Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model
Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing...
        Saved in:
      
    
          | Published in | IET generation, transmission & distribution Vol. 18; no. 22; pp. 3657 - 3668 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Wiley
    
        01.11.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1751-8687 1751-8695 1751-8695  | 
| DOI | 10.1049/gtd2.13308 | 
Cover
| Abstract | Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates.
This article proposes the Iterated Extended Kalman Filter for the optimal state estimation for general DAE power system models. The article also introduces a graphical method for placing real‐time measurements to achieve the unique state reconstruction. | 
    
|---|---|
| AbstractList | Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates. Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates. Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This article introduces a novel centralized dynamic state estimator designed specifically for power systems where some component models are missing. Including the available dynamic evolution equations, algebraic network equations, and phasor measurements, the least squares criterion is applied to estimate all dynamic and algebraic states recursively. The approach generalizes the iterated extended Kalman filter and does not require static network observability, relying on the network topology and parameters. Furthermore, a topological criterion is established for placing phasor measurement units (PMUs), termed topological estimability, which guarantees the uniqueness of the solution. A numerical study evaluates the performance under short circuits in the network and load changes and shows superior tracking performance compared to robust procedures from the literature with computational times in accordance with the typical PMU sampling rates. This article proposes the Iterated Extended Kalman Filter for the optimal state estimation for general DAE power system models. The article also introduces a graphical method for placing real‐time measurements to achieve the unique state reconstruction.  | 
    
| Author | Lygeros, John Katanic, Milos Hug, Gabriela  | 
    
| Author_xml | – sequence: 1 givenname: Milos orcidid: 0009-0000-2585-0990 surname: Katanic fullname: Katanic, Milos email: mkatanic@ethz.ch organization: ETH – sequence: 2 givenname: John surname: Lygeros fullname: Lygeros, John organization: ETH – sequence: 3 givenname: Gabriela surname: Hug fullname: Hug, Gabriela organization: ETH  | 
    
| BookMark | eNp9kE1LxDAQhoMouK5e_AU5K7smzVd7XPxYBUEQPXkI03xopG2WpLr039vdikdPMwzPPDO8J-iwi51D6JySJSW8unrvbbGkjJHyAM2oEnRRykoc_vWlOkYnOX8SIoTkaobenp35Sjl8O2yHDtpgcO6hd9jlPrTQh9hhHxPexK1LOA-5d23G29B_YOhw6ExsN40b-fGRJnQOEr5Z3eI2WtecoiMPTXZnv3WOXu9uX67vF49P64fr1ePCMMXKhRKyACp5QYSiAggBApxaA5Vw0te0tLz2tqqV8YLX0hS1sNIqLjnjtWGSzdHD5LURPvUmjX-nQUcIej-I6V1D6oNpnK4UN-AtE8xIDuN1wXxNHJSMSZCej67LyfXVbWDYQtP8CSnRu4z1LmO9z3ikLybapJhzcv5_mE7wNjRu-IfU65ebYtr5AXZDjtk | 
    
| Cites_doi | 10.1109/TSG.2015.2485280 10.1109/CDC51059.2022.9993096 10.1007/s12532-018-0139-4 10.1109/9.250476 10.1016/j.ces.2010.04.020 10.1002/0470045345 10.1109/TPWRD.2017.2762927 10.1109/TSG.2014.2302213 10.1016/B978-0-12-814005-5.00014-5 10.1109/TPWRS.2008.922621 10.1109/TPWRS.2019.2894769 10.1016/j.epsr.2018.07.019 10.1109/TSG.2020.3022563 10.1016/0142-0615(90)90003-T 10.1109/TPWRS.2017.2688131 10.1109/TPWRS.2016.2628344 10.1109/TPWRS.2014.2356797 10.1109/9.159570 10.1109/TPWRS.2011.2175255 10.1109/PROC.1979.11233 10.1109/ISGTEurope52324.2021.9640127 10.1109/TPWRS.2013.2281323 10.1109/TSG.2017.2761452 10.1109/ACCESS.2019.2900228 10.1109/CDC.2008.4739260 10.1109/TSG.2016.2580584 10.1109/TPWRS.2011.2145396 10.1109/TPWRS.2022.3184190 10.1109/TAC.1980.1102506 10.1109/TPWRS.2020.2994898 10.1109/TSG.2016.2548244 10.1201/9780203913673 10.1109/TCSI.2020.2965141 10.1109/TPAS.1980.319578 10.1109/TPWRS.2022.3163196 10.23919/ACC.2004.1383602  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. | 
    
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1049/gtd2.13308 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1751-8695 | 
    
| EndPage | 3668 | 
    
| ExternalDocumentID | oai_doaj_org_article_974cafd353c64a73853fb0ea8336a6f4 10.1049/gtd2.13308 10_1049_gtd2_13308 GTD213308  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 51NF40_225155  | 
    
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PTHSS QWB RNS ROL RUI S0W U5U UNMZH ZL0 AAYXX AFFHD CITATION PQGLB WIN ADTOC PUEGO UNPAY  | 
    
| ID | FETCH-LOGICAL-c3738-7562a164205715a00a0a41dca95e6fb18d4bfd9b7cf54b6c2b5d6d746434bc363 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1751-8687 1751-8695  | 
    
| IngestDate | Fri Oct 03 12:45:06 EDT 2025 Sun Sep 07 10:55:53 EDT 2025 Wed Oct 29 21:11:24 EDT 2025 Wed Jun 18 06:51:30 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 22 | 
    
| Language | English | 
    
| License | Attribution-NonCommercial-NoDerivs | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3738-7562a164205715a00a0a41dca95e6fb18d4bfd9b7cf54b6c2b5d6d746434bc363 | 
    
| ORCID | 0009-0000-2585-0990 | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.13308 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_974cafd353c64a73853fb0ea8336a6f4 unpaywall_primary_10_1049_gtd2_13308 crossref_primary_10_1049_gtd2_13308 wiley_primary_10_1049_gtd2_13308_GTD213308  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2024 2024-11-00 2024-11-01  | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IET generation, transmission & distribution | 
    
| PublicationYear | 2024 | 
    
| Publisher | Wiley | 
    
| Publisher_xml | – name: Wiley | 
    
| References | 2019; 7 2018; 163 1980; 25 2017; 8 1990; 12 2011 2010 2019; 11 2023; 38 2019; 10 2015; 30 2019; 34 2008 2006 2020; 35 1994 2004 2014; 29 1992; 37 2004; 1 2018; 9 2010; 65 2014; 5 1979; 67 2021; 12 1993; 38 1980; PAS‐99 2023 2022 2021 2020 2017; 32 2019; 06 2019 2018 2008; 23 2016 2020; 67 2011; 26 2012; 27 2014 2013 2018; 33 2022; 38 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_42_1 e_1_2_10_40_1 Cui Y. (e_1_2_10_9_1) 2016 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 Dai L. (e_1_2_10_38_1) 2014 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Abhinav S. (e_1_2_10_19_1) 2018 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 Katanic M. (e_1_2_10_17_1) 2022 Machowski J. (e_1_2_10_44_1) 2020 Kundur P. (e_1_2_10_46_1) 1994 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Milano F. (e_1_2_10_47_1) 2010 Pourbeik P. (e_1_2_10_43_1) 2019; 06 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1  | 
    
| References_xml | – volume: 30 start-page: 2041 issue: 4 year: 2015 end-page: 2054 article-title: Optimal PMU placement for power system dynamic state estimation by using empirical observability Gramian publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 188 year: 2004 end-page: 193 article-title: Optimal recursive estimation for discrete‐time descriptor systems – start-page: 7174 year: 2022 end-page: 7179 article-title: Robust dynamic state estimation of multi‐machine power networks with solar farms and dynamics loads – volume: 35 start-page: 4518 issue: 6 year: 2020 end-page: 4527 article-title: A robust dynamic state estimation approach against model errors caused by load changes publication-title: IEEE Trans. Power Syst. – volume: 12 start-page: 810 issue: 1 year: 2021 end-page: 820 article-title: A robust state estimation method based on SOCP for integrated electricity‐heat system publication-title: IEEE Trans. Smart Grid – volume: 67 start-page: 219 issue: 2 year: 1979 end-page: 241 article-title: Power system dynamic response calculations publication-title: Proc. IEEE – volume: 34 start-page: 3188 issue: 4 year: 2019 end-page: 3198 article-title: Power system dynamic state estimation: Motivations, definitions, methodologies, and future work publication-title: IEEE Trans. Power Syst – volume: 33 start-page: 1099 year: 2018 end-page: 1100 article-title: Dynamic state estimation with model uncertainties using extended Kalman filter publication-title: IEEE Trans. Power Syst. – year: 2018 – volume: 163 start-page: 470 year: 2018 end-page: 481 article-title: A multi‐agent based approach to power system dynamic state estimation by considering algebraic and dynamic state variables publication-title: Electr. Power Syst. Res. – year: 2014 – year: 1994 – volume: 67 start-page: 1715 issue: 5 year: 2020 end-page: 1728 article-title: Dynamic state estimation of power systems by ‐Norm nonlinear Kalman filter publication-title: IEEE Trans. Circ. Syst. I: Reg. Papers – volume: 5 start-page: 1808 issue: 4 year: 2014 end-page: 1814 article-title: LAV based robust state estimation for systems measured by PMUs publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: 942 issue: 2 year: 2012 end-page: 950 article-title: An alternative method for power system dynamic state estimation based on unscented transform publication-title: IEEE Trans. Power Syst. – year: 2004 article-title: Observer‐Based Monitors and Distributed Wave Controllers for Electromechanical Disturbances in Power Systems – year: 2004 – start-page: 2955 year: 2008 end-page: 2960 article-title: Graphical observer design suitable for large‐scale DAE power systems – volume: 38 start-page: 294 issue: 2 year: 1993 end-page: 297 article-title: The iterated Kalman filter update as a Gauss‐Newton method publication-title: IEEE Trans. Autom. Control – volume: 65 start-page: 4548 issue: 16 year: 2010 end-page: 4556 article-title: Recursive state estimation techniques for nonlinear differential algebraic systems publication-title: Chem. Eng. Sci. – volume: 8 start-page: 1537 issue: 4 year: 2017 end-page: 1544 article-title: Robust state estimator based on maximum exponential absolute value publication-title: IEEE Trans. Smart Grid – year: 2019 – volume: PAS‐99 start-page: 1534 issue: 4 year: 1980 end-page: 1542 article-title: Power system observability: A practical algorithm using network topology publication-title: IEEE Trans. Power Appar. Syst. – volume: 7 start-page: 29139 year: 2019 end-page: 29148 article-title: Robust cubature Kalman filter for dynamic state estimation of synchronous machines under unknown measurement noise statistics publication-title: IEEE Access – volume: 25 start-page: 1192 issue: 6 year: 1980 end-page: 1196 article-title: Determination of generic dimensions of controllable subspaces and its application publication-title: IEEE Trans. Autom. Control – volume: 06 start-page: 38 issue: 14 year: 2019 end-page: 48 article-title: An aggregate dynamic model for distributed energy resources for power system stability studies publication-title: Cigre Sci. Eng – volume: 11 start-page: 1 issue: 1 year: 2019 end-page: 36 article-title: CasADi – A software framework for nonlinear optimization and optimal control publication-title: Math. Program. Comput. – start-page: 1 year: 2021 end-page: 6 – start-page: 1 year: 2022 end-page: 6 article-title: Moving‐horizon state estimation for power networks and synchronous generators – volume: 29 start-page: 794 issue: 2 year: 2014 end-page: 804 article-title: Decentralized dynamic state estimation in power systems using unscented transformation publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 1215 issue: 2 year: 2019 end-page: 1224 article-title: Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics publication-title: IEEE Trans. Smart Grid – volume: 33 start-page: 3233 issue: 6 year: 2018 end-page: 3236 article-title: Assessing Gaussian assumption of PMU measurement error using field data publication-title: IEEE Trans. Power Delivery – volume: 33 start-page: 1099 issue: 1 year: 2018 end-page: 1100 article-title: Dynamic state estimation with model uncertainties using extended Kalman filter publication-title: IEEE Trans. Power Syst. – year: 2016 – start-page: 1 year: 2011 end-page: 61 – volume: 12 start-page: 80 issue: 2 year: 1990 end-page: 87 article-title: Power system state estimation: A survey publication-title: Int. J. Electr. Power Energy Syst. – year: 2010 – volume: 23 start-page: 1433 issue: 3 year: 2008 end-page: 1440 article-title: Optimal placement of phasor measurement units for power system observability publication-title: IEEE Trans. Power Syst. – volume: 38 start-page: 2539 issue: 3 year: 2022 end-page: 2552 article-title: Dynamic state estimation of nonlinear differential algebraic equation models of power networks publication-title: IEEE Trans. Power Syst. – volume: 37 start-page: 1325 issue: 9 year: 1992 end-page: 1342 article-title: Kalman filtering and Riccati equations for descriptor systems publication-title: IEEE Trans. Autom. Control – volume: 32 start-page: 3205 issue: 4 year: 2017 end-page: 3216 article-title: A robust iterated extended Kalman filter for power system dynamic state estimation publication-title: IEEE Trans. Power Syst. – year: 2006 – year: 2020 – year: 2023 – volume: 26 start-page: 2556 issue: 4 year: 2011 end-page: 2566 article-title: Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 1184 issue: 2 year: 2018 end-page: 1196 article-title: Dynamic state estimation for multi‐machine power system by unscented Kalman filter with enhanced numerical stability publication-title: IEEE Trans. Smart Grid – volume: 38 start-page: 463 issue: 1 year: 2023 end-page: 474 article-title: A new dynamic state estimation approach including hard limits on control devices publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 211 issue: 1 year: 2018 end-page: 219 article-title: Linear phasor estimator assisted dynamic state estimation publication-title: IEEE Trans. Smart Grid – year: 2013 – ident: e_1_2_10_54_1 doi: 10.1109/TSG.2015.2485280 – ident: e_1_2_10_15_1 doi: 10.1109/CDC51059.2022.9993096 – ident: e_1_2_10_5_1 – ident: e_1_2_10_49_1 doi: 10.1007/s12532-018-0139-4 – ident: e_1_2_10_37_1 doi: 10.1109/9.250476 – ident: e_1_2_10_33_1 doi: 10.1016/j.ces.2010.04.020 – ident: e_1_2_10_36_1 doi: 10.1002/0470045345 – volume-title: Dynamic Estimation and Control of Power Systems year: 2018 ident: e_1_2_10_19_1 – ident: e_1_2_10_35_1 – volume: 06 start-page: 38 issue: 14 year: 2019 ident: e_1_2_10_43_1 article-title: An aggregate dynamic model for distributed energy resources for power system stability studies publication-title: Cigre Sci. Eng – ident: e_1_2_10_50_1 doi: 10.1109/TPWRD.2017.2762927 – ident: e_1_2_10_34_1 doi: 10.1109/TSG.2014.2302213 – ident: e_1_2_10_6_1 doi: 10.1016/B978-0-12-814005-5.00014-5 – ident: e_1_2_10_52_1 doi: 10.1109/TPWRS.2008.922621 – ident: e_1_2_10_27_1 – volume-title: 2016 IEEE Power and Energy Society General Meeting (PESGM) year: 2016 ident: e_1_2_10_9_1 – ident: e_1_2_10_18_1 doi: 10.1109/TPWRS.2019.2894769 – ident: e_1_2_10_28_1 doi: 10.1016/j.epsr.2018.07.019 – ident: e_1_2_10_53_1 doi: 10.1109/TSG.2020.3022563 – ident: e_1_2_10_4_1 – ident: e_1_2_10_3_1 doi: 10.1016/0142-0615(90)90003-T – ident: e_1_2_10_22_1 doi: 10.1109/TPWRS.2017.2688131 – ident: e_1_2_10_42_1 – ident: e_1_2_10_21_1 doi: 10.1109/TPWRS.2016.2628344 – ident: e_1_2_10_12_1 doi: 10.1109/TPWRS.2014.2356797 – ident: e_1_2_10_45_1 – ident: e_1_2_10_31_1 doi: 10.1109/9.159570 – ident: e_1_2_10_10_1 doi: 10.1109/TPWRS.2011.2175255 – ident: e_1_2_10_48_1 – ident: e_1_2_10_32_1 doi: 10.1109/PROC.1979.11233 – ident: e_1_2_10_29_1 doi: 10.1109/ISGTEurope52324.2021.9640127 – ident: e_1_2_10_20_1 doi: 10.1109/TPWRS.2013.2281323 – volume-title: Power Systems year: 2010 ident: e_1_2_10_47_1 – start-page: 1 volume-title: 2022 North American Power Symposium (NAPS) year: 2022 ident: e_1_2_10_17_1 – ident: e_1_2_10_23_1 doi: 10.1109/TSG.2017.2761452 – ident: e_1_2_10_24_1 doi: 10.1109/ACCESS.2019.2900228 – volume-title: Lecture Notes in Control and Information Sciences year: 2014 ident: e_1_2_10_38_1 – ident: e_1_2_10_40_1 doi: 10.1109/CDC.2008.4739260 – ident: e_1_2_10_11_1 doi: 10.1109/TSG.2016.2580584 – ident: e_1_2_10_7_1 doi: 10.1109/TPWRS.2011.2145396 – ident: e_1_2_10_14_1 doi: 10.1109/TPWRS.2022.3184190 – ident: e_1_2_10_41_1 doi: 10.1109/TAC.1980.1102506 – volume-title: EPRI Power System Engineering Series year: 1994 ident: e_1_2_10_46_1 – ident: e_1_2_10_8_1 doi: 10.1109/TSG.2016.2580584 – ident: e_1_2_10_26_1 doi: 10.1109/TPWRS.2020.2994898 – ident: e_1_2_10_13_1 doi: 10.1109/TSG.2016.2548244 – ident: e_1_2_10_2_1 doi: 10.1201/9780203913673 – ident: e_1_2_10_25_1 doi: 10.1109/TCSI.2020.2965141 – volume-title: Power System Dynamics: Stability and Control year: 2020 ident: e_1_2_10_44_1 – ident: e_1_2_10_51_1 doi: 10.1109/TPWRS.2017.2688131 – ident: e_1_2_10_39_1 doi: 10.1109/TPAS.1980.319578 – ident: e_1_2_10_16_1 doi: 10.1109/TPWRS.2022.3163196 – ident: e_1_2_10_30_1 doi: 10.23919/ACC.2004.1383602  | 
    
| SSID | ssj0055647 | 
    
| Score | 2.429336 | 
    
| Snippet | Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling challenging. This... Abstract Power systems are highly complex, large‐scale engineering systems subject to many uncertainties, which makes accurate mathematical modeling...  | 
    
| SourceID | doaj unpaywall crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Index Database Publisher  | 
    
| StartPage | 3657 | 
    
| SubjectTerms | differential algebraic equations Kalman filters state estimation  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NS8MwGMaD7KI7iJ84vwi4k1DXNB9Nj9NtDkEPssHAQ3mTNF5GGXND_O_NxybzMi_eSgkkvG_bPG-a_B6E2pJRqhgUSUa0TBg1JIFK0IQBr6xRmTLW_9F9fhHDMXua8MmG1ZffExbxwDFwHad3NVhDOdWCgWevUKvSCiSlAoQNJNBUFutiKn6DORfBWszNjSSRQuZrMCkrOu8Lk925yswbSm5MRYHY30S7y3oGX58wnf5Wq2G6GRyg_ZVOxN04vkO0U9VHqLlBDzxGb69-rdxvP8cm-srjcDwIe3BGPJGInSTFM2-EhiOy-QP7hVcMNfZUBk8Gdu3riMuAOe51-zh445yg8aA_ehgmK6-ERHs2UZI7HQOu9Mmc_iIc0hRSYMRoKHglrCLSMGVNoXJtOVNCZ4obYXLmBAlTmgp6ihqut-oMYUv8dhhjTSU5c8kCTYyyrjLS7g21edFCN-uwlbOIxCjDr2xWlD64ZQhuC937iP608BjrcMMlt1wlt_wruS3U_snH1r5uQ6q2NCkfR70sXJ3_x8Au0F7m1E08lHiJGov5srpy6mShrsOD-A37KuCn priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke5AefIsVlaCehK3dzaO7x2qtRVBEWqh4WCbJxoOllLpF9NebZLfFeijewpJswkxCvsnMfANwETNKJcMkiEIVB4zqMMBM0IAhz4yWkdTGeXQfHkV_yO5HfFSBs0UuzIr_niVXb7mOmtaOcvm8NcEt3q5Cbfj41HnxmY48DGLhq-CV7YQvOEhXBq_cOp6cvw4b88kUvz5xPF4Fpv5m6W3BzWJNRUDJe3Oey6b6_kPXuH7R27BZAkvSKXbCDlSyyS7Uf9EN7sHrs3tcd_HqRBeF6InPJyKOaaNIYSQWw5Kpq5xGCo7nD-JeaglOiKNxcFTCtv-k4NfAGel2bokvprMPw97t4KYflMUVAuXIjIK2BT5obaXIAraQY6uFLWShVpjwTBgZxppJoxPZVoYzKVQkuRa6zSyCYVJRQQ-gamfLDoGY0MXPaKOzmDOrXVShlsaaUsoeadNOGnC-EH46LTg0Uu_7ZknqRJV6UTXg2ull2cPxXvsPVrJpeYxSa_0oNJpyqgRDx8RDjWxlGFMqUBjWgIulVtfOdekVvqZLejfoRr519L9_HkM1n82zE4tRcnlabtIf5bjjPQ priority: 102 providerName: Unpaywall  | 
    
| Title | Recursive dynamic state estimation for power systems with an incomplete nonlinear DAE model | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.13308 https://doi.org/10.1049/gtd2.13308 https://doaj.org/article/974cafd353c64a73853fb0ea8336a6f4  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8695 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055647 issn: 1751-8695 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB5CcmhzCGmbUudhBMmpsKm1euwu9OK8KTSEEkNKD8tIWuUSHOM4hPz7zki2m1wCvS3LCMGMRvONpPkG4KDWSjmNTVFKXxdaBVlgZ1Wh0XQxuNKFyDe6Py_txUj_uDE3K_B9UQuT-SGWB27sGWm_ZgdHl7uQEKglI97OQnlIGRZX-q5JAjK8vkt9tdiHjbGpvRjFR1nUtq4W5KS6-fZv7KtwlFj71-Hd43iCz094d_casaaQc7YJG3OsKIbZuB9gpRt_hPUXDIKf4M8vPi_nJ-gi5N7yIpUICSbPyFWJgmCpmHAzNJFpmx8EH74KHAtmZmB2YJIfZ5XgVJwMT0Xqj7MFo7PT6-OLYt4vofDMT1RUhGWQ0p-SMJg0OBjgALUMHhvT2ehkHbSLoXGVj0Y760tngg2VJlCinVdWfYZVmq37AiJKfhITYuhqo8lg6GVwkbIjT14aq6YH-wu1tZNMi9Gm62zdtKzcNim3B0es0aUEU1mnH_fT23buGS0lNB5jUEZ5q5HJdVR0gw5rpSzaqHtwsLTHm3N9TaZ6Q6Q9vz4p09f2_wjvwPuSkEwuQNyF1dn0sdsjJDJz_bTg-imP78Pa6PJq-PsvgszbVQ | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBUlPSQ-lLZJqZs2EcSnwCbWaqTdPbrNh9vYJgQHAjksI2mVS3CNaxP676uRbCe5GHpbllkEMzvSm9HMG8Y6JUhpAKssF7bMQDqRYaNlBqga70xunKcb3eFI92_h1526W9bmUC9M4odYJ9zIM-J-TQ5OCekUcAKRZD7MXX4SQixq9X0LWmiKvXK4Xm3ESuk4XywckCIrdVms2EmhOn3-9tV5FGn7W2x7MZni3yd8fHwNWeOZc_GevVuCRd5L1v3A3jSTj6z1gkJwl93fUMKcatC5S8PleewR4sSekdoSecClfErT0Hjibf7DKfvKccKJmoHogYP8JOkEZ_ysd87jgJw9dntxPv7Rz5YDEzJLBEVZEcAMhvgnDyBMKOx2sYsgnMVKNdobUTow3lWmsF6B0TY3ymlXQEAlYKzU8hPbCqs1nxn3gmpinHdNqSBYDK1wxofwyAY39UXVZkcrtdXTxItRx_tsqGpSbh2V22bfSaNrCeKyji9-zx7qpWvUIaKx6J1U0mpAYteR3nQbLKXUqD20WWdtj41rHUdTbRCpL8dneXz68j_Ch2y7Px4O6sHP0dU-28kDrEndiF_Z1ny2aL4FWDI3B_Hn-wdWFtwc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9xADBZlA21zKH2S7XOgORXc2h7N2D5uu9mmr1BKtoT2YDSvXMJ22WwI_fcdzXi3zSXQmzEyA5I1-jQjfQLYb1FKg9QVdWXbAqWrCvJaFkjKB2dq4wLf6H450odz_HiiTobaHO6FyfwQ2wM39oy0X7OD-6ULOeFEJsk8Xbv6dUyxuNV3JwbyEkewM_k-_zHfbMVK6TRhLIbIqmh122z4SbF78_frKxEpEffvwq2LxZJ-X9LZ2VXQmqLO7C7cGeCimGT73oMbfnEfdv8hEXwAP7_xkTlXoQuXx8uL1CUkmD8jNyaKiEzFkuehiczcfC74_FXQQjA5AxMER_lF1gqtxHRyINKInIcwnx0cvzsshpEJhWWKoqKJcIZiBlRHGFYpKksqCStnqVNeB1O1Dk1wnWlsUGi0rY1y2jUYcQkaK7V8BKO4mt8DESquinHB-VZhtBnZypkQEyQbHTU03RhebtTWLzMzRp9utLHrWbl9Uu4Y3rJGtxLMZp1e_Fqd9oNz9DGnsRScVNJqJObXkcGUnlopNemAY9jf2uPatV4lU10j0r8_ntbp6fH_CL-Am1-ns_7zh6NPT-B2HXFNbkd8CqP16sI_i7hkbZ4Pf98fZ2DdcA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5Ke5AefIsVlaCehK3dzaO7x2qtRVBEWqh4WCbJxoOllLpF9NebZLfFeijewpJswkxCvsnMfANwETNKJcMkiEIVB4zqMMBM0IAhz4yWkdTGeXQfHkV_yO5HfFSBs0UuzIr_niVXb7mOmtaOcvm8NcEt3q5Cbfj41HnxmY48DGLhq-CV7YQvOEhXBq_cOp6cvw4b88kUvz5xPF4Fpv5m6W3BzWJNRUDJe3Oey6b6_kPXuH7R27BZAkvSKXbCDlSyyS7Uf9EN7sHrs3tcd_HqRBeF6InPJyKOaaNIYSQWw5Kpq5xGCo7nD-JeaglOiKNxcFTCtv-k4NfAGel2bokvprMPw97t4KYflMUVAuXIjIK2BT5obaXIAraQY6uFLWShVpjwTBgZxppJoxPZVoYzKVQkuRa6zSyCYVJRQQ-gamfLDoGY0MXPaKOzmDOrXVShlsaaUsoeadNOGnC-EH46LTg0Uu_7ZknqRJV6UTXg2ull2cPxXvsPVrJpeYxSa_0oNJpyqgRDx8RDjWxlGFMqUBjWgIulVtfOdekVvqZLejfoRr519L9_HkM1n82zE4tRcnlabtIf5bjjPQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+dynamic+state+estimation+for+power+systems+with+an+incomplete+nonlinear+DAE+model&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Katanic%2C+Milos&rft.au=Lygeros%2C+John&rft.au=Hug%2C+Gabriela&rft.date=2024-11-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=18&rft.issue=22&rft.spage=3657&rft.epage=3668&rft_id=info:doi/10.1049%2Fgtd2.13308&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_gtd2_13308 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |