Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction
The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 6; pp. e2413638 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202413638 |
Cover
Abstract | The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction.
By utilizing anthracene and metalloporphyrin as the active components for the activation of oxygen and the catalysis of intramolecular cross‐oxidation coupling reaction, respectively, a series of photosensitive and stable tandem heterogeneous COF catalysts are constructed for realizing the efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An enables one‐step, gram‐scale photosynthesis of 4‐quinazolinones in a short time and under mild conditions. |
---|---|
AbstractList | The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction. The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction. The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction. By utilizing anthracene and metalloporphyrin as the active components for the activation of oxygen and the catalysis of intramolecular cross‐oxidation coupling reaction, respectively, a series of photosensitive and stable tandem heterogeneous COF catalysts are constructed for realizing the efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An enables one‐step, gram‐scale photosynthesis of 4‐quinazolinones in a short time and under mild conditions. The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction. |
Author | Sun, Sheng‐Nan Chen, Ming‐Lin Lin, Jiao‐Min Lan, Ya‐Qian Liu, Jiang Chen, Xiao‐Hong Li, Shun‐Li Chen, Yu Niu, Qian |
Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: South China Normal University – sequence: 2 givenname: Sheng‐Nan surname: Sun fullname: Sun, Sheng‐Nan organization: South China Normal University – sequence: 3 givenname: Xiao‐Hong surname: Chen fullname: Chen, Xiao‐Hong organization: South China Normal University – sequence: 4 givenname: Ming‐Lin surname: Chen fullname: Chen, Ming‐Lin organization: South China Normal University – sequence: 5 givenname: Jiao‐Min surname: Lin fullname: Lin, Jiao‐Min email: linjm@m.scnu.edu.cn organization: South China Normal University – sequence: 6 givenname: Qian surname: Niu fullname: Niu, Qian organization: Nanjing Normal University – sequence: 7 givenname: Shun‐Li surname: Li fullname: Li, Shun‐Li organization: South China Normal University – sequence: 8 givenname: Jiang surname: Liu fullname: Liu, Jiang email: liuj0828@m.scnu.edu.cn organization: South China Normal University – sequence: 9 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39711245$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVJaSZpt10WQzfdeKqbLWs5OFdISSjtWsjy0USpLU0kO2F2fYQ8Y5-kNpM0EAhdnc33_Zxz_gO054MHhD4SvCQY06-67fWSYsoJK1n1Bi1IQUnOsSz20AJLVuSy5NU-OkjpBmMsS1y-Q_tMCkIoLxbo9ipCC8mtfRZsVoc73YEf_vx-uIxr7Z3JTqLu4T7EXymzIWbH1jrjJiS7ug5DMHrQ3XaYuCO43rYxrMHrwd1BVseQ0pRTh3HTOb_OvoM2gwv-PXprdZfgw-M8RD9Pjn_UZ_nF5el5vbrIDROsyiUjomw1tbitDKa60kRKogUAIUITW-HGmKaxVjbUgKGlwYJZarlgVBiO2SH6ssvdxHA7QhpU75KBrtMewpgUI7zi03N4MaGfX6A3YYx-2m6iykIISugc-OmRGpseWrWJrtdxq56eOQF8B5j59ghWGTfo-eYhatcpgtXcmZo7U_86m7TlC-0p-VVB7oR718H2P7RaHX1bPbt_AYKNrIE |
CitedBy_id | crossref_primary_10_1002_anie_202501821 crossref_primary_10_1002_ange_202425668 crossref_primary_10_1002_anie_202425668 crossref_primary_10_1002_ange_202501821 |
Cites_doi | 10.1002/anie.202011722 10.1039/D1OB00229E 10.1038/s41467-018-05223-3 10.1021/acscatal.4c01591 10.1021/jacs.0c06473 10.1002/anie.201712246 10.1039/D1CC02179F 10.1021/jz101565j 10.1039/D0SC01998D 10.1002/anie.202005274 10.1002/anie.202007372 10.1039/C9CC06160F 10.1126/science.aal1585 10.1002/anie.202218908 10.1021/jacs.9b01891 10.1002/anie.201411262 10.1039/C2CS35072F 10.1021/acs.orglett.0c04225 10.1002/anie.201906112 10.1021/acs.chemrev.1c00831 10.1021/jacs.8b05136 10.1021/acs.orglett.9b00191 10.1002/adma.202209475 10.1002/anie.202218745 10.1002/ijch.201500026 10.1002/anie.201806266 10.1021/jacs.2c11454 10.1021/acs.chemrev.6b00005 10.1002/anie.202117511 10.1002/anie.202114648 10.1016/j.chempr.2021.12.018 10.1021/acscatal.8b01366 10.1021/ja5092936 10.1038/s41467-021-21527-3 10.1002/anie.201402779 10.1002/anie.202117738 10.1039/C7CS00324B 10.1002/anie.202004796 10.1002/anie.202002446 10.1038/s41586-021-04365-7 10.1002/anie.201310500 10.1002/adma.202103617 10.1021/acs.chemrev.1c00220 10.1038/s41467-019-11846-x |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202413638 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 39711245 10_1002_adma_202413638 ADMA202413638 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Young Top Talents of Pearl River Talent Program of Guangdong Province funderid: 2021QN02L617 – fundername: National Natural Science Foundation of China funderid: 22271104; 22225109; 22071109; 22201046 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2023B1515120060; 2023A1515030097 – fundername: National Key R&D Program of China funderid: 2024YFA1510700; 2023YFA1507201; 2023YFA1507204 – fundername: National Natural Science Foundation of China grantid: 22225109 – fundername: National Natural Science Foundation of China grantid: 22201046 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2023A1515030097 – fundername: National Key R&D Program of China grantid: 2023YFA1507201 – fundername: National Key R&D Program of China grantid: 2023YFA1507204 – fundername: Young Top Talents of Pearl River Talent Program of Guangdong Province grantid: 2021QN02L617 – fundername: National Key R&D Program of China grantid: 2024YFA1510700 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2023B1515120060 – fundername: National Natural Science Foundation of China grantid: 22071109 – fundername: National Natural Science Foundation of China grantid: 22271104 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 53G AAYXX AEYWJ AGHNM AGYGG CITATION LH4 .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK ABEML ABTAH ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3738-93176da2f0d8c02a8a1991a7ee117a1f80bccbbff9b2cec26c073f2f47327c403 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:59:41 EDT 2025 Fri Jul 25 22:10:23 EDT 2025 Thu Feb 13 03:15:48 EST 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 00:55:01 EDT 2025 Thu Feb 13 09:32:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | covalent‐organic frameworks photocatalyst pharmaceutical synthesis |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3738-93176da2f0d8c02a8a1991a7ee117a1f80bccbbff9b2cec26c073f2f47327c403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PMID | 39711245 |
PQID | 3165772120 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3148496445 proquest_journals_3165772120 pubmed_primary_39711245 crossref_citationtrail_10_1002_adma_202413638 crossref_primary_10_1002_adma_202413638 wiley_primary_10_1002_adma_202413638_ADMA202413638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 35 2018; 140 2011; 2 2021; 23 2019; 55 2020; 142 2019; 10 2023; 145 2017; 46 2013; 42 2019; 58 2015; 54 2020; 59 2020; 11 2024; 14 2019; 141 2017; 355 2014; 136 2016; 56 2022; 122 2021; 57 2023; 62 2018; 9 2018; 8 2021; 12 2021; 33 2022; 61 2019; 21 2022; 8 2021; 19 2016; 116 2022; 603 2021; 60 2014; 53 2018; 57 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 145 start-page: 2975 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 6152 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 7204 year: 2020 publication-title: Chem. Sci. – volume: 8 start-page: 12 year: 2022 publication-title: Chem. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 212 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 23 start-page: 1026 year: 2021 publication-title: Org. Lett. – volume: 122 start-page: 5682 year: 2022 publication-title: Chem. Rev. – volume: 603 start-page: 79 year: 2022 publication-title: Nature. – volume: 8 start-page: 5869 year: 2018 publication-title: ACS Catal. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 116 start-page: 9816 year: 2016 publication-title: Chem. Rev. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 9955 year: 2024 publication-title: ACS Catal. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 6042 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 1354 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 3898 year: 2019 publication-title: Nat. Commun. – volume: 57 start-page: 5794 year: 2021 publication-title: Chem. Commun. – volume: 60 start-page: 4864 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 2798 year: 2018 publication-title: Nat. Commun. – volume: 21 start-page: 1438 year: 2019 publication-title: Org. Lett. – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 53 start-page: 2878 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 110 year: 2016 publication-title: Isr. J. Chem. – volume: 19 start-page: 4726 year: 2021 publication-title: Org. Biomol. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 7579 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 8181 year: 2022 publication-title: Chem. Rev. – volume: 355 year: 2017 publication-title: Science. – volume: 46 start-page: 5425 year: 2017 publication-title: Chem. Soc. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 2986 year: 2015 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_22_1 doi: 10.1002/anie.202011722 – ident: e_1_2_9_13_1 doi: 10.1039/D1OB00229E – ident: e_1_2_9_39_1 doi: 10.1038/s41467-018-05223-3 – ident: e_1_2_9_42_1 doi: 10.1021/acscatal.4c01591 – ident: e_1_2_9_18_1 doi: 10.1021/jacs.0c06473 – ident: e_1_2_9_33_1 doi: 10.1002/anie.201712246 – ident: e_1_2_9_36_1 doi: 10.1039/D1CC02179F – ident: e_1_2_9_40_1 doi: 10.1021/jz101565j – ident: e_1_2_9_8_1 doi: 10.1039/D0SC01998D – ident: e_1_2_9_23_1 doi: 10.1002/anie.202005274 – ident: e_1_2_9_38_1 doi: 10.1002/anie.202007372 – ident: e_1_2_9_7_1 doi: 10.1039/C9CC06160F – ident: e_1_2_9_15_1 doi: 10.1126/science.aal1585 – ident: e_1_2_9_28_1 doi: 10.1002/anie.202218908 – ident: e_1_2_9_30_1 doi: 10.1021/jacs.9b01891 – ident: e_1_2_9_19_1 doi: 10.1002/anie.201411262 – ident: e_1_2_9_17_1 doi: 10.1039/C2CS35072F – ident: e_1_2_9_41_1 doi: 10.1021/acs.orglett.0c04225 – ident: e_1_2_9_4_1 doi: 10.1002/anie.201906112 – ident: e_1_2_9_1_1 doi: 10.1021/acs.chemrev.1c00831 – ident: e_1_2_9_20_1 doi: 10.1021/jacs.8b05136 – ident: e_1_2_9_12_1 doi: 10.1021/acs.orglett.9b00191 – ident: e_1_2_9_31_1 doi: 10.1002/adma.202209475 – ident: e_1_2_9_24_1 doi: 10.1002/anie.202218745 – ident: e_1_2_9_43_1 doi: 10.1002/ijch.201500026 – ident: e_1_2_9_5_1 doi: 10.1002/anie.201806266 – ident: e_1_2_9_35_1 doi: 10.1021/jacs.2c11454 – ident: e_1_2_9_10_1 doi: 10.1021/acs.chemrev.6b00005 – ident: e_1_2_9_26_1 doi: 10.1002/anie.202117511 – ident: e_1_2_9_37_1 doi: 10.1002/anie.202114648 – ident: e_1_2_9_6_1 doi: 10.1016/j.chempr.2021.12.018 – ident: e_1_2_9_14_1 doi: 10.1021/acscatal.8b01366 – ident: e_1_2_9_32_1 doi: 10.1021/ja5092936 – ident: e_1_2_9_21_1 doi: 10.1038/s41467-021-21527-3 – ident: e_1_2_9_3_1 doi: 10.1002/anie.201402779 – ident: e_1_2_9_27_1 doi: 10.1002/anie.202117738 – ident: e_1_2_9_9_1 doi: 10.1039/C7CS00324B – ident: e_1_2_9_16_1 doi: 10.1002/anie.202004796 – ident: e_1_2_9_44_1 doi: 10.1002/anie.202002446 – ident: e_1_2_9_11_1 doi: 10.1038/s41586-021-04365-7 – ident: e_1_2_9_29_1 doi: 10.1002/anie.201310500 – ident: e_1_2_9_25_1 doi: 10.1002/adma.202103617 – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.1c00220 – ident: e_1_2_9_34_1 doi: 10.1038/s41467-019-11846-x |
SSID | ssj0009606 |
Score | 2.5055375 |
Snippet | The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction... The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2413638 |
SubjectTerms | Cascade chemical reactions Catalysis Catalysts Chemical reactions Chemical synthesis covalent‐organic frameworks Cross coupling Dehydrogenation pharmaceutical synthesis photocatalyst Photosensitivity Photosynthesis Quinazolinones Room temperature |
Title | Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202413638 https://www.ncbi.nlm.nih.gov/pubmed/39711245 https://www.proquest.com/docview/3165772120 https://www.proquest.com/docview/3148496445 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKnaJumTXtc9oEIioiCt5KngrLVfRz05E_wN_pLnKTbuquIoKdSMknTZGbykcx8QeggymLLZZSRmPOIMJUoInUoSRgbZqiUVPgMubPz5OSand7ENxNZ_CU_RL3h5izD-2tn4EIOjj9JQ4X2vEHuXAh0CJwwPB15fvvykz_KwXNPthfFJEtYWrE2BvR4uvr0qvQNak4jV7_0dBeRqDpdRpzcH42G8ki9fOFz_M9fLaGFMS7FzVKRltGM6a2g-Qm2wlX0dNE32gd84MLiVgE6CivW--tbmc-pcLcK9BpggMK449kpQARf3BXDwm8UPUPzuG3unnW_ANX1rOO45cYE2mkVI5cffIsvTZlusYauu52r1gkZ39hAlGNIIhmgkUQLagOdqoCKVLjIKsGNCUMuQpsGUikprc0kVUbRRIGHsdQyHlGuWBCto9le0TObCEvNs1QAWtNZxDR4Hh7EOrZayCRUysYNRKoZy9WYztzdqvGQl0TMNHdDmddD2UCHtfxjSeTxo-ROpQD52KAHeRQmoM2wzgcNtF8Xgym68xXRM8XIybCUgZox6NxGqTj1pwD2AbJ1JdRP_y99yJvts2b9tvWXSttojrq7in2E-Q6aHfZHZhcA1FDueSP5AIH5FRE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvB8LBYyExMlt4jhxclxtu1qgW1VVK3GL_Gwl0KZsdw_lxE_gN_JLmHE2KQtCSHCMPE4c-xv7kz3zGeB1VuVBmaziuVIZl7aw3LjU8DT30gtjhI4ZctODYnIi333Iu2hCyoVp9SH6DTfyjDhfk4PThvTOlWqodlE4iA6GEETX4UY8pCNedHSlIEUEPcrtZTmvCll2uo2J2Fmvv74u_UY217lrXHzGd8B0zW5jTj5uLxdm2375RdHxv_7rLtxeUVM2bLF0D6752X3Y_Emw8AF8Ppx7F2M-WBPYqEGY4qL1_eu3NqXTsnEX63XBkA2zvShQgSbs8KxZNHGv6BJfz3b92aWbN4jeKDzORtQp-J5Rs6QU4VN25NuMi4dwMt47Hk346tIGbkkkiVdISAqnRUhcaROhS03BVVp5n6ZKp6FMjLXGhFAZYb0VhcVJJoggVSaUlUn2CDZmzcw_AWacqkqNhM1VmXQ4-agkd3lw2hSptSEfAO-GrLYrRXO6WONT3Woxi5q6su67cgBvevvzVsvjj5ZbHQLqlU9f1FlaIKBxqU8G8KovRm-kIxY9882SbGQpEWcSG_e4RU7_KWR-SG6pRMTx_0sb6uHudNg_Pf2XSi_h5uR4ul_vvz14_wxuCbq6OAacb8HGYr70z5FPLcyL6DE_AMtYGS8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CQUJ0UQqFdkoLRkLqyp3EceJkOZrpqDxajSoqdRf5SSXQpJ3Hol3xCXxjv4RrZ5J2QAgJlpHtxLHP9T2y7z0GeJcUqRMqKWgqREK5zjRVJlY0Ti23TCkmQ4bc8Ul2dMY_nKfn97L4a32IdsPNW0ZYr72BXxrXuxMNlSboBvlzIcTQQ3jEM_SVnhad3glIeX4e1PaSlBYZzxvZxoj1VtuvuqXfuOYqdQ2-Z_QUZNPrOuTk68Firg70zS-Cjv_zWxuwviSmpF8j6Rk8sJPnsHZPrnATrsZTa0LEB6kcGVQIUnRZt99_1AmdmoyaSK8ZQS5MDoM8BVYh44tqXoWdomt8PRnai2szrRC7QXacDPyY4HsG1cInCH8hp7bOt3gBZ6PDz4MjuryygWovkUQLpCOZkcxFJtcRk7n0oVVSWBvHQsYuj5TWSjlXKKatZpnGJcYxx0XChOZR8hI6k2pit4EoI4pcIl0zRcINLj0iSk3qjFRZrLVLu0CbGSv1Us_cX6vxrayVmFnph7Jsh7IL-239y1rJ4481dxsAlEuLnpVJnCGc0dFHXXjbFqMt-gMWObHVwtfhOUeYcezcVg2c9lPI-5Da-hIWpv8vfSj7w-N--7TzL43ewOPxcFR-en_y8RU8Yf7e4hBtvgud-XRh95BMzdXrYC8_AW3kF94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predesign+of+Covalent-Organic+Frameworks+for+Efficient+Photocatalytic+Dehydrogenative+Cross-Coupling+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yu&rft.au=Sun%2C+Sheng-Nan&rft.au=Chen%2C+Xiao-Hong&rft.au=Chen%2C+Ming-Lin&rft.date=2025-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.spage=e2413638&rft_id=info:doi/10.1002%2Fadma.202413638&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |