Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction

The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 37; no. 6; pp. e2413638 - n/a
Main Authors Chen, Yu, Sun, Sheng‐Nan, Chen, Xiao‐Hong, Chen, Ming‐Lin, Lin, Jiao‐Min, Niu, Qian, Li, Shun‐Li, Liu, Jiang, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202413638

Cover

Abstract The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction. By utilizing anthracene and metalloporphyrin as the active components for the activation of oxygen and the catalysis of intramolecular cross‐oxidation coupling reaction, respectively, a series of photosensitive and stable tandem heterogeneous COF catalysts are constructed for realizing the efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An enables one‐step, gram‐scale photosynthesis of 4‐quinazolinones in a short time and under mild conditions.
AbstractList The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.
The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction.
The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction. By utilizing anthracene and metalloporphyrin as the active components for the activation of oxygen and the catalysis of intramolecular cross‐oxidation coupling reaction, respectively, a series of photosensitive and stable tandem heterogeneous COF catalysts are constructed for realizing the efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An enables one‐step, gram‐scale photosynthesis of 4‐quinazolinones in a short time and under mild conditions.
The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent-organic frameworks (COFs), TAPP-An and TAPP-Cu-An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross-coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high-efficient photosynthesis of 4-quinazolinones. Particularly, TAPP-Cu-An is the best heterogeneous catalyst currently available for the synthesis of 4-quinazolinones, even surpassing all the catalysts reported so far. It also enables one-step photosynthesis of 4-quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An-Cu catalysis in TAPP-Cu-An are the main driving forces for this efficient reaction.
Author Sun, Sheng‐Nan
Chen, Ming‐Lin
Lin, Jiao‐Min
Lan, Ya‐Qian
Liu, Jiang
Chen, Xiao‐Hong
Li, Shun‐Li
Chen, Yu
Niu, Qian
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: South China Normal University
– sequence: 2
  givenname: Sheng‐Nan
  surname: Sun
  fullname: Sun, Sheng‐Nan
  organization: South China Normal University
– sequence: 3
  givenname: Xiao‐Hong
  surname: Chen
  fullname: Chen, Xiao‐Hong
  organization: South China Normal University
– sequence: 4
  givenname: Ming‐Lin
  surname: Chen
  fullname: Chen, Ming‐Lin
  organization: South China Normal University
– sequence: 5
  givenname: Jiao‐Min
  surname: Lin
  fullname: Lin, Jiao‐Min
  email: linjm@m.scnu.edu.cn
  organization: South China Normal University
– sequence: 6
  givenname: Qian
  surname: Niu
  fullname: Niu, Qian
  organization: Nanjing Normal University
– sequence: 7
  givenname: Shun‐Li
  surname: Li
  fullname: Li, Shun‐Li
  organization: South China Normal University
– sequence: 8
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  email: liuj0828@m.scnu.edu.cn
  organization: South China Normal University
– sequence: 9
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39711245$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaSZpt10WQzfdeKqbLWs5OFdISSjtWsjy0USpLU0kO2F2fYQ8Y5-kNpM0EAhdnc33_Zxz_gO054MHhD4SvCQY06-67fWSYsoJK1n1Bi1IQUnOsSz20AJLVuSy5NU-OkjpBmMsS1y-Q_tMCkIoLxbo9ipCC8mtfRZsVoc73YEf_vx-uIxr7Z3JTqLu4T7EXymzIWbH1jrjJiS7ug5DMHrQ3XaYuCO43rYxrMHrwd1BVseQ0pRTh3HTOb_OvoM2gwv-PXprdZfgw-M8RD9Pjn_UZ_nF5el5vbrIDROsyiUjomw1tbitDKa60kRKogUAIUITW-HGmKaxVjbUgKGlwYJZarlgVBiO2SH6ssvdxHA7QhpU75KBrtMewpgUI7zi03N4MaGfX6A3YYx-2m6iykIISugc-OmRGpseWrWJrtdxq56eOQF8B5j59ghWGTfo-eYhatcpgtXcmZo7U_86m7TlC-0p-VVB7oR718H2P7RaHX1bPbt_AYKNrIE
CitedBy_id crossref_primary_10_1002_anie_202501821
crossref_primary_10_1002_ange_202425668
crossref_primary_10_1002_anie_202425668
crossref_primary_10_1002_ange_202501821
Cites_doi 10.1002/anie.202011722
10.1039/D1OB00229E
10.1038/s41467-018-05223-3
10.1021/acscatal.4c01591
10.1021/jacs.0c06473
10.1002/anie.201712246
10.1039/D1CC02179F
10.1021/jz101565j
10.1039/D0SC01998D
10.1002/anie.202005274
10.1002/anie.202007372
10.1039/C9CC06160F
10.1126/science.aal1585
10.1002/anie.202218908
10.1021/jacs.9b01891
10.1002/anie.201411262
10.1039/C2CS35072F
10.1021/acs.orglett.0c04225
10.1002/anie.201906112
10.1021/acs.chemrev.1c00831
10.1021/jacs.8b05136
10.1021/acs.orglett.9b00191
10.1002/adma.202209475
10.1002/anie.202218745
10.1002/ijch.201500026
10.1002/anie.201806266
10.1021/jacs.2c11454
10.1021/acs.chemrev.6b00005
10.1002/anie.202117511
10.1002/anie.202114648
10.1016/j.chempr.2021.12.018
10.1021/acscatal.8b01366
10.1021/ja5092936
10.1038/s41467-021-21527-3
10.1002/anie.201402779
10.1002/anie.202117738
10.1039/C7CS00324B
10.1002/anie.202004796
10.1002/anie.202002446
10.1038/s41586-021-04365-7
10.1002/anie.201310500
10.1002/adma.202103617
10.1021/acs.chemrev.1c00220
10.1038/s41467-019-11846-x
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202413638
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 39711245
10_1002_adma_202413638
ADMA202413638
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Young Top Talents of Pearl River Talent Program of Guangdong Province
  funderid: 2021QN02L617
– fundername: National Natural Science Foundation of China
  funderid: 22271104; 22225109; 22071109; 22201046
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2023B1515120060; 2023A1515030097
– fundername: National Key R&D Program of China
  funderid: 2024YFA1510700; 2023YFA1507201; 2023YFA1507204
– fundername: National Natural Science Foundation of China
  grantid: 22225109
– fundername: National Natural Science Foundation of China
  grantid: 22201046
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2023A1515030097
– fundername: National Key R&D Program of China
  grantid: 2023YFA1507201
– fundername: National Key R&D Program of China
  grantid: 2023YFA1507204
– fundername: Young Top Talents of Pearl River Talent Program of Guangdong Province
  grantid: 2021QN02L617
– fundername: National Key R&D Program of China
  grantid: 2024YFA1510700
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2023B1515120060
– fundername: National Natural Science Foundation of China
  grantid: 22071109
– fundername: National Natural Science Foundation of China
  grantid: 22271104
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
53G
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
LH4
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3738-93176da2f0d8c02a8a1991a7ee117a1f80bccbbff9b2cec26c073f2f47327c403
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:59:41 EDT 2025
Fri Jul 25 22:10:23 EDT 2025
Thu Feb 13 03:15:48 EST 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 00:55:01 EDT 2025
Thu Feb 13 09:32:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords covalent‐organic frameworks
photocatalyst
pharmaceutical synthesis
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-93176da2f0d8c02a8a1991a7ee117a1f80bccbbff9b2cec26c073f2f47327c403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PMID 39711245
PQID 3165772120
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_3148496445
proquest_journals_3165772120
pubmed_primary_39711245
crossref_citationtrail_10_1002_adma_202413638
crossref_primary_10_1002_adma_202413638
wiley_primary_10_1002_adma_202413638_ADMA202413638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2018; 140
2011; 2
2021; 23
2019; 55
2020; 142
2019; 10
2023; 145
2017; 46
2013; 42
2019; 58
2015; 54
2020; 59
2020; 11
2024; 14
2019; 141
2017; 355
2014; 136
2016; 56
2022; 122
2021; 57
2023; 62
2018; 9
2018; 8
2021; 12
2021; 33
2022; 61
2019; 21
2022; 8
2021; 19
2016; 116
2022; 603
2021; 60
2014; 53
2018; 57
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 145
  start-page: 2975
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 6152
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 7204
  year: 2020
  publication-title: Chem. Sci.
– volume: 8
  start-page: 12
  year: 2022
  publication-title: Chem.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 212
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 23
  start-page: 1026
  year: 2021
  publication-title: Org. Lett.
– volume: 122
  start-page: 5682
  year: 2022
  publication-title: Chem. Rev.
– volume: 603
  start-page: 79
  year: 2022
  publication-title: Nature.
– volume: 8
  start-page: 5869
  year: 2018
  publication-title: ACS Catal.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 116
  start-page: 9816
  year: 2016
  publication-title: Chem. Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 9955
  year: 2024
  publication-title: ACS Catal.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 6042
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 1354
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3898
  year: 2019
  publication-title: Nat. Commun.
– volume: 57
  start-page: 5794
  year: 2021
  publication-title: Chem. Commun.
– volume: 60
  start-page: 4864
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2798
  year: 2018
  publication-title: Nat. Commun.
– volume: 21
  start-page: 1438
  year: 2019
  publication-title: Org. Lett.
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 53
  start-page: 2878
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 110
  year: 2016
  publication-title: Isr. J. Chem.
– volume: 19
  start-page: 4726
  year: 2021
  publication-title: Org. Biomol. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 7579
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 8181
  year: 2022
  publication-title: Chem. Rev.
– volume: 355
  year: 2017
  publication-title: Science.
– volume: 46
  start-page: 5425
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 2986
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_22_1
  doi: 10.1002/anie.202011722
– ident: e_1_2_9_13_1
  doi: 10.1039/D1OB00229E
– ident: e_1_2_9_39_1
  doi: 10.1038/s41467-018-05223-3
– ident: e_1_2_9_42_1
  doi: 10.1021/acscatal.4c01591
– ident: e_1_2_9_18_1
  doi: 10.1021/jacs.0c06473
– ident: e_1_2_9_33_1
  doi: 10.1002/anie.201712246
– ident: e_1_2_9_36_1
  doi: 10.1039/D1CC02179F
– ident: e_1_2_9_40_1
  doi: 10.1021/jz101565j
– ident: e_1_2_9_8_1
  doi: 10.1039/D0SC01998D
– ident: e_1_2_9_23_1
  doi: 10.1002/anie.202005274
– ident: e_1_2_9_38_1
  doi: 10.1002/anie.202007372
– ident: e_1_2_9_7_1
  doi: 10.1039/C9CC06160F
– ident: e_1_2_9_15_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_9_28_1
  doi: 10.1002/anie.202218908
– ident: e_1_2_9_30_1
  doi: 10.1021/jacs.9b01891
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.201411262
– ident: e_1_2_9_17_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.orglett.0c04225
– ident: e_1_2_9_4_1
  doi: 10.1002/anie.201906112
– ident: e_1_2_9_1_1
  doi: 10.1021/acs.chemrev.1c00831
– ident: e_1_2_9_20_1
  doi: 10.1021/jacs.8b05136
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.orglett.9b00191
– ident: e_1_2_9_31_1
  doi: 10.1002/adma.202209475
– ident: e_1_2_9_24_1
  doi: 10.1002/anie.202218745
– ident: e_1_2_9_43_1
  doi: 10.1002/ijch.201500026
– ident: e_1_2_9_5_1
  doi: 10.1002/anie.201806266
– ident: e_1_2_9_35_1
  doi: 10.1021/jacs.2c11454
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.chemrev.6b00005
– ident: e_1_2_9_26_1
  doi: 10.1002/anie.202117511
– ident: e_1_2_9_37_1
  doi: 10.1002/anie.202114648
– ident: e_1_2_9_6_1
  doi: 10.1016/j.chempr.2021.12.018
– ident: e_1_2_9_14_1
  doi: 10.1021/acscatal.8b01366
– ident: e_1_2_9_32_1
  doi: 10.1021/ja5092936
– ident: e_1_2_9_21_1
  doi: 10.1038/s41467-021-21527-3
– ident: e_1_2_9_3_1
  doi: 10.1002/anie.201402779
– ident: e_1_2_9_27_1
  doi: 10.1002/anie.202117738
– ident: e_1_2_9_9_1
  doi: 10.1039/C7CS00324B
– ident: e_1_2_9_16_1
  doi: 10.1002/anie.202004796
– ident: e_1_2_9_44_1
  doi: 10.1002/anie.202002446
– ident: e_1_2_9_11_1
  doi: 10.1038/s41586-021-04365-7
– ident: e_1_2_9_29_1
  doi: 10.1002/anie.201310500
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.202103617
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.1c00220
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-019-11846-x
SSID ssj0009606
Score 2.5055375
Snippet The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction...
The dehydrogenative cross-coupling reaction is the premier route for synthesizing important 4-quinazolinone drugs. However, it usually requires high reaction...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2413638
SubjectTerms Cascade chemical reactions
Catalysis
Catalysts
Chemical reactions
Chemical synthesis
covalent‐organic frameworks
Cross coupling
Dehydrogenation
pharmaceutical synthesis
photocatalyst
Photosensitivity
Photosynthesis
Quinazolinones
Room temperature
Title Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202413638
https://www.ncbi.nlm.nih.gov/pubmed/39711245
https://www.proquest.com/docview/3165772120
https://www.proquest.com/docview/3148496445
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKnaJumTXtc9oEIioiCt5KngrLVfRz05E_wN_pLnKTbuquIoKdSMknTZGbykcx8QeggymLLZZSRmPOIMJUoInUoSRgbZqiUVPgMubPz5OSand7ENxNZ_CU_RL3h5izD-2tn4EIOjj9JQ4X2vEHuXAh0CJwwPB15fvvykz_KwXNPthfFJEtYWrE2BvR4uvr0qvQNak4jV7_0dBeRqDpdRpzcH42G8ki9fOFz_M9fLaGFMS7FzVKRltGM6a2g-Qm2wlX0dNE32gd84MLiVgE6CivW--tbmc-pcLcK9BpggMK449kpQARf3BXDwm8UPUPzuG3unnW_ANX1rOO45cYE2mkVI5cffIsvTZlusYauu52r1gkZ39hAlGNIIhmgkUQLagOdqoCKVLjIKsGNCUMuQpsGUikprc0kVUbRRIGHsdQyHlGuWBCto9le0TObCEvNs1QAWtNZxDR4Hh7EOrZayCRUysYNRKoZy9WYztzdqvGQl0TMNHdDmddD2UCHtfxjSeTxo-ROpQD52KAHeRQmoM2wzgcNtF8Xgym68xXRM8XIybCUgZox6NxGqTj1pwD2AbJ1JdRP_y99yJvts2b9tvWXSttojrq7in2E-Q6aHfZHZhcA1FDueSP5AIH5FRE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvB8LBYyExMlt4jhxclxtu1qgW1VVK3GL_Gwl0KZsdw_lxE_gN_JLmHE2KQtCSHCMPE4c-xv7kz3zGeB1VuVBmaziuVIZl7aw3LjU8DT30gtjhI4ZctODYnIi333Iu2hCyoVp9SH6DTfyjDhfk4PThvTOlWqodlE4iA6GEETX4UY8pCNedHSlIEUEPcrtZTmvCll2uo2J2Fmvv74u_UY217lrXHzGd8B0zW5jTj5uLxdm2375RdHxv_7rLtxeUVM2bLF0D6752X3Y_Emw8AF8Ppx7F2M-WBPYqEGY4qL1_eu3NqXTsnEX63XBkA2zvShQgSbs8KxZNHGv6BJfz3b92aWbN4jeKDzORtQp-J5Rs6QU4VN25NuMi4dwMt47Hk346tIGbkkkiVdISAqnRUhcaROhS03BVVp5n6ZKp6FMjLXGhFAZYb0VhcVJJoggVSaUlUn2CDZmzcw_AWacqkqNhM1VmXQ4-agkd3lw2hSptSEfAO-GrLYrRXO6WONT3Woxi5q6su67cgBvevvzVsvjj5ZbHQLqlU9f1FlaIKBxqU8G8KovRm-kIxY9882SbGQpEWcSG_e4RU7_KWR-SG6pRMTx_0sb6uHudNg_Pf2XSi_h5uR4ul_vvz14_wxuCbq6OAacb8HGYr70z5FPLcyL6DE_AMtYGS8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CQUJ0UQqFdkoLRkLqyp3EceJkOZrpqDxajSoqdRf5SSXQpJ3Hol3xCXxjv4RrZ5J2QAgJlpHtxLHP9T2y7z0GeJcUqRMqKWgqREK5zjRVJlY0Ti23TCkmQ4bc8Ul2dMY_nKfn97L4a32IdsPNW0ZYr72BXxrXuxMNlSboBvlzIcTQQ3jEM_SVnhad3glIeX4e1PaSlBYZzxvZxoj1VtuvuqXfuOYqdQ2-Z_QUZNPrOuTk68Firg70zS-Cjv_zWxuwviSmpF8j6Rk8sJPnsHZPrnATrsZTa0LEB6kcGVQIUnRZt99_1AmdmoyaSK8ZQS5MDoM8BVYh44tqXoWdomt8PRnai2szrRC7QXacDPyY4HsG1cInCH8hp7bOt3gBZ6PDz4MjuryygWovkUQLpCOZkcxFJtcRk7n0oVVSWBvHQsYuj5TWSjlXKKatZpnGJcYxx0XChOZR8hI6k2pit4EoI4pcIl0zRcINLj0iSk3qjFRZrLVLu0CbGSv1Us_cX6vxrayVmFnph7Jsh7IL-239y1rJ4481dxsAlEuLnpVJnCGc0dFHXXjbFqMt-gMWObHVwtfhOUeYcezcVg2c9lPI-5Da-hIWpv8vfSj7w-N--7TzL43ewOPxcFR-en_y8RU8Yf7e4hBtvgud-XRh95BMzdXrYC8_AW3kF94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predesign+of+Covalent-Organic+Frameworks+for+Efficient+Photocatalytic+Dehydrogenative+Cross-Coupling+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Yu&rft.au=Sun%2C+Sheng-Nan&rft.au=Chen%2C+Xiao-Hong&rft.au=Chen%2C+Ming-Lin&rft.date=2025-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.spage=e2413638&rft_id=info:doi/10.1002%2Fadma.202413638&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon