355 10.1002/adma.201104846 10.1002/ange.201201847 10.1016/j.chempr.2019.12.015 10.1038/nmat3151 10.1038/s41467-020-18016-4 10.1002/lpor.201600148 10.1103/PhysRevLett.101.026803 10.1016/j.xcrp.2020.100184 10.1016/j.cattod.2013.08.024 10.1007/s12274-008-8036-1 10.1038/ncomms12273 10.1021/jacs.7b01079 10.1021/ja111102u 10.1016/j.jcat.2017.08.007 10.1038/nnano.2013.18 10.1021/jacs.5b11341 10.1021/nl402730m 10.1038/s41586-021-03907-3 10.1002/anie.201201847 10.1038/nphoton.2013.238 10.1016/j.apcatb.2017.06.003 10.1002/adfm.201902101 10.1039/C6CS00195E 10.1039/C7NR00655A 10.1038/ncomms14542 10.1021/jacs.0c02523 10.1103/PhysRevLett.97.187401 10.1080/05704928.2019.1688826 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202112749 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34806809 10_1002_anie_202112749 ANIE202112749 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2019YFA0705400; 2020YFB1505800 – fundername: National Natural Science Foundation of China funderid: 21972117; 21925404; 21902137; 21703180; 21991151; 22021001 – fundername: Natural Science Foundation of Fujian Province funderid: 2019J01030 – fundername: National Key Research and Development Program of China grantid: 2019YFA0705400 – fundername: National Natural Science Foundation of China grantid: 21703180 – fundername: National Natural Science Foundation of China grantid: 22021001 – fundername: National Natural Science Foundation of China grantid: 21902137 – fundername: National Natural Science Foundation of China grantid: 21972117 – fundername: Natural Science Foundation of Fujian Province grantid: 2019J01030 – fundername: National Natural Science Foundation of China grantid: 21991151 – fundername: National Natural Science Foundation of China grantid: 21925404 – fundername: National Key Research and Development Program of China grantid: 2020YFB1505800 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3739-d2dd97c43f9746ab014748137ab9aba57b3765dba4c0d3a2802b932f496014493 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:30:00 EDT 2025 Sun Jul 13 05:27:53 EDT 2025 Wed Feb 19 02:28:10 EST 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 01:18:12 EDT 2025 Wed Jan 22 16:27:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | hot electrons plasmon-induced photocatalysis gold nanoparticles graphene surface-enhanced Raman spectroscopy |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3739-d2dd97c43f9746ab014748137ab9aba57b3765dba4c0d3a2802b932f496014493 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1598-6856 |
PMID | 34806809 |
PQID | 2620810942 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2600820986 proquest_journals_2620810942 pubmed_primary_34806809 crossref_citationtrail_10_1002_anie_202112749 crossref_primary_10_1002_anie_202112749 wiley_primary_10_1002_anie_202112749_ANIE202112749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 26, 2022 |
PublicationDateYYYYMMDD | 2022-01-26 |
PublicationDate_xml | – month: 01 year: 2022 text: January 26, 2022 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 122 2017; 8 2013; 25 2009; 42 2020; 20 2019; 10 2008; 37 2011; 10 1996; 100 2015; 349 2020; 124 2020; 11 2020; 55 2013; 7 2008; 1 2008; 101 2013; 8 2017; 355 2017; 9 2020; 6 2012; 134 2020; 1 2013; 13 2021; 598 2012 2012; 51 124 2017; 35 2015; 44 2019; 27 2019; 29 2017; 121 2014; 8 2012; 24 2014; 10 2016; 45 1985; 57 2019; 4 2015; 6 2006; 97 2015; 51 2020; 142 2016; 15 2011; 133 2017; 139 2017; 217 2021; 13 2016; 7 2017; 11 2016; 138 2016; 9 2014; 225 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 349 start-page: 632 year: 2015 end-page: 635 publication-title: Science – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 51 124 start-page: 8008 8132 year: 2012 2012 end-page: 8011 8135 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 6254 year: 2017 end-page: 6258 publication-title: Nanoscale – volume: 10 start-page: 3537 year: 2014 end-page: 3543 publication-title: Small – volume: 4 start-page: 2552 year: 2019 end-page: 2568 publication-title: ACS Energy Lett. – volume: 11 start-page: 806 year: 2017 end-page: 812 publication-title: Nat. Photonics – volume: 138 start-page: 1114 year: 2016 end-page: 1117 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2757 year: 2015 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 928 year: 2013 end-page: 933 publication-title: Adv. Mater. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 247 year: 2013 end-page: 251 publication-title: Nat. Nanotechnol. – volume: 124 start-page: 18173 year: 2020 end-page: 18180 publication-title: J. Phys. Chem. C – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 4322 year: 2020 end-page: 4329 publication-title: Nano Lett. – volume: 139 start-page: 6160 year: 2017 end-page: 6168 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 734 year: 2009 end-page: 742 publication-title: Acc. Chem. Res. – volume: 133 start-page: 5660 year: 2011 end-page: 5663 publication-title: J. Am. Chem. Soc. – volume: 225 start-page: 177 year: 2014 end-page: 184 publication-title: Catal. Today – volume: 134 start-page: 15033 year: 2012 end-page: 15041 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 43708 year: 2021 end-page: 43714 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 5255 year: 2013 end-page: 5263 publication-title: Nano Lett. – volume: 57 start-page: 783 year: 1985 end-page: 826 publication-title: Rev. Mod. Phys. – volume: 37 start-page: 1025 year: 2008 end-page: 1041 publication-title: Chem. Soc. Rev. – volume: 217 start-page: 388 year: 2017 end-page: 406 publication-title: Appl. Catal. B – volume: 8 start-page: 95 year: 2014 end-page: 103 publication-title: Nat. Photonics – volume: 8 start-page: 14542 year: 2017 publication-title: Nat. Commun. – volume: 15 start-page: 611 year: 2016 end-page: 615 publication-title: Nat. Mater. – volume: 121 start-page: 24159 year: 2017 end-page: 24167 publication-title: J. Phys. Chem. C – volume: 11 start-page: 4211 year: 2020 publication-title: Nat. Commun. – volume: 598 start-page: 304 year: 2021 end-page: 307 publication-title: Nature – volume: 1 start-page: 273 year: 2008 end-page: 291 publication-title: Nano Res. – volume: 10 start-page: 911 year: 2011 end-page: 921 publication-title: Nat. Mater. – volume: 7 start-page: 12273 year: 2016 publication-title: Nat. Commun. – volume: 27 start-page: 120 year: 2019 end-page: 145 publication-title: Nano Today – volume: 139 start-page: 10339 year: 2017 end-page: 10346 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 3145 year: 2016 end-page: 3187 publication-title: Chem. Soc. Rev. – volume: 122 start-page: 8517 year: 2018 end-page: 8527 publication-title: J. Phys. Chem. C – volume: 6 start-page: 7797 year: 2015 publication-title: Nat. Commun. – volume: 55 start-page: 558 year: 2020 end-page: 573 publication-title: Appl. Spectrosc. Rev. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 689 year: 2020 end-page: 702 publication-title: Chem – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 355 start-page: 1 year: 2017 end-page: 10 publication-title: J. Catal. – volume: 9 start-page: 1577 year: 2016 end-page: 1601 publication-title: Energy Environ. Sci. – volume: 11 year: 2017 publication-title: Laser Photonics Rev. – volume: 7 start-page: 11819 year: 2016 publication-title: Nat. Commun. – volume: 100 start-page: 12974 year: 1996 end-page: 12980 publication-title: J. Phys. Chem. – volume: 10 start-page: 4912 year: 2019 publication-title: Nat. Commun. – volume: 24 start-page: OP71 year: 2012 end-page: OP76 publication-title: Adv. Mater. – volume: 35 start-page: 1 year: 2017 end-page: 8 publication-title: Nano Energy – volume: 7 start-page: 11209 year: 2013 end-page: 11217 publication-title: ACS Nano – volume: 142 start-page: 17489 year: 2020 end-page: 17498 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 8483 year: 2020 end-page: 8489 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 5363 year: 2015 end-page: 5366 publication-title: Chem. Commun. – ident: e_1_2_6_23_1 doi: 10.1021/acs.nanolett.0c01050 – ident: e_1_2_6_33_1 doi: 10.1039/C4CS00282B – ident: e_1_2_6_37_1 doi: 10.1038/ncomms11819 – ident: e_1_2_6_43_1 doi: 10.1021/jp960669l – ident: e_1_2_6_13_1 doi: 10.1038/s41467-019-12853-8 – ident: e_1_2_6_10_1 doi: 10.1039/C5EE03847B – ident: e_1_2_6_27_1 doi: 10.1016/j.nantod.2019.05.006 – ident: e_1_2_6_1_1 doi: 10.1038/nmat4589 – ident: e_1_2_6_20_1 doi: 10.1021/acs.jpcc.0c06529 – ident: e_1_2_6_34_1 doi: 10.1021/nn404985h – ident: e_1_2_6_54_1 doi: 10.1039/b707872m – ident: e_1_2_6_18_1 doi: 10.1016/j.nanoen.2017.03.014 – ident: e_1_2_6_39_1 doi: 10.1103/RevModPhys.57.783 – ident: e_1_2_6_48_1 doi: 10.1021/jacs.7b04011 – ident: e_1_2_6_21_1 doi: 10.1021/acs.jpcc.8b00651 – ident: e_1_2_6_42_1 doi: 10.1038/s41566-017-0049-4 – ident: e_1_2_6_31_1 doi: 10.1002/smll.201400124 – ident: e_1_2_6_29_1 doi: 10.1021/acs.jpcc.7b06667 – ident: e_1_2_6_22_1 doi: 10.1021/acsenergylett.9b01617 – ident: e_1_2_6_55_1 doi: 10.1021/ar800249y – ident: e_1_2_6_30_1 doi: 10.1039/C4CC08596E – ident: e_1_2_6_15_1 doi: 10.1126/science.aac5443 – ident: e_1_2_6_52_1 doi: 10.1021/jacs.0c07027 – ident: e_1_2_6_41_1 doi: 10.1038/ncomms8797 – ident: e_1_2_6_19_1 doi: 10.1021/acsami.1c12410 – ident: e_1_2_6_26_1 doi: 10.1002/adom.201700004 – ident: e_1_2_6_14_1 doi: 10.1021/ja305603t – ident: e_1_2_6_32_1 doi: 10.1002/adma.201204355 – ident: e_1_2_6_38_1 doi: 10.1002/adma.201104846 – ident: e_1_2_6_2_2 doi: 10.1002/ange.201201847 – ident: e_1_2_6_44_1 doi: 10.1016/j.chempr.2019.12.015 – ident: e_1_2_6_9_1 doi: 10.1038/nmat3151 – ident: e_1_2_6_40_1 doi: 10.1038/s41467-020-18016-4 – ident: e_1_2_6_51_1 doi: 10.1002/lpor.201600148 – ident: e_1_2_6_50_1 doi: 10.1103/PhysRevLett.101.026803 – ident: e_1_2_6_24_1 doi: 10.1016/j.xcrp.2020.100184 – ident: e_1_2_6_25_1 doi: 10.1016/j.cattod.2013.08.024 – ident: e_1_2_6_45_1 doi: 10.1007/s12274-008-8036-1 – ident: e_1_2_6_3_1 doi: 10.1038/ncomms12273 – ident: e_1_2_6_36_1 doi: 10.1021/jacs.7b01079 – ident: e_1_2_6_5_1 doi: 10.1021/ja111102u – ident: e_1_2_6_7_1 doi: 10.1016/j.jcat.2017.08.007 – ident: e_1_2_6_17_1 doi: 10.1038/nnano.2013.18 – ident: e_1_2_6_11_1 doi: 10.1021/jacs.5b11341 – ident: e_1_2_6_28_1 doi: 10.1021/nl402730m – ident: e_1_2_6_8_1 doi: 10.1038/s41586-021-03907-3 – ident: e_1_2_6_2_1 doi: 10.1002/anie.201201847 – ident: e_1_2_6_16_1 doi: 10.1038/nphoton.2013.238 – ident: e_1_2_6_4_1 doi: 10.1016/j.apcatb.2017.06.003 – ident: e_1_2_6_6_1 doi: 10.1002/adfm.201902101 – ident: e_1_2_6_35_1 doi: 10.1039/C6CS00195E – ident: e_1_2_6_49_1 doi: 10.1039/C7NR00655A – ident: e_1_2_6_12_1 doi: 10.1038/ncomms14542 – ident: e_1_2_6_53_1 doi: 10.1021/jacs.0c02523 – ident: e_1_2_6_46_1 doi: 10.1103/PhysRevLett.97.187401 – ident: e_1_2_6_47_1 doi: 10.1080/05704928.2019.1688826 |
SSID | ssj0028806 |
Score | 2.562945 |
Snippet | Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202112749 |
SubjectTerms | Chemical reactions Density functional theory Electric fields Electrochemistry Electron transfer Gold gold nanoparticles Graphene Graphical user interface Heavy metals Hot electrons Interfaces Nanoparticles Photoexcitation plasmon-induced photocatalysis Plasmonics Raman spectroscopy surface-enhanced Raman spectroscopy Transportation Two dimensional materials |
Title | In Situ Raman Probing of Hot‐Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112749 https://www.ncbi.nlm.nih.gov/pubmed/34806809 https://www.proquest.com/docview/2620810942 https://www.proquest.com/docview/2600820986 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqemgvpS19LKXIlZB6MmzsOI9jgF2WqiBEi8QtGjsxQoUELckBTvyESv2H_JLO5NVuq6pSe4kUxU4cj8f-Zuz5hrENaSPttIpF7kkrEBEHIjK5Fj6uzUGcOS-0FI18cBjMTvwPp_r0pyj-lh9icLiRZjTzNSk4mOutH6ShFIGN9h0aMGhYUQSfpwIiz989HvijJA7ONrxIKUFZ6HvWxrHcWqy-uCr9BjUXkWuz9EyXGfSNbk-cfNmsK7Npb3_hc_yfv3rKnnS4lCftQHrGHuTFc_Zop08Ht8LO9wv-6byq-TFcQsGPiL-pOOOl47Oyur_7Ouny6fBm9XP5nEPF98qL7P7u2x6xYuOkyhv_o6NTYJwcwDypKCiafwQE_jyxtp6DvXnBTqaTzzsz0eVpEFaFKOZMZlkcWl85NE4CMGh1hX7kqRBMDAZ0aHAW05kB344zBTIaS4Ow0floPaE9F6uXbKkoi_w146GNAGgzVnvGd0AOmRjiTGu8SM-pERO9nFLbkZhTLo2LtKVflil1YDp04Ii9H8pftfQdfyy51os97dT4OiW2_shDC1iO2LvhMXY87apAkZc1lWlgVBwFI_aqHS7Dp5QfUW4TfLlshP6XNqTJ4f5kuFv9l0pv2GNJARpjT8hgjS1V8zp_i7CpMuvsYbK9uz1db1TkOwGED08 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78fSAkZC4uR240cex1W17S5sV6i0ErfIdmJUURK0JAc49SdU6j_sL-lMXmhBCAkukaLYiePx2N-MPd8AvBYu1l7LhOeBcBwRcchjm2uucG0Ok8wHkaNo5MNlODtRbz_q_jQhxcK0_BCDw400o5mvScHJIb37kzWUQrDRwEMLBi2r5CbcUog2mp3ao4FBSuDwbAOMpOSUh77nbRyL3fX66-vSb2BzHbs2i8_-XbB9s9szJ5936sruuB-_MDr-13_dgzsdNGWTdizdhxt58QA29_qMcA_hdF6wD6dVzY7MF1Ow90ThVHxipWezsro6v5h2KXVYswD6fMVMxQ7Ks-zq_PKAiLFxXmWNC9LTQTBGPmA2qSgumi0MYn82ca5eGff9EZzsT4_3ZrxL1cCdjFDSmciyJHJKerRPQmPR8IpUHMjI2MRYoyOLE5nOrFFunEkj4rGwiBy9QgMKTbpEPoaNoizyp8AiFxtD-7E6sMob8skkJsm0xosIvBwB7wWVuo7HnNJpnKUtA7NIqQPToQNH8GYo_7Vl8Phjye1e7mmnyd9SIuyPAzSCxQheDY-x42ljxRR5WVOZBkklcTiCJ-14GT4lVUzpTfDlopH6X9qQTpbz6XD37F8qvYTN2fHhIl3Ml--24LageI1xwEW4DRvVqs6fI4qq7ItGT64BcgUR-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCFd2GhgJGQOLnd-JHEx1XZ7S6UVVWo1FvkR4wqSlItyQFO_QlI_MP-EmbyggUhJLhEimInjsf2fDP2fEPIc-5SFZTQLI-4Y4CIY5baXDEJujnWPkSJw2jkN8t4fiRfHavjn6L4W36IweGGM6NZr3GCn_mw84M0FCOwwb4DAwYMK32ZXJExqDOERYcDgRSH0dnGFwnBMA19T9s45jvr9dfV0m9Ycx26NrpndpOYvtXtkZMP23Vlt92XXwgd_-e3bpEbHTClk3Yk3SaX8uIOubbb54O7S04WBX17UtX00Hw0BT1AAqfiPS0DnZfVxfnXaZdQhzbqL-Qraiq6V576i_Nve0iLDasqbRyQAY-BUfQA00mFUdF03wDypxPn6pVxn--Ro9n03e6cdYkamBMJyNlz73XipAhgncTGgtmVyDQSibHaWKMSC8uY8tZIN_bC8HTMLeDGIMF8AoNOi02yUZRF_oDQxKXG4G6siqwMBj0y2mivFFx4FMSIsF5OmetYzDGZxmnW8i_zDDswGzpwRF4M5c9a_o4_ltzqxZ518_hThnT9aQQmMB-RZ8Nj6HjcVjFFXtZYpsFROo1H5H47XIZPCZlichN4OW-E_pc2ZJPlYjrcPfyXSk_J1YOXs2x_sXz9iFznGKwxjhiPt8hGtarzxwChKvukmSXfASYIEKo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Raman+Probing+of+Hot%E2%80%90Electron+Transfer+at+Gold%E2%80%93Graphene+Interfaces+with+Atomic+Layer+Accuracy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jing%E2%80%90Liang+Yang&rft.au=Hong%E2%80%90Jia+Wang&rft.au=Zhu%2C+Zhenwei&rft.au=Mu%E2%80%90Fei+Yue&rft.date=2022-01-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=5&rft_id=info:doi/10.1002%2Fanie.202112749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |