Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model

Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing...

Full description

Saved in:
Bibliographic Details
Published inIET generation, transmission & distribution Vol. 18; no. 22; pp. 3657 - 3668
Main Authors Katanic, Milos, Lygeros, John, Hug, Gabriela
Format Journal Article
LanguageEnglish
Published Wiley 01.11.2024
Subjects
Online AccessGet full text
ISSN1751-8687
1751-8695
1751-8695
DOI10.1049/gtd2.13308

Cover

Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates. This article proposes the Iterated Extended Kalman Filter for the optimal state estimation for general DAE power system models. The article also introduces a graphical method for placing real‐time measurements to achieve the unique state reconstruction.
AbstractList Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.
Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.
Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates. This article proposes the Iterated Extended Kalman Filter for the optimal state estimation for general DAE power system models. The article also introduces a graphical method for placing real‐time measurements to achieve the unique state reconstruction.
Author Lygeros, John
Katanic, Milos
Hug, Gabriela
Author_xml – sequence: 1
  givenname: Milos
  orcidid: 0009-0000-2585-0990
  surname: Katanic
  fullname: Katanic, Milos
  email: mkatanic@ethz.ch
  organization: ETH
– sequence: 2
  givenname: John
  surname: Lygeros
  fullname: Lygeros, John
  organization: ETH
– sequence: 3
  givenname: Gabriela
  surname: Hug
  fullname: Hug, Gabriela
  organization: ETH
BookMark eNp9kE1LxDAQhoMouK5e_AU5K7smzVd7XPxYBUEQPXkI03xopG2WpLr039vdikdPMwzPPDO8J-iwi51D6JySJSW8unrvbbGkjJHyAM2oEnRRykoc_vWlOkYnOX8SIoTkaobenp35Sjl8O2yHDtpgcO6hd9jlPrTQh9hhHxPexK1LOA-5d23G29B_YOhw6ExsN40b-fGRJnQOEr5Z3eI2WtecoiMPTXZnv3WOXu9uX67vF49P64fr1ePCMMXKhRKyACp5QYSiAggBApxaA5Vw0te0tLz2tqqV8YLX0hS1sNIqLjnjtWGSzdHD5LURPvUmjX-nQUcIej-I6V1D6oNpnK4UN-AtE8xIDuN1wXxNHJSMSZCej67LyfXVbWDYQtP8CSnRu4z1LmO9z3ikLybapJhzcv5_mE7wNjRu-IfU65ebYtr5AXZDjtk
Cites_doi 10.1109/TSG.2015.2485280
10.1109/CDC51059.2022.9993096
10.1007/s12532-018-0139-4
10.1109/9.250476
10.1016/j.ces.2010.04.020
10.1002/0470045345
10.1109/TPWRD.2017.2762927
10.1109/TSG.2014.2302213
10.1016/B978-0-12-814005-5.00014-5
10.1109/TPWRS.2008.922621
10.1109/TPWRS.2019.2894769
10.1016/j.epsr.2018.07.019
10.1109/TSG.2020.3022563
10.1016/0142-0615(90)90003-T
10.1109/TPWRS.2017.2688131
10.1109/TPWRS.2016.2628344
10.1109/TPWRS.2014.2356797
10.1109/9.159570
10.1109/TPWRS.2011.2175255
10.1109/PROC.1979.11233
10.1109/ISGTEurope52324.2021.9640127
10.1109/TPWRS.2013.2281323
10.1109/TSG.2017.2761452
10.1109/ACCESS.2019.2900228
10.1109/CDC.2008.4739260
10.1109/TSG.2016.2580584
10.1109/TPWRS.2011.2145396
10.1109/TPWRS.2022.3184190
10.1109/TAC.1980.1102506
10.1109/TPWRS.2020.2994898
10.1109/TSG.2016.2548244
10.1201/9780203913673
10.1109/TCSI.2020.2965141
10.1109/TPAS.1980.319578
10.1109/TPWRS.2022.3163196
10.23919/ACC.2004.1383602
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/gtd2.13308
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 3668
ExternalDocumentID oai_doaj_org_article_974cafd353c64a73853fb0ea8336a6f4
10.1049/gtd2.13308
10_1049_gtd2_13308
GTD213308
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 51NF40_225155
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PTHSS
QWB
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
AFFHD
CITATION
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3738-7562a164205715a00a0a41dca95e6fb18d4bfd9b7cf54b6c2b5d6d746434bc363
IEDL.DBID 24P
ISSN 1751-8687
1751-8695
IngestDate Fri Oct 03 12:45:06 EDT 2025
Sun Sep 07 10:55:53 EDT 2025
Wed Oct 29 21:11:24 EDT 2025
Wed Jun 18 06:51:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3738-7562a164205715a00a0a41dca95e6fb18d4bfd9b7cf54b6c2b5d6d746434bc363
ORCID 0009-0000-2585-0990
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.13308
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_974cafd353c64a73853fb0ea8336a6f4
unpaywall_primary_10_1049_gtd2_13308
crossref_primary_10_1049_gtd2_13308
wiley_primary_10_1049_gtd2_13308_GTD213308
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 7
2018; 163
1980; 25
2017; 8
1990; 12
2011
2010
2019; 11
2023; 38
2019; 10
2015; 30
2019; 34
2008
2006
2020; 35
1994
2004
2014; 29
1992; 37
2004; 1
2018; 9
2010; 65
2014; 5
1979; 67
2021; 12
1993; 38
1980; PAS‐99
2023
2022
2021
2020
2017; 32
2019; 06
2019
2018
2008; 23
2016
2020; 67
2011; 26
2012; 27
2014
2013
2018; 33
2022; 38
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_42_1
e_1_2_10_40_1
Cui Y. (e_1_2_10_9_1) 2016
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
Dai L. (e_1_2_10_38_1) 2014
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Abhinav S. (e_1_2_10_19_1) 2018
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
Katanic M. (e_1_2_10_17_1) 2022
Machowski J. (e_1_2_10_44_1) 2020
Kundur P. (e_1_2_10_46_1) 1994
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Milano F. (e_1_2_10_47_1) 2010
Pourbeik P. (e_1_2_10_43_1) 2019; 06
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – volume: 30
  start-page: 2041
  issue: 4
  year: 2015
  end-page: 2054
  article-title: Optimal PMU placement for power system dynamic state estimation by using empirical observability Gramian
  publication-title: IEEE Trans. Power Syst.
– volume: 1
  start-page: 188
  year: 2004
  end-page: 193
  article-title: Optimal recursive estimation for discrete‐time descriptor systems
– start-page: 7174
  year: 2022
  end-page: 7179
  article-title: Robust dynamic state estimation of multi‐machine power networks with solar farms and dynamics loads
– volume: 35
  start-page: 4518
  issue: 6
  year: 2020
  end-page: 4527
  article-title: A robust dynamic state estimation approach against model errors caused by load changes
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 810
  issue: 1
  year: 2021
  end-page: 820
  article-title: A robust state estimation method based on SOCP for integrated electricity‐heat system
  publication-title: IEEE Trans. Smart Grid
– volume: 67
  start-page: 219
  issue: 2
  year: 1979
  end-page: 241
  article-title: Power system dynamic response calculations
  publication-title: Proc. IEEE
– volume: 34
  start-page: 3188
  issue: 4
  year: 2019
  end-page: 3198
  article-title: Power system dynamic state estimation: Motivations, definitions, methodologies, and future work
  publication-title: IEEE Trans. Power Syst
– volume: 33
  start-page: 1099
  year: 2018
  end-page: 1100
  article-title: Dynamic state estimation with model uncertainties using extended Kalman filter
  publication-title: IEEE Trans. Power Syst.
– year: 2018
– volume: 163
  start-page: 470
  year: 2018
  end-page: 481
  article-title: A multi‐agent based approach to power system dynamic state estimation by considering algebraic and dynamic state variables
  publication-title: Electr. Power Syst. Res.
– year: 2014
– year: 1994
– volume: 67
  start-page: 1715
  issue: 5
  year: 2020
  end-page: 1728
  article-title: Dynamic state estimation of power systems by ‐Norm nonlinear Kalman filter
  publication-title: IEEE Trans. Circ. Syst. I: Reg. Papers
– volume: 5
  start-page: 1808
  issue: 4
  year: 2014
  end-page: 1814
  article-title: LAV based robust state estimation for systems measured by PMUs
  publication-title: IEEE Trans. Smart Grid
– volume: 27
  start-page: 942
  issue: 2
  year: 2012
  end-page: 950
  article-title: An alternative method for power system dynamic state estimation based on unscented transform
  publication-title: IEEE Trans. Power Syst.
– year: 2004
  article-title: Observer‐Based Monitors and Distributed Wave Controllers for Electromechanical Disturbances in Power Systems
– year: 2004
– start-page: 2955
  year: 2008
  end-page: 2960
  article-title: Graphical observer design suitable for large‐scale DAE power systems
– volume: 38
  start-page: 294
  issue: 2
  year: 1993
  end-page: 297
  article-title: The iterated Kalman filter update as a Gauss‐Newton method
  publication-title: IEEE Trans. Autom. Control
– volume: 65
  start-page: 4548
  issue: 16
  year: 2010
  end-page: 4556
  article-title: Recursive state estimation techniques for nonlinear differential algebraic systems
  publication-title: Chem. Eng. Sci.
– volume: 8
  start-page: 1537
  issue: 4
  year: 2017
  end-page: 1544
  article-title: Robust state estimator based on maximum exponential absolute value
  publication-title: IEEE Trans. Smart Grid
– year: 2019
– volume: PAS‐99
  start-page: 1534
  issue: 4
  year: 1980
  end-page: 1542
  article-title: Power system observability: A practical algorithm using network topology
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 7
  start-page: 29139
  year: 2019
  end-page: 29148
  article-title: Robust cubature Kalman filter for dynamic state estimation of synchronous machines under unknown measurement noise statistics
  publication-title: IEEE Access
– volume: 25
  start-page: 1192
  issue: 6
  year: 1980
  end-page: 1196
  article-title: Determination of generic dimensions of controllable subspaces and its application
  publication-title: IEEE Trans. Autom. Control
– volume: 06
  start-page: 38
  issue: 14
  year: 2019
  end-page: 48
  article-title: An aggregate dynamic model for distributed energy resources for power system stability studies
  publication-title: Cigre Sci. Eng
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  end-page: 36
  article-title: CasADi – A software framework for nonlinear optimization and optimal control
  publication-title: Math. Program. Comput.
– start-page: 1
  year: 2021
  end-page: 6
– start-page: 1
  year: 2022
  end-page: 6
  article-title: Moving‐horizon state estimation for power networks and synchronous generators
– volume: 29
  start-page: 794
  issue: 2
  year: 2014
  end-page: 804
  article-title: Decentralized dynamic state estimation in power systems using unscented transformation
  publication-title: IEEE Trans. Power Syst.
– volume: 10
  start-page: 1215
  issue: 2
  year: 2019
  end-page: 1224
  article-title: Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics
  publication-title: IEEE Trans. Smart Grid
– volume: 33
  start-page: 3233
  issue: 6
  year: 2018
  end-page: 3236
  article-title: Assessing Gaussian assumption of PMU measurement error using field data
  publication-title: IEEE Trans. Power Delivery
– volume: 33
  start-page: 1099
  issue: 1
  year: 2018
  end-page: 1100
  article-title: Dynamic state estimation with model uncertainties using extended Kalman filter
  publication-title: IEEE Trans. Power Syst.
– year: 2016
– start-page: 1
  year: 2011
  end-page: 61
– volume: 12
  start-page: 80
  issue: 2
  year: 1990
  end-page: 87
  article-title: Power system state estimation: A survey
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2010
– volume: 23
  start-page: 1433
  issue: 3
  year: 2008
  end-page: 1440
  article-title: Optimal placement of phasor measurement units for power system observability
  publication-title: IEEE Trans. Power Syst.
– volume: 38
  start-page: 2539
  issue: 3
  year: 2022
  end-page: 2552
  article-title: Dynamic state estimation of nonlinear differential algebraic equation models of power networks
  publication-title: IEEE Trans. Power Syst.
– volume: 37
  start-page: 1325
  issue: 9
  year: 1992
  end-page: 1342
  article-title: Kalman filtering and Riccati equations for descriptor systems
  publication-title: IEEE Trans. Autom. Control
– volume: 32
  start-page: 3205
  issue: 4
  year: 2017
  end-page: 3216
  article-title: A robust iterated extended Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Power Syst.
– year: 2006
– year: 2020
– year: 2023
– volume: 26
  start-page: 2556
  issue: 4
  year: 2011
  end-page: 2566
  article-title: Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 1184
  issue: 2
  year: 2018
  end-page: 1196
  article-title: Dynamic state estimation for multi‐machine power system by unscented Kalman filter with enhanced numerical stability
  publication-title: IEEE Trans. Smart Grid
– volume: 38
  start-page: 463
  issue: 1
  year: 2023
  end-page: 474
  article-title: A new dynamic state estimation approach including hard limits on control devices
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 211
  issue: 1
  year: 2018
  end-page: 219
  article-title: Linear phasor estimator assisted dynamic state estimation
  publication-title: IEEE Trans. Smart Grid
– year: 2013
– ident: e_1_2_10_54_1
  doi: 10.1109/TSG.2015.2485280
– ident: e_1_2_10_15_1
  doi: 10.1109/CDC51059.2022.9993096
– ident: e_1_2_10_5_1
– ident: e_1_2_10_49_1
  doi: 10.1007/s12532-018-0139-4
– ident: e_1_2_10_37_1
  doi: 10.1109/9.250476
– ident: e_1_2_10_33_1
  doi: 10.1016/j.ces.2010.04.020
– ident: e_1_2_10_36_1
  doi: 10.1002/0470045345
– volume-title: Dynamic Estimation and Control of Power Systems
  year: 2018
  ident: e_1_2_10_19_1
– ident: e_1_2_10_35_1
– volume: 06
  start-page: 38
  issue: 14
  year: 2019
  ident: e_1_2_10_43_1
  article-title: An aggregate dynamic model for distributed energy resources for power system stability studies
  publication-title: Cigre Sci. Eng
– ident: e_1_2_10_50_1
  doi: 10.1109/TPWRD.2017.2762927
– ident: e_1_2_10_34_1
  doi: 10.1109/TSG.2014.2302213
– ident: e_1_2_10_6_1
  doi: 10.1016/B978-0-12-814005-5.00014-5
– ident: e_1_2_10_52_1
  doi: 10.1109/TPWRS.2008.922621
– ident: e_1_2_10_27_1
– volume-title: 2016 IEEE Power and Energy Society General Meeting (PESGM)
  year: 2016
  ident: e_1_2_10_9_1
– ident: e_1_2_10_18_1
  doi: 10.1109/TPWRS.2019.2894769
– ident: e_1_2_10_28_1
  doi: 10.1016/j.epsr.2018.07.019
– ident: e_1_2_10_53_1
  doi: 10.1109/TSG.2020.3022563
– ident: e_1_2_10_4_1
– ident: e_1_2_10_3_1
  doi: 10.1016/0142-0615(90)90003-T
– ident: e_1_2_10_22_1
  doi: 10.1109/TPWRS.2017.2688131
– ident: e_1_2_10_42_1
– ident: e_1_2_10_21_1
  doi: 10.1109/TPWRS.2016.2628344
– ident: e_1_2_10_12_1
  doi: 10.1109/TPWRS.2014.2356797
– ident: e_1_2_10_45_1
– ident: e_1_2_10_31_1
  doi: 10.1109/9.159570
– ident: e_1_2_10_10_1
  doi: 10.1109/TPWRS.2011.2175255
– ident: e_1_2_10_48_1
– ident: e_1_2_10_32_1
  doi: 10.1109/PROC.1979.11233
– ident: e_1_2_10_29_1
  doi: 10.1109/ISGTEurope52324.2021.9640127
– ident: e_1_2_10_20_1
  doi: 10.1109/TPWRS.2013.2281323
– volume-title: Power Systems
  year: 2010
  ident: e_1_2_10_47_1
– start-page: 1
  volume-title: 2022 North American Power Symposium (NAPS)
  year: 2022
  ident: e_1_2_10_17_1
– ident: e_1_2_10_23_1
  doi: 10.1109/TSG.2017.2761452
– ident: e_1_2_10_24_1
  doi: 10.1109/ACCESS.2019.2900228
– volume-title: Lecture Notes in Control and Information Sciences
  year: 2014
  ident: e_1_2_10_38_1
– ident: e_1_2_10_40_1
  doi: 10.1109/CDC.2008.4739260
– ident: e_1_2_10_11_1
  doi: 10.1109/TSG.2016.2580584
– ident: e_1_2_10_7_1
  doi: 10.1109/TPWRS.2011.2145396
– ident: e_1_2_10_14_1
  doi: 10.1109/TPWRS.2022.3184190
– ident: e_1_2_10_41_1
  doi: 10.1109/TAC.1980.1102506
– volume-title: EPRI Power System Engineering Series
  year: 1994
  ident: e_1_2_10_46_1
– ident: e_1_2_10_8_1
  doi: 10.1109/TSG.2016.2580584
– ident: e_1_2_10_26_1
  doi: 10.1109/TPWRS.2020.2994898
– ident: e_1_2_10_13_1
  doi: 10.1109/TSG.2016.2548244
– ident: e_1_2_10_2_1
  doi: 10.1201/9780203913673
– ident: e_1_2_10_25_1
  doi: 10.1109/TCSI.2020.2965141
– volume-title: Power System Dynamics: Stability and Control
  year: 2020
  ident: e_1_2_10_44_1
– ident: e_1_2_10_51_1
  doi: 10.1109/TPWRS.2017.2688131
– ident: e_1_2_10_39_1
  doi: 10.1109/TPAS.1980.319578
– ident: e_1_2_10_16_1
  doi: 10.1109/TPWRS.2022.3163196
– ident: e_1_2_10_30_1
  doi: 10.23919/ACC.2004.1383602
SSID ssj0055647
Score 2.429336
Snippet Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This...
Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 3657
SubjectTerms differential algebraic equations
Kalman filters
state estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaD7KI7iJ84vwi4k1DXNB9Nj9NtDkEPssHAQ3mTNF5GGXND_O_NxybzMi_eSgkkvG_bPG-a_B6E2pJRqhgUSUa0TBg1JIFK0IQBr6xRmTLW_9F9fhHDMXua8MmG1ZffExbxwDFwHad3NVhDOdWCgWevUKvSCiSlAoQNJNBUFutiKn6DORfBWszNjSSRQuZrMCkrOu8Lk925yswbSm5MRYHY30S7y3oGX58wnf5Wq2G6GRyg_ZVOxN04vkO0U9VHqLlBDzxGb69-rdxvP8cm-srjcDwIe3BGPJGInSTFM2-EhiOy-QP7hVcMNfZUBk8Gdu3riMuAOe51-zh445yg8aA_ehgmK6-ERHs2UZI7HQOu9Mmc_iIc0hRSYMRoKHglrCLSMGVNoXJtOVNCZ4obYXLmBAlTmgp6ihqut-oMYUv8dhhjTSU5c8kCTYyyrjLS7g21edFCN-uwlbOIxCjDr2xWlD64ZQhuC937iP608BjrcMMlt1wlt_wruS3U_snH1r5uQ6q2NCkfR70sXJ3_x8Au0F7m1E08lHiJGov5srpy6mShrsOD-A37KuCn
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke5AefIsVlaCehK3dzaO7x2qtRVBEWqh4WCbJxoOllLpF9NebZLfFeijewpJswkxCvsnMfANwETNKJcMkiEIVB4zqMMBM0IAhz4yWkdTGeXQfHkV_yO5HfFSBs0UuzIr_niVXb7mOmtaOcvm8NcEt3q5Cbfj41HnxmY48DGLhq-CV7YQvOEhXBq_cOp6cvw4b88kUvz5xPF4Fpv5m6W3BzWJNRUDJe3Oey6b6_kPXuH7R27BZAkvSKXbCDlSyyS7Uf9EN7sHrs3tcd_HqRBeF6InPJyKOaaNIYSQWw5Kpq5xGCo7nD-JeaglOiKNxcFTCtv-k4NfAGel2bokvprMPw97t4KYflMUVAuXIjIK2BT5obaXIAraQY6uFLWShVpjwTBgZxppJoxPZVoYzKVQkuRa6zSyCYVJRQQ-gamfLDoGY0MXPaKOzmDOrXVShlsaaUsoeadNOGnC-EH46LTg0Uu_7ZknqRJV6UTXg2ull2cPxXvsPVrJpeYxSa_0oNJpyqgRDx8RDjWxlGFMqUBjWgIulVtfOdekVvqZLejfoRr519L9_HkM1n82zE4tRcnlabtIf5bjjPQ
  priority: 102
  providerName: Unpaywall
Title Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.13308
https://doi.org/10.1049/gtd2.13308
https://doaj.org/article/974cafd353c64a73853fb0ea8336a6f4
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5CcmhzCGmbUudhBMmpsKm1euwu9OK8KTSEEkNKD8tIWuUSHOM4hPz7zki2m1wCvS3LCMGMRvONpPkG4KDWSjmNTVFKXxdaBVlgZ1Wh0XQxuNKFyDe6Py_txUj_uDE3K_B9UQuT-SGWB27sGWm_ZgdHl7uQEKglI97OQnlIGRZX-q5JAjK8vkt9tdiHjbGpvRjFR1nUtq4W5KS6-fZv7KtwlFj71-Hd43iCz094d_casaaQc7YJG3OsKIbZuB9gpRt_hPUXDIKf4M8vPi_nJ-gi5N7yIpUICSbPyFWJgmCpmHAzNJFpmx8EH74KHAtmZmB2YJIfZ5XgVJwMT0Xqj7MFo7PT6-OLYt4vofDMT1RUhGWQ0p-SMJg0OBjgALUMHhvT2ehkHbSLoXGVj0Y760tngg2VJlCinVdWfYZVmq37AiJKfhITYuhqo8lg6GVwkbIjT14aq6YH-wu1tZNMi9Gm62zdtKzcNim3B0es0aUEU1mnH_fT23buGS0lNB5jUEZ5q5HJdVR0gw5rpSzaqHtwsLTHm3N9TaZ6Q6Q9vz4p09f2_wjvwPuSkEwuQNyF1dn0sdsjJDJz_bTg-imP78Pa6PJq-PsvgszbVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBUlPSQ-lLZJqZs2EcSnwCbWaqTdPbrNh9vYJgQHAjksI2mVS3CNaxP676uRbCe5GHpbllkEMzvSm9HMG8Y6JUhpAKssF7bMQDqRYaNlBqga70xunKcb3eFI92_h1526W9bmUC9M4odYJ9zIM-J-TQ5OCekUcAKRZD7MXX4SQixq9X0LWmiKvXK4Xm3ESuk4XywckCIrdVms2EmhOn3-9tV5FGn7W2x7MZni3yd8fHwNWeOZc_GevVuCRd5L1v3A3jSTj6z1gkJwl93fUMKcatC5S8PleewR4sSekdoSecClfErT0Hjibf7DKfvKccKJmoHogYP8JOkEZ_ysd87jgJw9dntxPv7Rz5YDEzJLBEVZEcAMhvgnDyBMKOx2sYsgnMVKNdobUTow3lWmsF6B0TY3ymlXQEAlYKzU8hPbCqs1nxn3gmpinHdNqSBYDK1wxofwyAY39UXVZkcrtdXTxItRx_tsqGpSbh2V22bfSaNrCeKyji9-zx7qpWvUIaKx6J1U0mpAYteR3nQbLKXUqD20WWdtj41rHUdTbRCpL8dneXz68j_Ch2y7Px4O6sHP0dU-28kDrEndiF_Z1ny2aL4FWDI3B_Hn-wdWFtwc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9xADBZlA21zKH2S7XOgORXc2h7N2D5uu9mmr1BKtoT2YDSvXMJ22WwI_fcdzXi3zSXQmzEyA5I1-jQjfQLYb1FKg9QVdWXbAqWrCvJaFkjKB2dq4wLf6H450odz_HiiTobaHO6FyfwQ2wM39oy0X7OD-6ULOeFEJsk8Xbv6dUyxuNV3JwbyEkewM_k-_zHfbMVK6TRhLIbIqmh122z4SbF78_frKxEpEffvwq2LxZJ-X9LZ2VXQmqLO7C7cGeCimGT73oMbfnEfdv8hEXwAP7_xkTlXoQuXx8uL1CUkmD8jNyaKiEzFkuehiczcfC74_FXQQjA5AxMER_lF1gqtxHRyINKInIcwnx0cvzsshpEJhWWKoqKJcIZiBlRHGFYpKksqCStnqVNeB1O1Dk1wnWlsUGi0rY1y2jUYcQkaK7V8BKO4mt8DESquinHB-VZhtBnZypkQEyQbHTU03RhebtTWLzMzRp9utLHrWbl9Uu4Y3rJGtxLMZp1e_Fqd9oNz9DGnsRScVNJqJObXkcGUnlopNemAY9jf2uPatV4lU10j0r8_ntbp6fH_CL-Am1-ns_7zh6NPT-B2HXFNbkd8CqP16sI_i7hkbZ4Pf98fZ2DdcA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke5AefIsVlaCehK3dzaO7x2qtRVBEWqh4WCbJxoOllLpF9NebZLfFeijewpJswkxCvsnMfANwETNKJcMkiEIVB4zqMMBM0IAhz4yWkdTGeXQfHkV_yO5HfFSBs0UuzIr_niVXb7mOmtaOcvm8NcEt3q5Cbfj41HnxmY48DGLhq-CV7YQvOEhXBq_cOp6cvw4b88kUvz5xPF4Fpv5m6W3BzWJNRUDJe3Oey6b6_kPXuH7R27BZAkvSKXbCDlSyyS7Uf9EN7sHrs3tcd_HqRBeF6InPJyKOaaNIYSQWw5Kpq5xGCo7nD-JeaglOiKNxcFTCtv-k4NfAGel2bokvprMPw97t4KYflMUVAuXIjIK2BT5obaXIAraQY6uFLWShVpjwTBgZxppJoxPZVoYzKVQkuRa6zSyCYVJRQQ-gamfLDoGY0MXPaKOzmDOrXVShlsaaUsoeadNOGnC-EH46LTg0Uu_7ZknqRJV6UTXg2ull2cPxXvsPVrJpeYxSa_0oNJpyqgRDx8RDjWxlGFMqUBjWgIulVtfOdekVvqZLejfoRr519L9_HkM1n82zE4tRcnlabtIf5bjjPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+dynamic+state+estimation+for+power+systems+with+an+incomplete+nonlinear+DAE+model&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Katanic%2C+Milos&rft.au=Lygeros%2C+John&rft.au=Hug%2C+Gabriela&rft.date=2024-11-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=18&rft.issue=22&rft.spage=3657&rft.epage=3668&rft_id=info:doi/10.1049%2Fgtd2.13308&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_gtd2_13308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon