Visible‐Light‐Switchable Tellurium‐Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis

Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐tria...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 5; pp. e202212707 - n/a
Main Authors Duan, Hong‐Ying, Han, Shi‐Tao, Zhan, Tian‐Guang, Liu, Li‐Juan, Zhang, Kang‐Da
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 26.01.2023
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202212707

Cover

Abstract Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide ion in a Friedel–Crafts alkylation benchmark reaction. A visible‐light‐switchable telluro‐triazolium‐based chalcogen bonding receptor has been constructed in which the Te moieties are connected by azobenzene cores. The receptor shows photocontrolled halide anion binding and acts as a photocontrolled organocatalyst for chalcogen‐bonding‐assisted halide anion ion in a Friedel–Crafts reaction.
AbstractList Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl-, Br-) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl − , Br − ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis ‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans ‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide abstraction in a Friedel–Crafts alkylation benchmark reaction.
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide ion in a Friedel–Crafts alkylation benchmark reaction. A visible‐light‐switchable telluro‐triazolium‐based chalcogen bonding receptor has been constructed in which the Te moieties are connected by azobenzene cores. The receptor shows photocontrolled halide anion binding and acts as a photocontrolled organocatalyst for chalcogen‐bonding‐assisted halide anion ion in a Friedel–Crafts reaction.
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide abstraction in a Friedel–Crafts alkylation benchmark reaction.
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl , Br ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Author Liu, Li‐Juan
Han, Shi‐Tao
Zhang, Kang‐Da
Duan, Hong‐Ying
Zhan, Tian‐Guang
Author_xml – sequence: 1
  givenname: Hong‐Ying
  surname: Duan
  fullname: Duan, Hong‐Ying
  organization: Zhejiang Normal University
– sequence: 2
  givenname: Shi‐Tao
  surname: Han
  fullname: Han, Shi‐Tao
  email: Shitao_Han@163.com
  organization: Zhejiang Normal University
– sequence: 3
  givenname: Tian‐Guang
  surname: Zhan
  fullname: Zhan, Tian‐Guang
  organization: Zhejiang Normal University
– sequence: 4
  givenname: Li‐Juan
  surname: Liu
  fullname: Liu, Li‐Juan
  organization: Zhejiang Normal University
– sequence: 5
  givenname: Kang‐Da
  orcidid: 0000-0002-9183-8364
  surname: Zhang
  fullname: Zhang, Kang‐Da
  email: Kangda.Zhang@zjnu.cn
  organization: Zhejiang Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36383643$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URD_gyhGtxAUJbeqvXTvc0lUplSKKROFqeb3exJVjl7VXVU7wE_iN_JJOSFKkSghOM5p5Xs_41RyjgxCDReglwROCMT3VwdkJxZQSKrB4go5IRUnJhGAHkHPGSiErcoiOU7oBXkpcP0OHrGaS1Zwdoe9fXXKtt79-_Jy7xTJD_HznsllqKBbX1vtxcOMKymc62a5oltqbuLChOIuhc2Hxrvi0jDmaGPIQvQdkFlyEtvvdLnTYV2ZtyoM2eZM3Omu_Ti49R0977ZN9sYsn6Mv78-vmQzm_urhsZvPSMMFESad1zzmlvDbcCKGNpFUvhcCMSGo6qqtKyFZ0WrOusrzVtMO0F0xqKWXFDTtBb7bv3g7x22hTViuXDHxPBxvHpChM4TXnsgL09SP0Jo5DgO2AquspGI05UK921NiubKduB7fSw1rtrQVAboE728Y-GWeDsQ8YxniKgeUSMkwal_XGmCaOIYP07f9LgeZb2gwxpcH2yuxeA7udVwSrzamozamoh1MB2eSRbD_gr4Lpbivn7foftJp9vDz_o70H0GDRqg
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00039
crossref_primary_10_1002_cctc_202401683
crossref_primary_10_1002_chem_202303089
crossref_primary_10_1021_acs_macromol_4c00325
crossref_primary_10_1360_SSC_2023_0147
crossref_primary_10_1021_acs_inorgchem_4c01077
crossref_primary_10_1038_s41467_024_52855_9
crossref_primary_10_1002_adsc_202401105
crossref_primary_10_1002_ange_202314510
crossref_primary_10_1002_chem_202302755
crossref_primary_10_1002_anie_202314510
crossref_primary_10_1039_D4QO01334D
crossref_primary_10_1021_jacs_4c01138
crossref_primary_10_1002_anie_202302859
crossref_primary_10_1002_ange_202302859
crossref_primary_10_1002_anie_202404823
crossref_primary_10_1002_ange_202404823
crossref_primary_10_1038_s41467_023_43013_8
crossref_primary_10_1039_D4QO02069C
crossref_primary_10_1002_chem_202401650
Cites_doi 10.1002/adma.201905966
10.1002/ange.201809432
10.1002/anie.202001125
10.1002/adma.201905866
10.1002/ange.201814441
10.1002/anie.202007314
10.1016/j.ccr.2020.213243
10.1021/acs.joc.0c00723
10.1002/anie.202108591
10.1002/ange.202202137
10.1039/D0SC04417B
10.1038/s41570-021-00338-6
10.1002/anie.202101140
10.1002/anie.202007693
10.1021/jacs.7b08511
10.1021/jacs.1c04482
10.1038/s41467-022-31293-5
10.1021/jacs.9b12610
10.1016/j.cclet.2021.09.089
10.1002/ange.201106996
10.1002/ange.202001125
10.1021/jacs.2c05333
10.1002/ange.201611019
10.1002/anie.201809432
10.1002/anie.202202137
10.1016/j.chempr.2018.02.022
10.1002/ange.201812095
10.1002/ange.202108591
10.1039/C7DT01685A
10.1016/j.cclet.2022.06.062
10.1039/D2SC01800D
10.1039/C1CS15179G
10.1002/anie.201906761
10.1002/ange.201914421
10.1021/jacs.8b04569
10.1002/anie.202102448
10.1021/ja0032475
10.1002/ange.202007693
10.1021/jacs.2c02924
10.1002/anie.201704816
10.1002/ange.201910639
10.1002/ange.201801452
10.1002/chem.201601844
10.1021/acs.chemrev.5b00484
10.1021/cr5006342
10.1002/anie.201611019
10.1021/cr60255a003
10.1021/acs.accounts.9b00037
10.1039/D0SC06141G
10.1002/anie.202107748
10.1002/anie.201812095
10.1021/acs.chemrev.7b00449
10.1002/ange.201906761
10.1002/anie.201910639
10.1002/anie.201914421
10.1002/ange.202102838
10.1039/D2QO00684G
10.1021/ja512183e
10.1039/C8QO01157E
10.1039/C0CC02339F
10.1002/anie.201801452
10.1038/ncomms2198
10.1021/jacs.6b05779
10.1002/anie.202005374
10.1021/jacs.9b00148
10.1002/ange.202107748
10.1002/anie.201814441
10.1002/ange.202007314
10.1002/anie.202116071
10.1039/D1SC03308E
10.1002/ange.201704816
10.1038/ncomms11299
10.1021/jacs.0c01290
10.1002/anie.202102838
10.1002/ange.202102448
10.1002/ajoc.202000501
10.1002/ange.202101140
10.1021/acscatal.1c03622
10.1021/acs.chemrev.9b00279
10.1002/adma.202007290
10.1002/ange.202116071
10.1021/jacs.9b03806
10.1021/acs.chemrev.9b00291
10.1039/9781847557575
10.1039/D0SC02872J
10.1002/ejoc.202000660
10.1002/anie.201106996
10.1002/ange.202005374
10.1016/j.ccr.2006.04.009
10.1039/c7dt01685a
10.1039/c0cc02339f
10.1039/d1sc03308e
10.1039/c1cs15179g
10.1039/d0sc02872j
10.1039/d0sc06141g
10.1039/c8qo01157e
10.1039/d2qo00684g
10.1039/d2sc01800d
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
17B
1KM
BLEPL
BNZSX
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202212707
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Web of Science
CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36383643
000903634800001
10_1002_anie_202212707
ANIE202212707
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22071220
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LR22B020001
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
– fundername: Natural Science Foundation of Zhejiang Province
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR22B020001
– fundername: National Natural Science Foundation of China
  grantid: 22071220
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3737-296f442246c4c77ac825f87703182cd2a5578b7daa3d5e4ba2d02f738a88854c3
IEDL.DBID DR2
ISICitedReferencesCount 3
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000903634800001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:44:29 EDT 2025
Fri Jul 25 11:56:04 EDT 2025
Thu Apr 03 07:08:53 EDT 2025
Wed Jul 09 18:40:34 EDT 2025
Fri Sep 26 20:09:16 EDT 2025
Wed Oct 01 02:27:57 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 16:18:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Anion Binding
Chalcogen Bonding
TRANSPORT
Supramolecular Catalysis
Photoswitch
Azobenzene
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3737-296f442246c4c77ac825f87703182cd2a5578b7daa3d5e4ba2d02f738a88854c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9183-8364
PMID 36383643
PQID 2766927004
PQPubID 946352
PageCount 8
ParticipantIDs proquest_journals_2766927004
proquest_miscellaneous_2737464485
webofscience_primary_000903634800001CitationCount
pubmed_primary_36383643
webofscience_primary_000903634800001
crossref_primary_10_1002_anie_202212707
wiley_primary_10_1002_anie_202212707_ANIE202212707
crossref_citationtrail_10_1002_anie_202212707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 26, 2023
PublicationDateYYYYMMDD 2023-01-26
PublicationDate_xml – month: 01
  year: 2023
  text: January 26, 2023
  day: 26
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1968; 68
2001; 123
2018; 140
2019; 6
2019; 52
2020; 85
2020; 142
2020; 120
2017; 46
2020 2020; 59 132
2007
2020; 11
2020; 32
2017 2017; 56 129
2021; 143
2019; 141
2019 2019; 58 131
2017; 139
2022; 144
2016; 7
2022 2022; 61 134
2021; 10
2012; 3
2021; 12
2021; 11
2021; 33
2018; 4
2015; 137
2015; 115
2022
2018; 118
2020
2022; 6
2012 2012; 51 124
2018 2018; 57 130
2022; 9
2020; 413
2022; 13
2021 2021; 60 133
2019; 119
2016; 116
2016; 138
2022; 33
2011; 47
2012; 41
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_62_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
(e_1_2_7_59_2) 2022; 134
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
(e_1_2_7_29_2) 2022; 134
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_57_2
e_1_2_7_38_1
BENT, HA (WOS:A1968B839800003) 1968; 68
Cavallo, G (WOS:000371106000018) 2016; 116
Chen, L (WOS:000435525500008) 2018; 140
Romito, D (WOS:000788386900001) 2022; 61
You, LY (WOS:000299946400029) 2012; 51
(000903634800001.80) 2019; 131
Baroncini, M (WOS:000507144600006) 2020; 120
(000903634800001.20) 2019; 131
(000903634800001.7) 2019; 131
Kong, XJ (000903634800001.22) 2021; 133
Lim, JYC (WOS:000430591500010) 2018; 4
Biot, N (WOS:000525870000011) 2020; 413
Mehrparvar, S (WOS:000563879300001) 2020; 59
Bozovic, O (WOS:000727754500001) 2022; 6
Yuan, L (WOS:000789375500055) 2022; 33
Rahman, FU (WOS:000526393100052) 2020; 142
(000903634800001.15) 2012; 124
Garrett, GE (WOS:000352244800026) 2015; 137
Gong, G (000903634800001.18) 2021; 133
(000903634800001.82) 2021; 133
Jia, SP (WOS:000809068300001) 2022; 9
Tian, F (WOS:000315992100042) 2012; 3
Riwar, LJ (000903634800001.32) 2018; 130
Docker, A (WOS:000677213500001) 2021; 60
Kolb, S (WOS:000572133000001) 2020; 59
(000903634800001.42) 2021; 133
Riwar, LJ (WOS:000454575500058) 2018; 57
Herder, M (WOS:000285068300107) 2011; 47
(000903634800001.62) 2021; 133
Wang, CX (WOS:000647992500001) 2021; 60
Gleiter, R (WOS:000426614700014) 2018; 118
Romito, D (000903634800001.39) 2022; 134
Benz, S (WOS:000431035500039) 2018; 57
Zeng, RJ (WOS:000547450900011) 2020; 85
Mehrparvar, S (000903634800001.37) 2020; 132
Yin, YF (WOS:000478908300001) 2019; 58
LU, Y (000903634800001.77) 2022; 134
Yang, ZY (WOS:000596784500001) 2021; 10
Cheng, HB (WOS:000653197400001) 2021; 33
Docker, A (WOS:000849831900001) 2022; 144
Benz, S (WOS:000394996900024) 2017; 56
Bian, T (WOS:000495466100001) 2020; 32
Benz (000903634800001.66) 2018; 130
Borissov, A (WOS:000460996500051) 2019; 141
Ho, PC (WOS:000374291700001) 2016; 7
Qu, DH (WOS:000359613600010) 2015; 115
Breugst, M (WOS:000563836500001) 2020; 2020
Bandara, HMD (WOS:000300177100012) 2012; 41
WONNER, P (000903634800001.64) 2017; 129
Zhou, BY (WOS:000550969100025) 2020; 11
Goulet-Hanssens, A (WOS:000508912600001) 2020; 32
Chen, SY (WOS:000621034500001) 2021; 60
(000903634800001.26) 2020; 132
Lu, Y (WOS:000756148100001) 2022; 61
Scilabra, P (WOS:000469304100019) 2019; 52
Benz, S (WOS:000380730000026) 2016; 138
Yong (000903634800001.74) 2020; 132
Young, CM (WOS:000510497500001) 2020; 59
Bulfield, D (WOS:000384698500001) 2016; 22
Hein, R (WOS:000799832100001) 2022; 13
(WOS:000269345800026) 2007
Zhu, HF (WOS:000814810600006) 2022; 13
Wang, W (WOS:000514255300050) 2020; 142
Wei, L (WOS:000617028900018) 2021; 12
(000903634800001.69) 2017; 129
Kortekaas, L (WOS:000678739300001) 2021; 12
Goodman, A (WOS:000169534000054) 2001; 123
Gong, GF (WOS:000654745400001) 2021; 60
Nguyen, BT (WOS:000242760900013) 2006; 250
Pascoe, DJ (WOS:000414115800051) 2017; 139
Wang, W (WOS:000475540800012) 2019; 141
Xu, WC (WOS:000476615900004) 2019; 58
Vogel, L (WOS:000458828000003) 2019; 58
He, XX (WOS:000709692900019) 2021; 11
Docker, A (WOS:000691392900001) 2021; 60
Zhou, BY (WOS:000664300200019) 2021; 143
Kolb, S (000903634800001.12) 2020; 132
Han, ST (WOS:000950216900001) 2023; 34
Wonner, P (WOS:000410810600064) 2017; 56
Mahmudov, KT (WOS:000408696100001) 2017; 46
Bunchuay, T (WOS:000531690600001) 2020; 59
Wonner, P (WOS:000494188400001) 2019; 58
Strakova, K (WOS:000490359300005) 2019; 119
Yin, YF (000903634800001.54) 2019; 131
Hein, R (WOS:000804699500048) 2022; 144
Wei, J (WOS:000458518400011) 2019; 6
Kong, XJ (WOS:000627476900001) 2021; 60
References_xml – volume: 57 130
  start-page: 5408 5506
  year: 2018 2018
  end-page: 5412 5510
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 21973 22144
  year: 2021 2021
  end-page: 21978 22149
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 9712 9814
  year: 2019 2019
  end-page: 9740 9843
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 2010
  year: 2018
  end-page: 2041
  publication-title: Chem. Rev.
– volume: 56 129
  start-page: 812 830
  year: 2017 2017
  end-page: 815 833
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 9175
  year: 2019
  end-page: 9179
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 587
  year: 1968
  end-page: 648
  publication-title: Chem. Rev.
– volume: 138
  start-page: 9093
  year: 2016
  end-page: 9096
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 14836 14962
  year: 2021 2021
  end-page: 14840 14966
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 123
  start-page: 6213
  year: 2001
  end-page: 6214
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1762
  year: 2021
  end-page: 1771
  publication-title: Chem. Sci.
– volume: 11
  start-page: 7495
  year: 2020
  end-page: 7500
  publication-title: Chem. Sci.
– volume: 144
  start-page: 8827
  year: 2022
  end-page: 8836
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 3117
  year: 2020
  end-page: 3124
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 7098
  year: 2022
  end-page: 7125
  publication-title: Chem. Sci.
– volume: 57 130
  start-page: 17259 17506
  year: 2018 2018
  end-page: 17264 17512
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 115
  start-page: 7543
  year: 2015
  end-page: 7588
  publication-title: Chem. Rev.
– volume: 11
  start-page: 12632
  year: 2021
  end-page: 12642
  publication-title: ACS Catal.
– volume: 119
  start-page: 10977
  year: 2019
  end-page: 11005
  publication-title: Chem. Rev.
– volume: 6
  start-page: 112
  year: 2022
  end-page: 124
  publication-title: Nat. Chem. Rev.
– volume: 41
  start-page: 1809
  year: 2012
  end-page: 1825
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 11338
  year: 2021
  end-page: 11346
  publication-title: Chem. Sci.
– volume: 85
  start-page: 8397
  year: 2020
  end-page: 8404
  publication-title: J. Org. Chem.
– volume: 143
  start-page: 8625
  year: 2021
  end-page: 8630
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 9395 9481
  year: 2021 2021
  end-page: 9400 9486
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 1313
  year: 2019
  end-page: 1324
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 3966
  year: 2022
  end-page: 3975
  publication-title: Org. Chem. Front.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3563
  year: 2022
  publication-title: Nat. Commun.
– volume: 139
  start-page: 15160
  year: 2017
  end-page: 15167
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 1657 1689
  year: 2012 2012
  end-page: 1661 1693
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 5876
  year: 2020
  end-page: 5883
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 2026
  year: 2022
  end-page: 2033
  publication-title: Chin. Chem. Lett.
– volume: 413
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 144
  start-page: 14778
  year: 2022
  end-page: 14789
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 74
  year: 2021
  end-page: 90
  publication-title: Asian J. Org. Chem.
– volume: 22
  start-page: 14434
  year: 2016
  end-page: 14450
  publication-title: Chem. Eur. J.
– year: 2007
– volume: 58 131
  start-page: 16923 17079
  year: 2019 2019
  end-page: 16927 17083
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 2478
  year: 2016
  end-page: 2601
  publication-title: Chem. Rev.
– volume: 137
  start-page: 4126
  year: 2015
  end-page: 4133
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 498
  year: 2019
  end-page: 505
  publication-title: Org. Chem. Front.
– volume: 59 132
  start-page: 17154 17303
  year: 2020 2020
  end-page: 17161 17311
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 10107
  year: 2020
  end-page: 10112
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 12705 12835
  year: 2019 2019
  end-page: 12710 12840
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 460
  year: 2011
  end-page: 462
  publication-title: Chem. Commun.
– volume: 60 133
  start-page: 14831 14957
  year: 2021 2021
  end-page: 14835 14961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 7079
  year: 2018
  end-page: 7082
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1207
  year: 2012
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 19442 19591
  year: 2021 2021
  end-page: 19450 19599
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 12009 12172
  year: 2017 2017
  end-page: 12012 12176
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 11604 11708
  year: 2021 2021
  end-page: 11627 11731
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 731
  year: 2018
  end-page: 783
  publication-title: Chem
– volume: 141
  start-page: 4119
  year: 2019
  end-page: 4129
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 120
  start-page: 200
  year: 2020
  end-page: 268
  publication-title: Chem. Rev.
– start-page: 5473
  year: 2020
  end-page: 5487
  publication-title: Eur. J. Org. Chem.
– volume: 7
  start-page: 11299
  year: 2016
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 1880 1896
  year: 2019 2019
  end-page: 1891 1907
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 59 132
  start-page: 12007 12105
  year: 2020 2020
  end-page: 12012 12110
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 3705 3734
  year: 2020 2020
  end-page: 3710 3739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 10121
  year: 2017
  end-page: 10138
  publication-title: Dalton Trans.
– volume: 59 132
  start-page: 22306 22490
  year: 2020 2020
  end-page: 22310 22495
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201905966
– ident: e_1_2_7_6_2
  doi: 10.1002/ange.201809432
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.202001125
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201905866
– ident: e_1_2_7_61_2
  doi: 10.1002/ange.201814441
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202007314
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ccr.2020.213243
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.joc.0c00723
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202108591
– volume: 134
  start-page: e202202137
  year: 2022
  ident: e_1_2_7_29_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202202137
– ident: e_1_2_7_34_1
  doi: 10.1039/D0SC04417B
– ident: e_1_2_7_64_1
  doi: 10.1038/s41570-021-00338-6
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202101140
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202007693
– ident: e_1_2_7_3_1
  doi: 10.1021/jacs.7b08511
– ident: e_1_2_7_52_1
  doi: 10.1021/jacs.1c04482
– ident: e_1_2_7_56_1
  doi: 10.1038/s41467-022-31293-5
– ident: e_1_2_7_58_1
  doi: 10.1021/jacs.9b12610
– ident: e_1_2_7_21_1
  doi: 10.1016/j.cclet.2021.09.089
– ident: e_1_2_7_12_2
  doi: 10.1002/ange.201106996
– ident: e_1_2_7_19_2
  doi: 10.1002/ange.202001125
– ident: e_1_2_7_22_1
  doi: 10.1021/jacs.2c05333
– ident: e_1_2_7_53_2
  doi: 10.1002/ange.201611019
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201809432
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.202202137
– ident: e_1_2_7_66_1
  doi: 10.1016/j.chempr.2018.02.022
– ident: e_1_2_7_24_2
  doi: 10.1002/ange.201812095
– ident: e_1_2_7_31_2
  doi: 10.1002/ange.202108591
– ident: e_1_2_7_4_1
  doi: 10.1039/C7DT01685A
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cclet.2022.06.062
– ident: e_1_2_7_11_1
  doi: 10.1039/D2SC01800D
– ident: e_1_2_7_60_1
  doi: 10.1039/C1CS15179G
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201906761
– ident: e_1_2_7_57_2
  doi: 10.1002/ange.201914421
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.8b04569
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202102448
– ident: e_1_2_7_36_1
  doi: 10.1021/ja0032475
– ident: e_1_2_7_48_2
  doi: 10.1002/ange.202007693
– ident: e_1_2_7_35_1
  doi: 10.1021/jacs.2c02924
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201704816
– ident: e_1_2_7_15_2
  doi: 10.1002/ange.201910639
– ident: e_1_2_7_51_2
  doi: 10.1002/ange.201801452
– ident: e_1_2_7_65_1
  doi: 10.1002/chem.201601844
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemrev.5b00484
– ident: e_1_2_7_41_1
  doi: 10.1021/cr5006342
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.201611019
– ident: e_1_2_7_1_1
  doi: 10.1021/cr60255a003
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.accounts.9b00037
– ident: e_1_2_7_38_1
  doi: 10.1039/D0SC06141G
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.202107748
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.201812095
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.7b00449
– ident: e_1_2_7_42_2
  doi: 10.1002/ange.201906761
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201910639
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.201914421
– ident: e_1_2_7_62_2
  doi: 10.1002/ange.202102838
– ident: e_1_2_7_32_1
  doi: 10.1039/D2QO00684G
– ident: e_1_2_7_30_1
  doi: 10.1021/ja512183e
– ident: e_1_2_7_43_1
  doi: 10.1039/C8QO01157E
– ident: e_1_2_7_37_1
  doi: 10.1039/C0CC02339F
– ident: e_1_2_7_51_1
  doi: 10.1002/anie.201801452
– ident: e_1_2_7_40_1
  doi: 10.1038/ncomms2198
– ident: e_1_2_7_20_1
  doi: 10.1021/jacs.6b05779
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202005374
– ident: e_1_2_7_18_1
  doi: 10.1021/jacs.9b00148
– ident: e_1_2_7_49_2
  doi: 10.1002/ange.202107748
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201814441
– ident: e_1_2_7_10_2
  doi: 10.1002/ange.202007314
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.202116071
– ident: e_1_2_7_67_1
  doi: 10.1039/D1SC03308E
– ident: e_1_2_7_50_2
  doi: 10.1002/ange.201704816
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms11299
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.0c01290
– ident: e_1_2_7_62_1
  doi: 10.1002/anie.202102838
– ident: e_1_2_7_14_2
  doi: 10.1002/ange.202102448
– ident: e_1_2_7_44_1
  doi: 10.1002/ajoc.202000501
– ident: e_1_2_7_16_2
  doi: 10.1002/ange.202101140
– ident: e_1_2_7_55_1
  doi: 10.1021/acscatal.1c03622
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.chemrev.9b00279
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.202007290
– volume: 134
  start-page: e202116071
  year: 2022
  ident: e_1_2_7_59_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202116071
– ident: e_1_2_7_54_1
  doi: 10.1021/jacs.9b03806
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.chemrev.9b00291
– ident: e_1_2_7_2_1
  doi: 10.1039/9781847557575
– ident: e_1_2_7_33_1
  doi: 10.1039/D0SC02872J
– ident: e_1_2_7_8_1
  doi: 10.1002/ejoc.202000660
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.201106996
– ident: e_1_2_7_28_2
  doi: 10.1002/ange.202005374
– volume: 134
  year: 2022
  ident: 000903634800001.39
  publication-title: Angew. Chem
– volume: 59
  start-page: 22306
  year: 2020
  ident: WOS:000572133000001
  article-title: Chemistry Evolves, Terms Evolve, but Phenomena Do Not Evolve: From Chalcogen-Chalcogen Interactions to Chalcogen Bonding
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007314
– volume: 6
  start-page: 112
  year: 2022
  ident: WOS:000727754500001
  article-title: Using azobenzene photocontrol to set proteins in motion
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-021-00338-6
– volume: 133
  start-page: 9481
  year: 2021
  ident: 000903634800001.22
  publication-title: Angew. Chem
– volume: 10
  start-page: 74
  year: 2021
  ident: WOS:000596784500001
  article-title: Recent Advances of Photoresponsive Supramolecular Switches
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.202000501
– volume: 131
  start-page: 12835
  year: 2019
  ident: 000903634800001.54
  publication-title: Angew. Chem
– volume: 132
  start-page: 3734
  year: 2020
  ident: 000903634800001.74
  publication-title: Angew. Chem
– volume: 250
  start-page: 3118
  year: 2006
  ident: WOS:000242760900013
  article-title: Indicator-displacement assays
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2006.04.009
– volume: 118
  start-page: 2010
  year: 2018
  ident: WOS:000426614700014
  article-title: From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00449
– volume: 133
  start-page: 22144
  year: 2021
  ident: 000903634800001.42
  publication-title: Angew. Chem
– volume: 142
  start-page: 5876
  year: 2020
  ident: WOS:000526393100052
  article-title: Chalcogen Bonding and Hydrophobic Effects Force Molecules into Small Spaces
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c01290
– volume: 46
  start-page: 10121
  year: 2017
  ident: WOS:000408696100001
  article-title: Chalcogen bonding in synthesis, catalysis and design of materials
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c7dt01685a
– volume: 141
  start-page: 9175
  year: 2019
  ident: WOS:000475540800012
  article-title: Chalcogen-Chalcogen Bonding Catalysis Enables Assembly of Discrete Molecules
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b03806
– volume: 33
  start-page: ARTN 2007290
  year: 2021
  ident: WOS:000653197400001
  article-title: Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202007290
– volume: 22
  start-page: 14434
  year: 2016
  ident: WOS:000384698500001
  article-title: Halogen Bonding in Organic Synthesis and Organocatalysis
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201601844
– volume: 59
  start-page: 12007
  year: 2020
  ident: WOS:000531690600001
  article-title: Chalcogen Bond Mediated Enhancement of Cooperative Ion-Pair Recognition
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202001125
– volume: 51
  start-page: 1657
  year: 2012
  ident: WOS:000299946400029
  article-title: C?H•••O Hydrogen Bonding Induced Triazole Foldamers: Efficient Halogen Bonding Receptors for Organohalogens
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201106996
– volume: 132
  start-page: 22490
  year: 2020
  ident: 000903634800001.12
  publication-title: Angew. Chem
– volume: 47
  start-page: 460
  year: 2011
  ident: WOS:000285068300107
  article-title: Photoswitchable triple hydrogen-bonding motif
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c0cc02339f
– volume: 7
  start-page: ARTN 11299
  year: 2016
  ident: WOS:000374291700001
  article-title: Supramolecular macrocycles reversibly assembled by Te•••O chalcogen bonding
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms11299
– volume: 13
  start-page: ARTN 3563
  year: 2022
  ident: WOS:000814810600006
  article-title: Cooperative chalcogen bonding interactions in confined sites activate aziridines
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-31293-5
– volume: 137
  start-page: 4126
  year: 2015
  ident: WOS:000352244800026
  article-title: Chalcogen Bonding in Solution: Interactions of Benzotelluradiazoles with Anionic and Uncharged Lewis Bases
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja512183e
– volume: 129
  start-page: 12172
  year: 2017
  ident: 000903634800001.64
  publication-title: Angew. Chem
– start-page: 1
  year: 2007
  ident: WOS:000269345800026
  article-title: Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium
  publication-title: HANDBOOK OF CHALCOGEN CHEMISTRY: NEW PERSPECTIVES IN SULFUR, SELENIUM AND TELLURIUM
  doi: 10.1039/9781847557575
– volume: 12
  start-page: 11338
  year: 2021
  ident: WOS:000678739300001
  article-title: Acid-catalysed liquid-to-solid transitioning of arylazoisoxazole photoswitches
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d1sc03308e
– volume: 33
  start-page: 2026
  year: 2022
  ident: WOS:000789375500055
  article-title: A highly active and selective chalcogen bond-mediated perchlorate channel
  publication-title: CHINESE CHEMICAL LETTERS
  doi: 10.1016/j.cclet.2021.09.089
– volume: 85
  start-page: 8397
  year: 2020
  ident: WOS:000547450900011
  article-title: Chalcogen-Bonding Supramolecular Polymers
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.0c00723
– volume: 413
  start-page: ARTN 213243
  year: 2020
  ident: WOS:000525870000011
  article-title: Chalcogen-bond driven molecular recognition at work
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2020.213243
– volume: 131
  start-page: 17079
  year: 2019
  ident: 000903634800001.20
  publication-title: Angew. Chem
– volume: 141
  start-page: 4119
  year: 2019
  ident: WOS:000460996500051
  article-title: Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b00148
– volume: 120
  start-page: 200
  year: 2020
  ident: WOS:000507144600006
  article-title: Photo- and Redox-Driven Artificial Molecular Motors
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00291
– volume: 144
  start-page: 8827
  year: 2022
  ident: WOS:000804699500048
  article-title: Redox-Switchable Chalcogen Bonding for Anion Recognition and Sensing
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c02924
– volume: 60
  start-page: 14836
  year: 2021
  ident: WOS:000647992500001
  article-title: A Light-Operated Molecular Cable Car for Gated Ion Transport
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102838
– volume: 59
  start-page: 17154
  year: 2020
  ident: WOS:000563879300001
  article-title: The Carbonyl...Tellurazole Chalcogen Bond as a Molecular Recognition Unit: From Model Studies to Supramolecular Organic Frameworks
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202005374
– volume: 41
  start-page: 1809
  year: 2012
  ident: WOS:000300177100012
  article-title: Photoisomerization in different classes of azobenzene
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c1cs15179g
– volume: 11
  start-page: 7495
  year: 2020
  ident: WOS:000550969100025
  article-title: Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d0sc02872j
– volume: 52
  start-page: 1313
  year: 2019
  ident: WOS:000469304100019
  article-title: The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00037
– volume: 3
  start-page: ARTN 1207
  year: 2012
  ident: WOS:000315992100042
  article-title: Orthogonal switching of a single supramolecular complex
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms2198
– volume: 58
  start-page: 16923
  year: 2019
  ident: WOS:000494188400001
  article-title: Chalcogen Bonding Catalysis of a Nitro-Michael Reaction
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910639
– volume: 134
  year: 2022
  ident: 000903634800001.77
  publication-title: Angew. Chem
– volume: 60
  start-page: 19442
  year: 2021
  ident: WOS:000677213500001
  article-title: Halogen Bonding Tetraphenylethene Anion Receptors: Anion-Induced Emissive Aggregates and Photoswitchable Recognition
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202107748
– volume: 68
  start-page: 587
  year: 1968
  ident: WOS:A1968B839800003
  article-title: STRUCTURAL CHEMISTRY OF DONOR-ACCEPTOR INTERACTIONS
  publication-title: CHEMICAL REVIEWS
– volume: 133
  start-page: 14957
  year: 2021
  ident: 000903634800001.18
  publication-title: Angew. Chem
– volume: 124
  start-page: 1689
  year: 2012
  ident: 000903634800001.15
  publication-title: Angew. Chem
– volume: 142
  start-page: 3117
  year: 2020
  ident: WOS:000514255300050
  article-title: Dual Chalcogen-Chalcogen Bonding Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12610
– volume: 59
  start-page: 3705
  year: 2020
  ident: WOS:000510497500001
  article-title: The Importance of 1,5-Oxygen••Chalcogen Interactions in Enantioselective Isochalcogenourea Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201914421
– volume: 138
  start-page: 9093
  year: 2016
  ident: WOS:000380730000026
  article-title: Anion Transport with Chalcogen Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b05779
– volume: 12
  start-page: 1762
  year: 2021
  ident: WOS:000617028900018
  article-title: Towards photoswitchable quadruple hydrogen bonds via a reversible "photolocking" strategy for photocontrolled self-assembly
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d0sc06141g
– volume: 131
  start-page: 9814
  year: 2019
  ident: 000903634800001.80
  publication-title: Angew. Chem
– volume: 60
  start-page: 14831
  year: 2021
  ident: WOS:000654745400001
  article-title: Halogen-Bonded Organic Framework (XOF) Based on Iodonium-Bridged N...I+...N Interactions: A Type of Diphase Periodic Organic Network
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102448
– volume: 58
  start-page: 12705
  year: 2019
  ident: WOS:000478908300001
  article-title: A Visible-Light-Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201906761
– volume: 60
  start-page: 11604
  year: 2021
  ident: WOS:000621034500001
  article-title: Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007693
– volume: 6
  start-page: 498
  year: 2019
  ident: WOS:000458518400011
  article-title: Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host-guest interaction
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/c8qo01157e
– volume: 61
  start-page: ARTN e202116071
  year: 2022
  ident: WOS:000756148100001
  article-title: Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202116071
– volume: 60
  start-page: 9395
  year: 2021
  ident: WOS:000627476900001
  article-title: Chalcogen...π Bonding Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202101140
– volume: 140
  start-page: 7079
  year: 2018
  ident: WOS:000435525500008
  article-title: Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b04569
– volume: 58
  start-page: 1880
  year: 2019
  ident: WOS:000458828000003
  article-title: Chalcogen Bonding: An Overview
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201809432
– volume: 133
  start-page: 14962
  year: 2021
  ident: 000903634800001.82
  publication-title: Angew. Chem
– volume: 58
  start-page: 9712
  year: 2019
  ident: WOS:000476615900004
  article-title: Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201814441
– volume: 132
  start-page: 17303
  year: 2020
  ident: 000903634800001.37
  publication-title: Angew. Chem
– volume: 129
  start-page: 830
  year: 2017
  ident: 000903634800001.69
  publication-title: Angew. Chem
– volume: 143
  start-page: 8625
  year: 2021
  ident: WOS:000664300200019
  article-title: Anion Chelation via Double Chalcogen Bonding: The Case of a Bis-telluronium Dication and Its Application in Electrophilic Catalysis via Metal-Chloride Bond Activation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c04482
– volume: 61
  start-page: ARTN e202202137
  year: 2022
  ident: WOS:000788386900001
  article-title: Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202202137
– volume: 144
  start-page: 14778
  year: 2022
  ident: WOS:000849831900001
  article-title: Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c05333
– volume: 132
  start-page: 12105
  year: 2020
  ident: 000903634800001.26
  publication-title: Angew. Chem
– volume: 133
  start-page: 19591
  year: 2021
  ident: 000903634800001.62
  publication-title: Angew. Chem
– volume: 60
  start-page: 21973
  year: 2021
  ident: WOS:000691392900001
  article-title: Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202108591
– volume: 139
  start-page: 15160
  year: 2017
  ident: WOS:000414115800051
  article-title: The Origin of Chalcogen-Bonding Interactions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b08511
– volume: 131
  start-page: 1896
  year: 2019
  ident: 000903634800001.7
  publication-title: Angew. Chem
– volume: 130
  start-page: 5506
  year: 2018
  ident: 000903634800001.66
  publication-title: Angew. Chem
– volume: 9
  start-page: 3966
  year: 2022
  ident: WOS:000809068300001
  article-title: Interplay between chalcogen bonds and dynamic covalent bonds
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d2qo00684g
– volume: 13
  start-page: 7098
  year: 2022
  ident: WOS:000799832100001
  article-title: Halogen bonding and chalcogen bonding mediated sensing
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d2sc01800d
– volume: 57
  start-page: 5408
  year: 2018
  ident: WOS:000431035500039
  article-title: Catalysis with Pnictogen, Chalcogen, and Halogen Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201801452
– volume: 130
  start-page: 17506
  year: 2018
  ident: 000903634800001.32
  publication-title: Angew. Chem
– volume: 119
  start-page: 10977
  year: 2019
  ident: WOS:000490359300005
  article-title: Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00279
– volume: 116
  start-page: 2478
  year: 2016
  ident: WOS:000371106000018
  article-title: The Halogen Bond
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00484
– volume: 34
  start-page: ARTN 107639
  year: 2023
  ident: WOS:000950216900001
  article-title: Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond
  publication-title: CHINESE CHEMICAL LETTERS
  doi: 10.1016/j.cclet.2022.06.062
– volume: 123
  start-page: 6213
  year: 2001
  ident: WOS:000169534000054
  article-title: Controlled multi-stage recognition of guests using orthogonal electro- and photochemical inputs
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 11
  start-page: 12632
  year: 2021
  ident: WOS:000709692900019
  article-title: Bis-selenonium Cations as Bidentate Chalcogen Bond Donors in Catalysis
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c03622
– volume: 4
  start-page: 731
  year: 2018
  ident: WOS:000430591500010
  article-title: Sigma-Hole Interactions in Anion Recognition
  publication-title: CHEM
  doi: 10.1016/j.chempr.2018.02.022
– volume: 2020
  start-page: 5473
  year: 2020
  ident: WOS:000563836500001
  article-title: σ-Hole Interactions in Catalysis
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202000660
– volume: 57
  start-page: 17259
  year: 2018
  ident: WOS:000454575500058
  article-title: Supramolecular Capsules: Strong versus Weak Chalcogen Bonding
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201812095
– volume: 32
  start-page: ARTN 1905866
  year: 2020
  ident: WOS:000495466100001
  article-title: The Many Ways to Assemble Nanoparticles Using Light
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201905866
– volume: 115
  start-page: 7543
  year: 2015
  ident: WOS:000359613600010
  article-title: Photoresponsive Host-Guest Functional Systems
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr5006342
– volume: 32
  start-page: ARTN 1905966
  year: 2020
  ident: WOS:000508912600001
  article-title: Enlightening Materials with Photoswitches
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201905966
– volume: 56
  start-page: 12009
  year: 2017
  ident: WOS:000410810600064
  article-title: Carbon-Halogen Bond Activation by Selenium-Based Chalcogen Bonding
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201704816
– volume: 56
  start-page: 812
  year: 2017
  ident: WOS:000394996900024
  article-title: Catalysis with Chalcogen Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201611019
SSID ssj0028806
Score 2.527329
Snippet Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202212707
SubjectTerms Affinity
Alkylation
Anion Binding
Anions
Antifungal agents
Azo compounds
Azobenzene
Binding
Bonding
Catalysis
Chalcogen Bonding
Chalcogen bonds
Chemistry
Chemistry, Multidisciplinary
Irradiation
Photoswitch
Physical Sciences
Radiation
Receptors
Science & Technology
Supramolecular Catalysis
Tellurium
Wavelengths
Title Visible‐Light‐Switchable Tellurium‐Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212707
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000903634800001
https://www.ncbi.nlm.nih.gov/pubmed/36383643
https://www.proquest.com/docview/2766927004
https://www.proquest.com/docview/2737464485
Volume 62
WOS 000903634800001
WOSCitedRecordID wos000903634800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXsoFyn-goCBV4uR2Yztxwm0btSoIKgQt6i2ynURdNSRVmwiJC32EPmOfhBnnh24RAsFpd-OJVk6-8cx4PN8AbOjSGCNjwwKZF0xKrpiJA81CrYmcUAQmoeLk9_vR3qF8exQeXavi7_khpg030gy3XpOCa3O-9ZM0lCqwMb7jRFHuyskDEbo87ceJP4ojOPvyIiEYdaEfWRtnfGv59mWr9IurecMqLTuyzhLt3gU9zqE_gHKy2bVm0367Qe_4P5NcgzuDm-rPe1zdg1tFfR9W07E73AP4_nmBylQVVxeX7yi-x89PXxcIASrF8g-KqurOFt0XvLyNdjL302Nd2QbR6lMjY7SXr_0Px03bDEflKxSZ14gRf3vhhn1dj1fmhrZjXP2Fn9JuE5GoPITD3Z2DdI8NzRyYFUooxpOoRChwGVlpldIWQ9MyVkSfH3Obcx3i2mFUrrXIw0IazfMZL5WINcboobTiEazUTV08AV_mwUzYJDazXFFaNjFhbpROylIEUSG4B2x8mZkdmM6p4UaV9RzNPKPHmk2P1YNXk_xpz_HxW8n1ERvZoOvnGVdRlFD-XnrwchrG10GpF10XTUcyQkkKhUMPHveYmv5K4BIo0DH0YOM6yKZxcoMp3S5jl4rxIPgbsXSYOFEbtB5wh7I_TC-b77_ZmX49_ZebnsFt_E5H9BiP1mGlPeuK5-i2teaFU80fwk466w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigX3o-UAkGqxMntxnbihNs2tNrCdoVgi7hFtpOoK0JSlURIXOAn8Bv5JczkBVuEQHCKYk8UOfnGnvF4vgHY0bkxRoaGeTLNmJRcMRN6mvlaEzmh8ExEycnHi2B2Ip-_9YfThJQL0_FDjBtupBntfE0KThvSez9YQykFGx08ThzllE9-mYJ0pJvPXo0MUhzh2SUYCcGoDv3A2zjhe-vPr69LvxibF9aldVO2XYsOr4EZRtEdQXm329Rm1366QPD4X8O8Dld7S9WddtC6AZey8iZsxkOBuFvw-c0K9anIvn35OicXH6-vP64QBZSN5S6zomjOV817bN7HpTJ141Nd2AoB61ItY1wyn7ovT6u66k_LFygyLREm7v6q7XZ1ObRMDe3ItCkYbkwbTsSjchtODg-W8Yz19RyYFUooxqMgRzRwGVhpldIWvdM8VMSgH3Kbcu3j9GFUqrVI_UwazdMJz5UINbrpvrTiDmyUVZndA1em3kTYKDSTVFFkNjJ-apSO8lx4QSa4A2z4m4ntyc6p5kaRdDTNPKHPmoyf1YEno_xZR_PxW8ntARxJr-4fEq6CIKIQvnTg8diNv4OiL7rMqoZkhJLkDfsO3O1ANb5K4Cwo0DZ0YOdnlI39ZAlTxF2GbTTGAe9vxOJ-4MRuUDvAW5j9YXjJdHF0MN5t_ctDj2BztjyeJ_OjxYv7cAXb6cQe48E2bNTnTfYArbjaPGz19DtW4z8H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgEX_ikpBYJUiZPbje3ECbdt6KqFsqqgRb1FdpyoK0JStYmQuMAj8Iw8CTP5o1uEQHCKYk8UOfnGnvF4vgHY0LkxRoaGedJmTEqumAk9zXytiZxQeCai5OQ382D3SL469o8vZPF3_BDjhhtpRjtfk4Kf2nzrJ2koZWCjf8eJopzSya_KAF0sMovejgRSHNHZ5RcJwagM_UDbOOFby88vL0u_2JqXlqVlS7Zdima3QA-D6E6gfNhsarOZfr7E7_g_o7wNN3s71Z12wLoDV7LyLlyPh_Jw9-DL-wVqU5F9__ptnxx8vL77tEAMUC6We5gVRXO2aD5i8zYulNaNT3SRVghXlyoZ44L5wj04qeqqPytfoMi0RJC424u229Xl0DI1tB_TJmC4MW03EYvKfTia7RzGu6yv5sBSoYRiPApyxAKXQSpTpXSKvmkeKuLPD3lqufZx8jDKai2sn0mjuZ3wXIlQo5Puy1Q8gJWyKrOH4ErrTUQahWZiFcVlI-Nbo3SU58ILMsEdYMPPTNKe6pwqbhRJR9LME_qsyfhZHXg-yp92JB-_lVwfsJH0yn6ecBUEEQXwpQPPxm78HRR70WVWNSQjlCRf2HdgtcPU-CqBc6BAy9CBjYsgG_vJDqZ4uwzbWIwD3t-Ixf3AidugdoC3KPvD8JLpfG9nvFv7l4eewrWDl7Nkf2_--hHcwGY6rsd4sA4r9VmTPUYTrjZPWi39AWRCPbY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible%E2%80%90Light%E2%80%90Switchable+Tellurium%E2%80%90Based+Chalcogen+Bonding%3A+Photocontrolled+Anion+Binding+and+Anion+Abstraction+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Duan%2C+Hong%E2%80%90Ying&rft.au=Han%2C+Shi%E2%80%90Tao&rft.au=Zhan%2C+Tian%E2%80%90Guang&rft.au=Liu%2C+Li%E2%80%90Juan&rft.date=2023-01-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202212707&rft.externalDBID=10.1002%252Fanie.202212707&rft.externalDocID=ANIE202212707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon