Carbonized Polymer Dots with Controllable N, O Functional Groups as Electrolyte Additives to Achieve Stable Li Metal Batteries
Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 31; pp. e2206597 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202206597 |
Cover
Abstract | Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.
Two kinds of carbonized polymer dots (CPDs) (M‐CPDs and H‐CPDs) as electrolyte additives are successfully designed and synthesized. H‐CPDs with more pyridinic‐N, pyrrolic‐N, and COOH deliver more even Li+ flux through abundant H‐CPDs‐Li clusters bound by strong electrostatic interaction. The symmetrical cell exhibits enhanced cycling stability of 3700 h. |
---|---|
AbstractList | Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li
+
, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐
N
, pyrrolic‐
N
, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li
+
through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li
+
in the electrolyte is formed, which induces faster Li
+
diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li
+
transfer. The corresponding Li//LiFePO
4
full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li in the electrolyte is formed, which induces faster Li diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li transfer. The corresponding Li//LiFePO full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+ , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices.Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+ , carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M-CPDs) and hydrothermal (H-CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic-N, pyrrolic-N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the "tip effect" and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H-CPDs achieve the ultra-even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M-CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the additives are complex synthesis and prone to decompose in cycling. Herein, in order to guide the homogeneous deposition of Li+, carbonized polymer dots (CPDs) as electrolyte additives are successfully designed and synthesized by microwave (M‐CPDs) and hydrothermal (H‐CPDs) approaches. The controllable functional groups containing N or O (especially pyridinic‐N, pyrrolic‐N, and carboxyl group) enable CPDs to keep stable in electrolytes for at least 3 months. Meanwhile, the clusters formed between CPDs and Li+ through electrostatic interaction effectively guide the uniform Li dispersion and limit the “tip effect” and dendrite formation. Moreover, as lithiophilic groups increase, the strong electrostatic interference for the solvation effect of Li+ in the electrolyte is formed, which induces faster Li+ diffusion/transfer. As expected, H‐CPDs achieve the ultra‐even Li+ transfer. The corresponding Li//LiFePO4 full cell delivers a high capacity retention rate of 93.8% after 200 cycles, which is much higher than that of the cells without additives (61.2%) and with M‐CPDs (83.7%) as additives. The strategy in this work provides a theoretical direction for CPDs as electrolyte additives used in energy storage devices. Two kinds of carbonized polymer dots (CPDs) (M‐CPDs and H‐CPDs) as electrolyte additives are successfully designed and synthesized. H‐CPDs with more pyridinic‐N, pyrrolic‐N, and COOH deliver more even Li+ flux through abundant H‐CPDs‐Li clusters bound by strong electrostatic interaction. The symmetrical cell exhibits enhanced cycling stability of 3700 h. |
Author | Jiao, Rui Song, Yi‐Han Yang, Guo‐Duo Zhang, Jia‐Yu Tong, Cui‐Yan Wang, Wen‐Chen Zhang, Jing‐Ping Wu, Xing‐Long Li, Yan‐Fei Sun, Hai‐Zhu |
Author_xml | – sequence: 1 givenname: Wen‐Chen surname: Wang fullname: Wang, Wen‐Chen organization: Northeast Normal University – sequence: 2 givenname: Yi‐Han surname: Song fullname: Song, Yi‐Han organization: Northeast Normal University – sequence: 3 givenname: Guo‐Duo surname: Yang fullname: Yang, Guo‐Duo organization: Northeast Normal University – sequence: 4 givenname: Rui surname: Jiao fullname: Jiao, Rui organization: Northeast Normal University – sequence: 5 givenname: Jia‐Yu surname: Zhang fullname: Zhang, Jia‐Yu organization: Northeast Normal University – sequence: 6 givenname: Xing‐Long surname: Wu fullname: Wu, Xing‐Long organization: Northeast Normal University – sequence: 7 givenname: Jing‐Ping surname: Zhang fullname: Zhang, Jing‐Ping organization: Northeast Normal University – sequence: 8 givenname: Yan‐Fei surname: Li fullname: Li, Yan‐Fei email: liyf766@nenu.edu.cn organization: Ministry of Education – sequence: 9 givenname: Cui‐Yan surname: Tong fullname: Tong, Cui‐Yan email: tongcy959@nenu.edu.cn organization: Northeast Normal University – sequence: 10 givenname: Hai‐Zhu orcidid: 0000-0002-5113-8267 surname: Sun fullname: Sun, Hai‐Zhu email: sunhz335@nenu.edu.cn organization: Northeast Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36617512$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAURkVJaR7ttssi6KaLzlQPW5aWk2mSFpwmkHQtZPmaKMjWVJITpov89ng6eUAgdHXv4pwP7v320c4QBkDoIyVzSgj7lnrv54wwRkSpqjdojwrKZ0IytfO0U7KL9lO6JoRTVlTv0C4XglYlZXvobmliEwb3F1p8Hvy6h4i_h5zwrctXeBmGHIP3pvGAf33FZ_h4HGx2YTAen8QwrhI2CR95sBtunQEv2tZldwMJ54AX9srBDeCL_C-hdvgU8qQempwhOkjv0dvO-AQfHuYB-n18dLn8MavPTn4uF_XM8opXM8uMIZ0SpOGy5cLIojVWkq7kTVdJwy2FojSKmU4x2tKSNdJIBU3TyUKoEvgB-rLNXcXwZ4SUde-ShemyAcKYNKsEk4yURE3o5xfodRjjdPBEyaJQjNCST9SnB2psemj1KrrexLV-_OwEFFvAxpBShE5bl83mdTka5zUlelOg3hSonwqctPkL7TH5VUFthVvnYf0fWl-c1vWzew_oLq5e |
CitedBy_id | crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1002_smll_202312124 crossref_primary_10_1016_j_apsusc_2024_159535 crossref_primary_10_1002_chem_202304152 crossref_primary_10_1016_j_jpowsour_2024_236154 crossref_primary_10_1016_j_jcis_2025_137331 crossref_primary_10_1039_D4TC03007A crossref_primary_10_1002_adom_202403251 crossref_primary_10_1016_j_cej_2024_152087 crossref_primary_10_1016_j_cej_2024_157379 crossref_primary_10_1016_j_jcis_2024_10_019 crossref_primary_10_1016_j_cej_2023_148264 crossref_primary_10_1016_j_jhazmat_2024_134637 |
Cites_doi | 10.1002/anie.201300519 10.1002/anie.201807034 10.1002/adfm.202003055 10.1021/acs.chemmater.8b00722 10.1002/adma.201801328 10.1016/j.apsusc.2018.02.014 10.1038/s41560-019-0474-3 10.1016/j.nanoen.2019.104373 10.1002/advs.201901316 10.1038/s41560-020-0634-5 10.1016/j.nanoen.2017.08.033 10.1002/smll.201703919 10.26599/NRE.2022.9120003 10.1002/smll.201800612 10.1016/j.cej.2022.134897 10.1002/adfm.201910777 10.1021/jacs.8b08963 10.1038/s41467-017-00519-2 10.1016/j.surfcoat.2004.03.045 10.1002/anie.201504951 10.26599/NRE.2022.9120007 10.1039/C9CS00636B 10.1002/adfm.201605989 10.1007/s10800-005-9082-y 10.1002/anie.202210979 10.1016/j.ensm.2021.08.008 10.1016/j.joule.2018.02.001 10.1002/slct.201800757 10.1016/j.ensm.2017.12.002 10.1016/j.nanoen.2019.104128 10.1016/j.mattod.2021.07.028 10.1016/j.ceramint.2021.03.062 10.1007/s12274-014-0644-3 10.1016/j.carbpol.2020.116391 10.1002/eem2.12368 10.1002/adma.201603443 10.1002/smll.202102978 10.1021/acssuschemeng.8b06832 10.1021/acsenergylett.7b00982 10.1016/j.nanoen.2020.104889 10.1002/anie.201702099 10.26599/NRE.2022.9120023 10.1021/acsami.0c11867 10.1021/acsaem.1c03333 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202206597 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36617512 10_1002_smll_202206597 SMLL202206597 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSFC funderid: 22035001; 22275030; 22209023 – fundername: NSFC grantid: 22275030 – fundername: NSFC grantid: 22035001 – fundername: NSFC grantid: 22209023 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 AAYOK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3737-c2aa0f960b38d36a84dac80f53bf78a3c1e45a92af921d152b8a89ebbf84695e3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 10:39:10 EDT 2025 Fri Jul 25 12:05:50 EDT 2025 Wed Feb 19 02:22:42 EST 2025 Wed Oct 01 03:38:48 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Wed Jan 22 16:18:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | carbonized polymer dots functional groups electrolyte additives Li dendrites Li metal batteries |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-c2aa0f960b38d36a84dac80f53bf78a3c1e45a92af921d152b8a89ebbf84695e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5113-8267 |
PMID | 36617512 |
PQID | 2844920153 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2762820509 proquest_journals_2844920153 pubmed_primary_36617512 crossref_citationtrail_10_1002_smll_202206597 crossref_primary_10_1002_smll_202206597 wiley_primary_10_1002_smll_202206597_SMLL202206597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 47 2017; 40 2005; 191 2019; 7 2018; 441 2017; 8 2019; 4 2021; 42 2018; 140 2019; 6 2015; 3 2020; 242 2017; 27 2006; 36 2015; 54 2020; 12 2017; 29 2015; 8 2021; 51 2022; 435 2018; 48 2020; 5 2018; 3 2018; 2 2020; 75 2022 2020; 30 2019; 66 2022; 61 2022; 5 2021; 17 2013; 52 2017; 56 2020; 49 2020; 68 2018; 30 2022; 1 2020; 22 2018; 12 2018; 14 2018; 57 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Li F. (e_1_2_8_47_1) 2018; 48 Shanmugam S. (e_1_2_8_46_1) 2020; 22 Song Y. (e_1_2_8_34_1) 2015; 3 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 40 start-page: 327 year: 2017 publication-title: Nano Energy – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 3 year: 2018 publication-title: ChemistrySelect – volume: 52 start-page: 3953 year: 2013 publication-title: Angew. Chem., Int. Ed. – year: 2022 publication-title: Energy Environ. Mater. – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 8 start-page: 336 year: 2017 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 5976 year: 2015 publication-title: J. Phys. Chem. C – volume: 441 start-page: 265 year: 2018 publication-title: Appl. Surf. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy – volume: 17 year: 2021 publication-title: Small – volume: 3 start-page: 14 year: 2018 publication-title: ACS Energy Lett. – volume: 36 start-page: 385 year: 2006 publication-title: J. Appl. Electrochem. – volume: 48 start-page: 126 year: 2018 publication-title: Dianchi – volume: 66 year: 2019 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 4039 year: 2018 publication-title: Chem. Mater. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 51 start-page: 188 year: 2021 publication-title: Mater. Today – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 22 year: 2020 publication-title: Mater. Today Chem. – volume: 1 year: 2022 publication-title: Nano Res. Energy. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 42 start-page: 679 year: 2021 publication-title: Energy Storage Mater. – volume: 242 year: 2020 publication-title: Carbohydr. Polym. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 8 start-page: 355 year: 2015 publication-title: Nano Res. – volume: 191 start-page: 161 year: 2005 publication-title: Surf. Coat. Technol. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 161 year: 2018 publication-title: Energy Storage Mater. – volume: 5 start-page: 3 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 49 start-page: 5407 year: 2020 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 7047 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 882 year: 2019 publication-title: Nat. Energy – volume: 1 year: 2022 publication-title: Nano Res. Energy – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_31_1 doi: 10.1002/anie.201300519 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201807034 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202003055 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemmater.8b00722 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201801328 – ident: e_1_2_8_18_1 doi: 10.1016/j.apsusc.2018.02.014 – ident: e_1_2_8_6_1 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_8_9_1 doi: 10.1016/j.nanoen.2019.104373 – ident: e_1_2_8_40_1 doi: 10.1002/advs.201901316 – ident: e_1_2_8_8_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_8_32_1 doi: 10.1016/j.nanoen.2017.08.033 – ident: e_1_2_8_44_1 doi: 10.1002/smll.201703919 – ident: e_1_2_8_13_1 doi: 10.26599/NRE.2022.9120003 – ident: e_1_2_8_35_1 doi: 10.1002/smll.201800612 – ident: e_1_2_8_1_1 doi: 10.1016/j.cej.2022.134897 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.201910777 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.8b08963 – ident: e_1_2_8_28_1 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_8_30_1 doi: 10.1016/j.surfcoat.2004.03.045 – volume: 48 start-page: 126 year: 2018 ident: e_1_2_8_47_1 publication-title: Dianchi – ident: e_1_2_8_41_1 doi: 10.1002/anie.201504951 – ident: e_1_2_8_4_1 doi: 10.26599/NRE.2022.9120007 – ident: e_1_2_8_10_1 doi: 10.1039/C9CS00636B – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_8_29_1 doi: 10.1007/s10800-005-9082-y – ident: e_1_2_8_26_1 doi: 10.1002/anie.202210979 – ident: e_1_2_8_24_1 doi: 10.1016/j.ensm.2021.08.008 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_8_5_1 doi: 10.1002/slct.201800757 – ident: e_1_2_8_14_1 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_8_2_1 doi: 10.1016/j.nanoen.2019.104128 – ident: e_1_2_8_37_1 doi: 10.1016/j.mattod.2021.07.028 – ident: e_1_2_8_17_1 doi: 10.1016/j.ceramint.2021.03.062 – ident: e_1_2_8_39_1 doi: 10.1007/s12274-014-0644-3 – ident: e_1_2_8_27_1 doi: 10.1016/j.carbpol.2020.116391 – volume: 3 start-page: 5976 year: 2015 ident: e_1_2_8_34_1 publication-title: J. Phys. Chem. C – ident: e_1_2_8_7_1 doi: 10.1002/eem2.12368 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201603443 – ident: e_1_2_8_38_1 doi: 10.1002/smll.202102978 – ident: e_1_2_8_43_1 doi: 10.1021/acssuschemeng.8b06832 – ident: e_1_2_8_20_1 doi: 10.1021/acsenergylett.7b00982 – ident: e_1_2_8_22_1 doi: 10.1016/j.nanoen.2020.104889 – ident: e_1_2_8_45_1 doi: 10.1002/anie.201702099 – ident: e_1_2_8_23_1 doi: 10.26599/NRE.2022.9120023 – volume: 22 year: 2020 ident: e_1_2_8_46_1 publication-title: Mater. Today Chem. – ident: e_1_2_8_36_1 doi: 10.1021/acsami.0c11867 – ident: e_1_2_8_33_1 doi: 10.1021/acsaem.1c03333 |
SSID | ssj0031247 |
Score | 2.5331469 |
Snippet | Electrolyte additive is an effective strategy to inhibit the uncontrolled growth of Li dendrites for lithium metal batteries (LMBs). However, most of the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206597 |
SubjectTerms | Additives carbonized polymer dots Carboxyl group Controllability Diffusion rate electrolyte additives Electrolytes Electrolytic cells Energy storage Functional groups Li dendrites Li metal batteries Lithium batteries Nanotechnology Polymers Solvation |
Title | Carbonized Polymer Dots with Controllable N, O Functional Groups as Electrolyte Additives to Achieve Stable Li Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202206597 https://www.ncbi.nlm.nih.gov/pubmed/36617512 https://www.proquest.com/docview/2844920153 https://www.proquest.com/docview/2762820509 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQ98NNWqZQ6KVObMkvHZdtlhB209I2kJvRk4Q667L2BpJDf3tH0q6TTSmF9GZjSZblGc03o9EnQt4z5nY_miKWVPM4o-igoJQUcWadvU8rm_vQxeyoODjODk_ykxu7-AM_xBBwc5rh52un4EJ2e9ekod1545YOsPUCQTFOwinL_Trt14E_iqHx8qeroM2KHfHWmrUxoXub1Tet0h9QcxO5etMzeUTEutMh4-TH7rKXu-rqFp_j_3zVY_JwhUthFATpCbln5k_Jgxtshc_Ir7FYSJwCroyGL21zeW4W8KntO3CxXBiHnPfGbcWCo4_wGSZoMkOkEXyEqwPRwX44dqe57A2MtPaZSx30LYzU6Zm5MIDo17UwPYOZQccAAgEo-vPPyfFk__v4IF4d3xArVrIyVlSIxKKHJFmlWSGqTAtVJTZn0paVYCo1WS44FZbTVCOOkJWouJHSIibiuWEvyNa8nZtXBBKR6IILU1nKEN9prpRr1MqsNDwv04jE699XqxW3uTtio6kDKzOt3bjWw7hG5MNQ_mdg9fhryZ21NNQr7e5qNOkZR-SUs4i8Gx6jXrrFFjE37RLLoJVBdIV4LCIvgxQNr2IIikpEWhGhXhb-0Yf622w6He5e36XSNrmP1yxkLu6QrX6xNG8QTfXyrdeY32DmFks |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3oVAASMhcSFt1s7Lx9W2qwWyC4JW4hb5KSrSDdpkkdoDv51xvAksCCHBMYntOM6M55vx-DPAc8bc7keThpJqHsYUHRSUkjSMrbP3o9wmXehivkhnJ_Hrj0mfTej2wnh-iCHg5jSjm6-dgruA9MEP1tDmrHJrB9h8iqj4Mlxxi3RONw_fDwxSDM1Xd74KWq3QUW_1vI0RPdiuv22XfgOb29i1Mz7TmyD7bvuck8_761buq4tfGB3_67tuwY0NNCVjL0u34ZJZ3oHrPxEW3oVvE7GSOAtcGE3e1dX5mVmRw7ptiAvnkolPe6_cbiyyeEnekilaTR9sJF2QqyGiIUf-5J3qvDVkrHWXvNSQtiZj9enUfDUEAbBroTglc4O-AfEcoOjS34OT6dHxZBZuTnAIFctYFioqRGTRSZIs1ywVeayFyiObMGmzXDA1MnEiOBWW05FGKCFzkXMjpUVYxBPDdmFnWS_NAyCRiHTKhcktZQjxNFfKNWplnBmeZKMAwv7_lWpDb-5O2ahKT8xMSzeu5TCuAbwYyn_xxB5_LLnXi0O5UfCmRKsecwRPCQvg2fAYVdOtt4ilqddYBg0NAiyEZAHc92I0vIohLsoQbAVAO2H4Sx_KD_OiGK4e_kulp3B1djwvyuLV4s0juIb3mU9k3IOddrU2jxFctfJJpz7fAb6AGmc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BkBA88P0RGHBISLyQLbXz5ceqWzWgLRMwaW-RHdtiImumJkXaHvjbOcdtWEEICR6T2I7j3Pl-dz7_DPCKc7f70aShYlqEMSMHhaQkDWPr7P0gt0kXupjO0oOj-N1xcnxpF7_nh-gDbk4zuvnaKfiZtrs_SUOb08otHVDrKYHiq3AtTsnFcrDoY08gxcl6dcerkNEKHfPWmrYxYrub9TfN0m9YcxO6drZnfBvkutc-5eTrzrJVO-XFL4SO__NZd-DWCpji0EvSXbhi5vfg5iW6wvvwfSQXiuaAC6PxsK7OT80C9-q2QRfMxZFPeq_cXiycvcEPOCab6UON2IW4GpQN7vtzd6rz1uBQ6y51qcG2xmH55cR8M0jw17UwOcGpIc8APQMoOfQP4Gi8_3l0EK7ObwhLnvEsLJmUkSUXSfFc81TmsZZlHtmEK5vlkpcDEydSMGkFG2gCEiqXuTBKWQJFIjH8IWzN67l5DBjJSKdCmtwyTgBPi7J0jVoVZ0Yk2SCAcP37inJFbu7O2KgKT8vMCjeuRT-uAbzuy595Wo8_ltxeS0OxUu-mIJseC4JOCQ_gZf-YFNOttsi5qZdUhswMwSsCZAE88lLUv4oTKsoIagXAOln4Sx-KT9PJpL968i-VXsD1w71xMXk7e_8UbtBt7rMYt2GrXSzNM0JWrXreKc8PVbQZFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized+Polymer+Dots+with+Controllable+N%2C+O+Functional+Groups+as+Electrolyte+Additives+to+Achieve+Stable+Li+Metal+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Wen%E2%80%90Chen&rft.au=Song%2C+Yi%E2%80%90Han&rft.au=Yang%2C+Guo%E2%80%90Duo&rft.au=Jiao%2C+Rui&rft.date=2023-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202206597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202206597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |