Carbonized Polymer Dots with Controllable N, O Functional Groups as Electrolyte Additives to Achieve Stable Li Metal Batteries

Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 31; pp. e2206597 - n/a
Main Authors Wang, Wen‐Chen, Song, Yi‐Han, Yang, Guo‐Duo, Jiao, Rui, Zhang, Jia‐Yu, Wu, Xing‐Long, Zhang, Jing‐Ping, Li, Yan‐Fei, Tong, Cui‐Yan, Sun, Hai‐Zhu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202206597

Cover

Abstract Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Two kinds of carbonized polymer dots (CPDs) (M‐CPDs and H‐CPDs) as electrolyte additives are successfully designed and synthesized. H‐CPDs with more pyridinic‐N, pyrrolic‐N, and COOH deliver more even Li+ flux through abundant H‐CPDs‐Li clusters bound by strong electrostatic interaction. The symmetrical cell exhibits enhanced cycling stability of 3700 h.
AbstractList Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li + , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐ N , pyrrolic‐ N , and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li + through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li + in the electrolyte is formed, which induces faster Li + diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li + transfer. The corresponding Li//LiFePO 4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.
Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li in the electrolyte is formed, which induces faster Li diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li transfer. The corresponding Li//LiFePO full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.
Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+ , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+ , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.
Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.
Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Two kinds of carbonized polymer dots (CPDs) (M‐CPDs and H‐CPDs) as electrolyte additives are successfully designed and synthesized. H‐CPDs with more pyridinic‐N, pyrrolic‐N, and COOH deliver more even Li+ flux through abundant H‐CPDs‐Li clusters bound by strong electrostatic interaction. The symmetrical cell exhibits enhanced cycling stability of 3700 h.
Author Jiao, Rui
Song, Yi‐Han
Yang, Guo‐Duo
Zhang, Jia‐Yu
Tong, Cui‐Yan
Wang, Wen‐Chen
Zhang, Jing‐Ping
Wu, Xing‐Long
Li, Yan‐Fei
Sun, Hai‐Zhu
Author_xml – sequence: 1
  givenname: Wen‐Chen
  surname: Wang
  fullname: Wang, Wen‐Chen
  organization: Northeast Normal University
– sequence: 2
  givenname: Yi‐Han
  surname: Song
  fullname: Song, Yi‐Han
  organization: Northeast Normal University
– sequence: 3
  givenname: Guo‐Duo
  surname: Yang
  fullname: Yang, Guo‐Duo
  organization: Northeast Normal University
– sequence: 4
  givenname: Rui
  surname: Jiao
  fullname: Jiao, Rui
  organization: Northeast Normal University
– sequence: 5
  givenname: Jia‐Yu
  surname: Zhang
  fullname: Zhang, Jia‐Yu
  organization: Northeast Normal University
– sequence: 6
  givenname: Xing‐Long
  surname: Wu
  fullname: Wu, Xing‐Long
  organization: Northeast Normal University
– sequence: 7
  givenname: Jing‐Ping
  surname: Zhang
  fullname: Zhang, Jing‐Ping
  organization: Northeast Normal University
– sequence: 8
  givenname: Yan‐Fei
  surname: Li
  fullname: Li, Yan‐Fei
  email: liyf766@nenu.edu.cn
  organization: Ministry of Education
– sequence: 9
  givenname: Cui‐Yan
  surname: Tong
  fullname: Tong, Cui‐Yan
  email: tongcy959@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 10
  givenname: Hai‐Zhu
  orcidid: 0000-0002-5113-8267
  surname: Sun
  fullname: Sun, Hai‐Zhu
  email: sunhz335@nenu.edu.cn
  organization: Northeast Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36617512$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAURkVJaR7ttssi6KaLzlQPW5aWk2mSFpwmkHQtZPmaKMjWVJITpov89ng6eUAgdHXv4pwP7v320c4QBkDoIyVzSgj7lnrv54wwRkSpqjdojwrKZ0IytfO0U7KL9lO6JoRTVlTv0C4XglYlZXvobmliEwb3F1p8Hvy6h4i_h5zwrctXeBmGHIP3pvGAf33FZ_h4HGx2YTAen8QwrhI2CR95sBtunQEv2tZldwMJ54AX9srBDeCL_C-hdvgU8qQempwhOkjv0dvO-AQfHuYB-n18dLn8MavPTn4uF_XM8opXM8uMIZ0SpOGy5cLIojVWkq7kTVdJwy2FojSKmU4x2tKSNdJIBU3TyUKoEvgB-rLNXcXwZ4SUde-ShemyAcKYNKsEk4yURE3o5xfodRjjdPBEyaJQjNCST9SnB2psemj1KrrexLV-_OwEFFvAxpBShE5bl83mdTka5zUlelOg3hSonwqctPkL7TH5VUFthVvnYf0fWl-c1vWzew_oLq5e
CitedBy_id crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1002_smll_202312124
crossref_primary_10_1016_j_apsusc_2024_159535
crossref_primary_10_1002_chem_202304152
crossref_primary_10_1016_j_jpowsour_2024_236154
crossref_primary_10_1016_j_jcis_2025_137331
crossref_primary_10_1039_D4TC03007A
crossref_primary_10_1002_adom_202403251
crossref_primary_10_1016_j_cej_2024_152087
crossref_primary_10_1016_j_cej_2024_157379
crossref_primary_10_1016_j_jcis_2024_10_019
crossref_primary_10_1016_j_cej_2023_148264
crossref_primary_10_1016_j_jhazmat_2024_134637
Cites_doi 10.1002/anie.201300519
10.1002/anie.201807034
10.1002/adfm.202003055
10.1021/acs.chemmater.8b00722
10.1002/adma.201801328
10.1016/j.apsusc.2018.02.014
10.1038/s41560-019-0474-3
10.1016/j.nanoen.2019.104373
10.1002/advs.201901316
10.1038/s41560-020-0634-5
10.1016/j.nanoen.2017.08.033
10.1002/smll.201703919
10.26599/NRE.2022.9120003
10.1002/smll.201800612
10.1016/j.cej.2022.134897
10.1002/adfm.201910777
10.1021/jacs.8b08963
10.1038/s41467-017-00519-2
10.1016/j.surfcoat.2004.03.045
10.1002/anie.201504951
10.26599/NRE.2022.9120007
10.1039/C9CS00636B
10.1002/adfm.201605989
10.1007/s10800-005-9082-y
10.1002/anie.202210979
10.1016/j.ensm.2021.08.008
10.1016/j.joule.2018.02.001
10.1002/slct.201800757
10.1016/j.ensm.2017.12.002
10.1016/j.nanoen.2019.104128
10.1016/j.mattod.2021.07.028
10.1016/j.ceramint.2021.03.062
10.1007/s12274-014-0644-3
10.1016/j.carbpol.2020.116391
10.1002/eem2.12368
10.1002/adma.201603443
10.1002/smll.202102978
10.1021/acssuschemeng.8b06832
10.1021/acsenergylett.7b00982
10.1016/j.nanoen.2020.104889
10.1002/anie.201702099
10.26599/NRE.2022.9120023
10.1021/acsami.0c11867
10.1021/acsaem.1c03333
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202206597
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36617512
10_1002_smll_202206597
SMLL202206597
Genre article
Journal Article
GrantInformation_xml – fundername: NSFC
  funderid: 22035001; 22275030; 22209023
– fundername: NSFC
  grantid: 22275030
– fundername: NSFC
  grantid: 22035001
– fundername: NSFC
  grantid: 22209023
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
AAYOK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-c2aa0f960b38d36a84dac80f53bf78a3c1e45a92af921d152b8a89ebbf84695e3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 10:39:10 EDT 2025
Fri Jul 25 12:05:50 EDT 2025
Wed Feb 19 02:22:42 EST 2025
Wed Oct 01 03:38:48 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Wed Jan 22 16:18:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords carbonized polymer dots
functional groups
electrolyte additives
Li dendrites
Li metal batteries
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-c2aa0f960b38d36a84dac80f53bf78a3c1e45a92af921d152b8a89ebbf84695e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5113-8267
PMID 36617512
PQID 2844920153
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2762820509
proquest_journals_2844920153
pubmed_primary_36617512
crossref_citationtrail_10_1002_smll_202206597
crossref_primary_10_1002_smll_202206597
wiley_primary_10_1002_smll_202206597_SMLL202206597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 47
2017; 40
2005; 191
2019; 7
2018; 441
2017; 8
2019; 4
2021; 42
2018; 140
2019; 6
2015; 3
2020; 242
2017; 27
2006; 36
2015; 54
2020; 12
2017; 29
2015; 8
2021; 51
2022; 435
2018; 48
2020; 5
2018; 3
2018; 2
2020; 75
2022
2020; 30
2019; 66
2022; 61
2022; 5
2021; 17
2013; 52
2017; 56
2020; 49
2020; 68
2018; 30
2022; 1
2020; 22
2018; 12
2018; 14
2018; 57
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Li F. (e_1_2_8_47_1) 2018; 48
Shanmugam S. (e_1_2_8_46_1) 2020; 22
Song Y. (e_1_2_8_34_1) 2015; 3
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 40
  start-page: 327
  year: 2017
  publication-title: Nano Energy
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 3
  year: 2018
  publication-title: ChemistrySelect
– volume: 52
  start-page: 3953
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– year: 2022
  publication-title: Energy Environ. Mater.
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 5976
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 441
  start-page: 265
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 17
  year: 2021
  publication-title: Small
– volume: 3
  start-page: 14
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 36
  start-page: 385
  year: 2006
  publication-title: J. Appl. Electrochem.
– volume: 48
  start-page: 126
  year: 2018
  publication-title: Dianchi
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 4039
  year: 2018
  publication-title: Chem. Mater.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 51
  start-page: 188
  year: 2021
  publication-title: Mater. Today
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 22
  year: 2020
  publication-title: Mater. Today Chem.
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 42
  start-page: 679
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 242
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 8
  start-page: 355
  year: 2015
  publication-title: Nano Res.
– volume: 191
  start-page: 161
  year: 2005
  publication-title: Surf. Coat. Technol.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 161
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 5
  start-page: 3
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 49
  start-page: 5407
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 7047
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 882
  year: 2019
  publication-title: Nat. Energy
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.201300519
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202003055
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemmater.8b00722
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201801328
– ident: e_1_2_8_18_1
  doi: 10.1016/j.apsusc.2018.02.014
– ident: e_1_2_8_6_1
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_8_9_1
  doi: 10.1016/j.nanoen.2019.104373
– ident: e_1_2_8_40_1
  doi: 10.1002/advs.201901316
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nanoen.2017.08.033
– ident: e_1_2_8_44_1
  doi: 10.1002/smll.201703919
– ident: e_1_2_8_13_1
  doi: 10.26599/NRE.2022.9120003
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.201800612
– ident: e_1_2_8_1_1
  doi: 10.1016/j.cej.2022.134897
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201910777
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.8b08963
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_8_30_1
  doi: 10.1016/j.surfcoat.2004.03.045
– volume: 48
  start-page: 126
  year: 2018
  ident: e_1_2_8_47_1
  publication-title: Dianchi
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201504951
– ident: e_1_2_8_4_1
  doi: 10.26599/NRE.2022.9120007
– ident: e_1_2_8_10_1
  doi: 10.1039/C9CS00636B
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_8_29_1
  doi: 10.1007/s10800-005-9082-y
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202210979
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ensm.2021.08.008
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_8_5_1
  doi: 10.1002/slct.201800757
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nanoen.2019.104128
– ident: e_1_2_8_37_1
  doi: 10.1016/j.mattod.2021.07.028
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ceramint.2021.03.062
– ident: e_1_2_8_39_1
  doi: 10.1007/s12274-014-0644-3
– ident: e_1_2_8_27_1
  doi: 10.1016/j.carbpol.2020.116391
– volume: 3
  start-page: 5976
  year: 2015
  ident: e_1_2_8_34_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_8_7_1
  doi: 10.1002/eem2.12368
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201603443
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.202102978
– ident: e_1_2_8_43_1
  doi: 10.1021/acssuschemeng.8b06832
– ident: e_1_2_8_20_1
  doi: 10.1021/acsenergylett.7b00982
– ident: e_1_2_8_22_1
  doi: 10.1016/j.nanoen.2020.104889
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_8_23_1
  doi: 10.26599/NRE.2022.9120023
– volume: 22
  year: 2020
  ident: e_1_2_8_46_1
  publication-title: Mater. Today Chem.
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.0c11867
– ident: e_1_2_8_33_1
  doi: 10.1021/acsaem.1c03333
SSID ssj0031247
Score 2.5331469
Snippet Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206597
SubjectTerms Additives
carbonized polymer dots
Carboxyl group
Controllability
Diffusion rate
electrolyte additives
Electrolytes
Electrolytic cells
Energy storage
Functional groups
Li dendrites
Li metal batteries
Lithium batteries
Nanotechnology
Polymers
Solvation
Title Carbonized Polymer Dots with Controllable N, O Functional Groups as Electrolyte Additives to Achieve Stable Li Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206597
https://www.ncbi.nlm.nih.gov/pubmed/36617512
https://www.proquest.com/docview/2844920153
https://www.proquest.com/docview/2762820509
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQ98NNWqZQ6KVObMkvHZdtlhB209I2kJvRk4Q667L2BpJDf3tH0q6TTSmF9GZjSZblGc03o9EnQt4z5nY_miKWVPM4o-igoJQUcWadvU8rm_vQxeyoODjODk_ykxu7-AM_xBBwc5rh52un4EJ2e9ekod1545YOsPUCQTFOwinL_Trt14E_iqHx8qeroM2KHfHWmrUxoXub1Tet0h9QcxO5etMzeUTEutMh4-TH7rKXu-rqFp_j_3zVY_JwhUthFATpCbln5k_Jgxtshc_Ir7FYSJwCroyGL21zeW4W8KntO3CxXBiHnPfGbcWCo4_wGSZoMkOkEXyEqwPRwX44dqe57A2MtPaZSx30LYzU6Zm5MIDo17UwPYOZQccAAgEo-vPPyfFk__v4IF4d3xArVrIyVlSIxKKHJFmlWSGqTAtVJTZn0paVYCo1WS44FZbTVCOOkJWouJHSIibiuWEvyNa8nZtXBBKR6IILU1nKEN9prpRr1MqsNDwv04jE699XqxW3uTtio6kDKzOt3bjWw7hG5MNQ_mdg9fhryZ21NNQr7e5qNOkZR-SUs4i8Gx6jXrrFFjE37RLLoJVBdIV4LCIvgxQNr2IIikpEWhGhXhb-0Yf622w6He5e36XSNrmP1yxkLu6QrX6xNG8QTfXyrdeY32DmFks
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oVAASMhcSFt1s7Lx9W2qwWyC4JW4hb5KSrSDdpkkdoDv51xvAksCCHBMYntOM6M55vx-DPAc8bc7keThpJqHsYUHRSUkjSMrbP3o9wmXehivkhnJ_Hrj0mfTej2wnh-iCHg5jSjm6-dgruA9MEP1tDmrHJrB9h8iqj4Mlxxi3RONw_fDwxSDM1Xd74KWq3QUW_1vI0RPdiuv22XfgOb29i1Mz7TmyD7bvuck8_761buq4tfGB3_67tuwY0NNCVjL0u34ZJZ3oHrPxEW3oVvE7GSOAtcGE3e1dX5mVmRw7ptiAvnkolPe6_cbiyyeEnekilaTR9sJF2QqyGiIUf-5J3qvDVkrHWXvNSQtiZj9enUfDUEAbBroTglc4O-AfEcoOjS34OT6dHxZBZuTnAIFctYFioqRGTRSZIs1ywVeayFyiObMGmzXDA1MnEiOBWW05FGKCFzkXMjpUVYxBPDdmFnWS_NAyCRiHTKhcktZQjxNFfKNWplnBmeZKMAwv7_lWpDb-5O2ahKT8xMSzeu5TCuAbwYyn_xxB5_LLnXi0O5UfCmRKsecwRPCQvg2fAYVdOtt4ilqddYBg0NAiyEZAHc92I0vIohLsoQbAVAO2H4Sx_KD_OiGK4e_kulp3B1djwvyuLV4s0juIb3mU9k3IOddrU2jxFctfJJpz7fAb6AGmc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BkBA88P0RGHBISLyQLbXz5ceqWzWgLRMwaW-RHdtiImumJkXaHvjbOcdtWEEICR6T2I7j3Pl-dz7_DPCKc7f70aShYlqEMSMHhaQkDWPr7P0gt0kXupjO0oOj-N1xcnxpF7_nh-gDbk4zuvnaKfiZtrs_SUOb08otHVDrKYHiq3AtTsnFcrDoY08gxcl6dcerkNEKHfPWmrYxYrub9TfN0m9YcxO6drZnfBvkutc-5eTrzrJVO-XFL4SO__NZd-DWCpji0EvSXbhi5vfg5iW6wvvwfSQXiuaAC6PxsK7OT80C9-q2QRfMxZFPeq_cXiycvcEPOCab6UON2IW4GpQN7vtzd6rz1uBQ6y51qcG2xmH55cR8M0jw17UwOcGpIc8APQMoOfQP4Gi8_3l0EK7ObwhLnvEsLJmUkSUXSfFc81TmsZZlHtmEK5vlkpcDEydSMGkFG2gCEiqXuTBKWQJFIjH8IWzN67l5DBjJSKdCmtwyTgBPi7J0jVoVZ0Yk2SCAcP37inJFbu7O2KgKT8vMCjeuRT-uAbzuy595Wo8_ltxeS0OxUu-mIJseC4JOCQ_gZf-YFNOttsi5qZdUhswMwSsCZAE88lLUv4oTKsoIagXAOln4Sx-KT9PJpL968i-VXsD1w71xMXk7e_8UbtBt7rMYt2GrXSzNM0JWrXreKc8PVbQZFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Polymer+Dots+with+Controllable+N%2C+O+Functional+Groups+as+Electrolyte+Additives+to+Achieve+Stable+Li+Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Wen%E2%80%90Chen&rft.au=Song%2C+Yi%E2%80%90Han&rft.au=Yang%2C+Guo%E2%80%90Duo&rft.au=Jiao%2C+Rui&rft.date=2023-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202206597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202206597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon