Visible‐Light‐Switchable Tellurium‐Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐tria...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 5; pp. e202212707 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
26.01.2023
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202212707 |
Cover
Abstract | Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide ion in a Friedel–Crafts alkylation benchmark reaction.
A visible‐light‐switchable telluro‐triazolium‐based chalcogen bonding receptor has been constructed in which the Te moieties are connected by azobenzene cores. The receptor shows photocontrolled halide anion binding and acts as a photocontrolled organocatalyst for chalcogen‐bonding‐assisted halide anion ion in a Friedel–Crafts reaction. |
---|---|
AbstractList | Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl-, Br-) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction. Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl − , Br − ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis ‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans ‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide abstraction in a Friedel–Crafts alkylation benchmark reaction. Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide ion in a Friedel–Crafts alkylation benchmark reaction. A visible‐light‐switchable telluro‐triazolium‐based chalcogen bonding receptor has been constructed in which the Te moieties are connected by azobenzene cores. The receptor shows photocontrolled halide anion binding and acts as a photocontrolled organocatalyst for chalcogen‐bonding‐assisted halide anion ion in a Friedel–Crafts reaction. Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction. Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self‐assembly systems and materials. Herein, for the first time, we demonstrate a unique visible‐light‐switchable telluro‐triazole/triazolium‐based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo‐derived ChB receptors and the halide anions (Cl−, Br−) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis‐bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans‐monodentate receptors. In particular, the telluro‐triazolium‐based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB‐assisted halide abstraction in a Friedel–Crafts alkylation benchmark reaction. Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl , Br ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction. |
Author | Liu, Li‐Juan Han, Shi‐Tao Zhang, Kang‐Da Duan, Hong‐Ying Zhan, Tian‐Guang |
Author_xml | – sequence: 1 givenname: Hong‐Ying surname: Duan fullname: Duan, Hong‐Ying organization: Zhejiang Normal University – sequence: 2 givenname: Shi‐Tao surname: Han fullname: Han, Shi‐Tao email: Shitao_Han@163.com organization: Zhejiang Normal University – sequence: 3 givenname: Tian‐Guang surname: Zhan fullname: Zhan, Tian‐Guang organization: Zhejiang Normal University – sequence: 4 givenname: Li‐Juan surname: Liu fullname: Liu, Li‐Juan organization: Zhejiang Normal University – sequence: 5 givenname: Kang‐Da orcidid: 0000-0002-9183-8364 surname: Zhang fullname: Zhang, Kang‐Da email: Kangda.Zhang@zjnu.cn organization: Zhejiang Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36383643$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1URD_gyhGtxAUJbeqvXTvc0lUplSKKROFqeb3exJVjl7VXVU7wE_iN_JJOSFKkSghOM5p5Xs_41RyjgxCDReglwROCMT3VwdkJxZQSKrB4go5IRUnJhGAHkHPGSiErcoiOU7oBXkpcP0OHrGaS1Zwdoe9fXXKtt79-_Jy7xTJD_HznsllqKBbX1vtxcOMKymc62a5oltqbuLChOIuhc2Hxrvi0jDmaGPIQvQdkFlyEtvvdLnTYV2ZtyoM2eZM3Omu_Ti49R0977ZN9sYsn6Mv78-vmQzm_urhsZvPSMMFESad1zzmlvDbcCKGNpFUvhcCMSGo6qqtKyFZ0WrOusrzVtMO0F0xqKWXFDTtBb7bv3g7x22hTViuXDHxPBxvHpChM4TXnsgL09SP0Jo5DgO2AquspGI05UK921NiubKduB7fSw1rtrQVAboE728Y-GWeDsQ8YxniKgeUSMkwal_XGmCaOIYP07f9LgeZb2gwxpcH2yuxeA7udVwSrzamozamoh1MB2eSRbD_gr4Lpbivn7foftJp9vDz_o70H0GDRqg |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00039 crossref_primary_10_1002_cctc_202401683 crossref_primary_10_1002_chem_202303089 crossref_primary_10_1021_acs_macromol_4c00325 crossref_primary_10_1360_SSC_2023_0147 crossref_primary_10_1021_acs_inorgchem_4c01077 crossref_primary_10_1038_s41467_024_52855_9 crossref_primary_10_1002_adsc_202401105 crossref_primary_10_1002_ange_202314510 crossref_primary_10_1002_chem_202302755 crossref_primary_10_1002_anie_202314510 crossref_primary_10_1039_D4QO01334D crossref_primary_10_1021_jacs_4c01138 crossref_primary_10_1002_anie_202302859 crossref_primary_10_1002_ange_202302859 crossref_primary_10_1002_anie_202404823 crossref_primary_10_1002_ange_202404823 crossref_primary_10_1038_s41467_023_43013_8 crossref_primary_10_1039_D4QO02069C crossref_primary_10_1002_chem_202401650 |
Cites_doi | 10.1002/adma.201905966 10.1002/ange.201809432 10.1002/anie.202001125 10.1002/adma.201905866 10.1002/ange.201814441 10.1002/anie.202007314 10.1016/j.ccr.2020.213243 10.1021/acs.joc.0c00723 10.1002/anie.202108591 10.1002/ange.202202137 10.1039/D0SC04417B 10.1038/s41570-021-00338-6 10.1002/anie.202101140 10.1002/anie.202007693 10.1021/jacs.7b08511 10.1021/jacs.1c04482 10.1038/s41467-022-31293-5 10.1021/jacs.9b12610 10.1016/j.cclet.2021.09.089 10.1002/ange.201106996 10.1002/ange.202001125 10.1021/jacs.2c05333 10.1002/ange.201611019 10.1002/anie.201809432 10.1002/anie.202202137 10.1016/j.chempr.2018.02.022 10.1002/ange.201812095 10.1002/ange.202108591 10.1039/C7DT01685A 10.1016/j.cclet.2022.06.062 10.1039/D2SC01800D 10.1039/C1CS15179G 10.1002/anie.201906761 10.1002/ange.201914421 10.1021/jacs.8b04569 10.1002/anie.202102448 10.1021/ja0032475 10.1002/ange.202007693 10.1021/jacs.2c02924 10.1002/anie.201704816 10.1002/ange.201910639 10.1002/ange.201801452 10.1002/chem.201601844 10.1021/acs.chemrev.5b00484 10.1021/cr5006342 10.1002/anie.201611019 10.1021/cr60255a003 10.1021/acs.accounts.9b00037 10.1039/D0SC06141G 10.1002/anie.202107748 10.1002/anie.201812095 10.1021/acs.chemrev.7b00449 10.1002/ange.201906761 10.1002/anie.201910639 10.1002/anie.201914421 10.1002/ange.202102838 10.1039/D2QO00684G 10.1021/ja512183e 10.1039/C8QO01157E 10.1039/C0CC02339F 10.1002/anie.201801452 10.1038/ncomms2198 10.1021/jacs.6b05779 10.1002/anie.202005374 10.1021/jacs.9b00148 10.1002/ange.202107748 10.1002/anie.201814441 10.1002/ange.202007314 10.1002/anie.202116071 10.1039/D1SC03308E 10.1002/ange.201704816 10.1038/ncomms11299 10.1021/jacs.0c01290 10.1002/anie.202102838 10.1002/ange.202102448 10.1002/ajoc.202000501 10.1002/ange.202101140 10.1021/acscatal.1c03622 10.1021/acs.chemrev.9b00279 10.1002/adma.202007290 10.1002/ange.202116071 10.1021/jacs.9b03806 10.1021/acs.chemrev.9b00291 10.1039/9781847557575 10.1039/D0SC02872J 10.1002/ejoc.202000660 10.1002/anie.201106996 10.1002/ange.202005374 10.1016/j.ccr.2006.04.009 10.1039/c7dt01685a 10.1039/c0cc02339f 10.1039/d1sc03308e 10.1039/c1cs15179g 10.1039/d0sc02872j 10.1039/d0sc06141g 10.1039/c8qo01157e 10.1039/d2qo00684g 10.1039/d2sc01800d |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 17B 1KM BLEPL BNZSX DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202212707 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Web of Science - Science Citation Index Expanded - 2023 Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Web of Science CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36383643 000903634800001 10_1002_anie_202212707 ANIE202212707 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22071220 – fundername: Natural Science Foundation of Zhejiang Province funderid: LR22B020001 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) – fundername: Natural Science Foundation of Zhejiang Province – fundername: Natural Science Foundation of Zhejiang Province grantid: LR22B020001 – fundername: National Natural Science Foundation of China grantid: 22071220 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3737-296f442246c4c77ac825f87703182cd2a5578b7daa3d5e4ba2d02f738a88854c3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 3 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000903634800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:44:29 EDT 2025 Fri Jul 25 11:56:04 EDT 2025 Thu Apr 03 07:08:53 EDT 2025 Wed Jul 09 18:40:34 EDT 2025 Fri Sep 26 20:09:16 EDT 2025 Wed Oct 01 02:27:57 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Jan 22 16:18:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Anion Binding Chalcogen Bonding TRANSPORT Supramolecular Catalysis Photoswitch Azobenzene |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3737-296f442246c4c77ac825f87703182cd2a5578b7daa3d5e4ba2d02f738a88854c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9183-8364 |
PMID | 36383643 |
PQID | 2766927004 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2766927004 proquest_miscellaneous_2737464485 webofscience_primary_000903634800001CitationCount pubmed_primary_36383643 webofscience_primary_000903634800001 crossref_primary_10_1002_anie_202212707 wiley_primary_10_1002_anie_202212707_ANIE202212707 crossref_citationtrail_10_1002_anie_202212707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 26, 2023 |
PublicationDateYYYYMMDD | 2023-01-26 |
PublicationDate_xml | – month: 01 year: 2023 text: January 26, 2023 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 1968; 68 2001; 123 2018; 140 2019; 6 2019; 52 2020; 85 2020; 142 2020; 120 2017; 46 2020 2020; 59 132 2007 2020; 11 2020; 32 2017 2017; 56 129 2021; 143 2019; 141 2019 2019; 58 131 2017; 139 2022; 144 2016; 7 2022 2022; 61 134 2021; 10 2012; 3 2021; 12 2021; 11 2021; 33 2018; 4 2015; 137 2015; 115 2022 2018; 118 2020 2022; 6 2012 2012; 51 124 2018 2018; 57 130 2022; 9 2020; 413 2022; 13 2021 2021; 60 133 2019; 119 2016; 116 2016; 138 2022; 33 2011; 47 2012; 41 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 (e_1_2_7_59_2) 2022; 134 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 (e_1_2_7_29_2) 2022; 134 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_57_2 e_1_2_7_38_1 BENT, HA (WOS:A1968B839800003) 1968; 68 Cavallo, G (WOS:000371106000018) 2016; 116 Chen, L (WOS:000435525500008) 2018; 140 Romito, D (WOS:000788386900001) 2022; 61 You, LY (WOS:000299946400029) 2012; 51 (000903634800001.80) 2019; 131 Baroncini, M (WOS:000507144600006) 2020; 120 (000903634800001.20) 2019; 131 (000903634800001.7) 2019; 131 Kong, XJ (000903634800001.22) 2021; 133 Lim, JYC (WOS:000430591500010) 2018; 4 Biot, N (WOS:000525870000011) 2020; 413 Mehrparvar, S (WOS:000563879300001) 2020; 59 Bozovic, O (WOS:000727754500001) 2022; 6 Yuan, L (WOS:000789375500055) 2022; 33 Rahman, FU (WOS:000526393100052) 2020; 142 (000903634800001.15) 2012; 124 Garrett, GE (WOS:000352244800026) 2015; 137 Gong, G (000903634800001.18) 2021; 133 (000903634800001.82) 2021; 133 Jia, SP (WOS:000809068300001) 2022; 9 Tian, F (WOS:000315992100042) 2012; 3 Riwar, LJ (000903634800001.32) 2018; 130 Docker, A (WOS:000677213500001) 2021; 60 Kolb, S (WOS:000572133000001) 2020; 59 (000903634800001.42) 2021; 133 Riwar, LJ (WOS:000454575500058) 2018; 57 Herder, M (WOS:000285068300107) 2011; 47 (000903634800001.62) 2021; 133 Wang, CX (WOS:000647992500001) 2021; 60 Gleiter, R (WOS:000426614700014) 2018; 118 Romito, D (000903634800001.39) 2022; 134 Benz, S (WOS:000431035500039) 2018; 57 Zeng, RJ (WOS:000547450900011) 2020; 85 Mehrparvar, S (000903634800001.37) 2020; 132 Yin, YF (WOS:000478908300001) 2019; 58 LU, Y (000903634800001.77) 2022; 134 Yang, ZY (WOS:000596784500001) 2021; 10 Cheng, HB (WOS:000653197400001) 2021; 33 Docker, A (WOS:000849831900001) 2022; 144 Benz, S (WOS:000394996900024) 2017; 56 Bian, T (WOS:000495466100001) 2020; 32 Benz (000903634800001.66) 2018; 130 Borissov, A (WOS:000460996500051) 2019; 141 Ho, PC (WOS:000374291700001) 2016; 7 Qu, DH (WOS:000359613600010) 2015; 115 Breugst, M (WOS:000563836500001) 2020; 2020 Bandara, HMD (WOS:000300177100012) 2012; 41 WONNER, P (000903634800001.64) 2017; 129 Zhou, BY (WOS:000550969100025) 2020; 11 Goulet-Hanssens, A (WOS:000508912600001) 2020; 32 Chen, SY (WOS:000621034500001) 2021; 60 (000903634800001.26) 2020; 132 Lu, Y (WOS:000756148100001) 2022; 61 Scilabra, P (WOS:000469304100019) 2019; 52 Benz, S (WOS:000380730000026) 2016; 138 Yong (000903634800001.74) 2020; 132 Young, CM (WOS:000510497500001) 2020; 59 Bulfield, D (WOS:000384698500001) 2016; 22 Hein, R (WOS:000799832100001) 2022; 13 (WOS:000269345800026) 2007 Zhu, HF (WOS:000814810600006) 2022; 13 Wang, W (WOS:000514255300050) 2020; 142 Wei, L (WOS:000617028900018) 2021; 12 (000903634800001.69) 2017; 129 Kortekaas, L (WOS:000678739300001) 2021; 12 Goodman, A (WOS:000169534000054) 2001; 123 Gong, GF (WOS:000654745400001) 2021; 60 Nguyen, BT (WOS:000242760900013) 2006; 250 Pascoe, DJ (WOS:000414115800051) 2017; 139 Wang, W (WOS:000475540800012) 2019; 141 Xu, WC (WOS:000476615900004) 2019; 58 Vogel, L (WOS:000458828000003) 2019; 58 He, XX (WOS:000709692900019) 2021; 11 Docker, A (WOS:000691392900001) 2021; 60 Zhou, BY (WOS:000664300200019) 2021; 143 Kolb, S (000903634800001.12) 2020; 132 Han, ST (WOS:000950216900001) 2023; 34 Wonner, P (WOS:000410810600064) 2017; 56 Mahmudov, KT (WOS:000408696100001) 2017; 46 Bunchuay, T (WOS:000531690600001) 2020; 59 Wonner, P (WOS:000494188400001) 2019; 58 Strakova, K (WOS:000490359300005) 2019; 119 Yin, YF (000903634800001.54) 2019; 131 Hein, R (WOS:000804699500048) 2022; 144 Wei, J (WOS:000458518400011) 2019; 6 Kong, XJ (WOS:000627476900001) 2021; 60 |
References_xml | – volume: 57 130 start-page: 5408 5506 year: 2018 2018 end-page: 5412 5510 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 21973 22144 year: 2021 2021 end-page: 21978 22149 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 9712 9814 year: 2019 2019 end-page: 9740 9843 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 2010 year: 2018 end-page: 2041 publication-title: Chem. Rev. – volume: 56 129 start-page: 812 830 year: 2017 2017 end-page: 815 833 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 9175 year: 2019 end-page: 9179 publication-title: J. Am. Chem. Soc. – volume: 68 start-page: 587 year: 1968 end-page: 648 publication-title: Chem. Rev. – volume: 138 start-page: 9093 year: 2016 end-page: 9096 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 14836 14962 year: 2021 2021 end-page: 14840 14966 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 123 start-page: 6213 year: 2001 end-page: 6214 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1762 year: 2021 end-page: 1771 publication-title: Chem. Sci. – volume: 11 start-page: 7495 year: 2020 end-page: 7500 publication-title: Chem. Sci. – volume: 144 start-page: 8827 year: 2022 end-page: 8836 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 3117 year: 2020 end-page: 3124 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 7098 year: 2022 end-page: 7125 publication-title: Chem. Sci. – volume: 57 130 start-page: 17259 17506 year: 2018 2018 end-page: 17264 17512 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 115 start-page: 7543 year: 2015 end-page: 7588 publication-title: Chem. Rev. – volume: 11 start-page: 12632 year: 2021 end-page: 12642 publication-title: ACS Catal. – volume: 119 start-page: 10977 year: 2019 end-page: 11005 publication-title: Chem. Rev. – volume: 6 start-page: 112 year: 2022 end-page: 124 publication-title: Nat. Chem. Rev. – volume: 41 start-page: 1809 year: 2012 end-page: 1825 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 11338 year: 2021 end-page: 11346 publication-title: Chem. Sci. – volume: 85 start-page: 8397 year: 2020 end-page: 8404 publication-title: J. Org. Chem. – volume: 143 start-page: 8625 year: 2021 end-page: 8630 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 9395 9481 year: 2021 2021 end-page: 9400 9486 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 1313 year: 2019 end-page: 1324 publication-title: Acc. Chem. Res. – volume: 9 start-page: 3966 year: 2022 end-page: 3975 publication-title: Org. Chem. Front. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3563 year: 2022 publication-title: Nat. Commun. – volume: 139 start-page: 15160 year: 2017 end-page: 15167 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 1657 1689 year: 2012 2012 end-page: 1661 1693 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 5876 year: 2020 end-page: 5883 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 2026 year: 2022 end-page: 2033 publication-title: Chin. Chem. Lett. – volume: 413 year: 2020 publication-title: Coord. Chem. Rev. – volume: 144 start-page: 14778 year: 2022 end-page: 14789 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 74 year: 2021 end-page: 90 publication-title: Asian J. Org. Chem. – volume: 22 start-page: 14434 year: 2016 end-page: 14450 publication-title: Chem. Eur. J. – year: 2007 – volume: 58 131 start-page: 16923 17079 year: 2019 2019 end-page: 16927 17083 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 2478 year: 2016 end-page: 2601 publication-title: Chem. Rev. – volume: 137 start-page: 4126 year: 2015 end-page: 4133 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 498 year: 2019 end-page: 505 publication-title: Org. Chem. Front. – volume: 59 132 start-page: 17154 17303 year: 2020 2020 end-page: 17161 17311 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 10107 year: 2020 end-page: 10112 publication-title: Chem. Sci. – volume: 58 131 start-page: 12705 12835 year: 2019 2019 end-page: 12710 12840 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 460 year: 2011 end-page: 462 publication-title: Chem. Commun. – volume: 60 133 start-page: 14831 14957 year: 2021 2021 end-page: 14835 14961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 7079 year: 2018 end-page: 7082 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1207 year: 2012 publication-title: Nat. Commun. – volume: 60 133 start-page: 19442 19591 year: 2021 2021 end-page: 19450 19599 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 12009 12172 year: 2017 2017 end-page: 12012 12176 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 11604 11708 year: 2021 2021 end-page: 11627 11731 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 731 year: 2018 end-page: 783 publication-title: Chem – volume: 141 start-page: 4119 year: 2019 end-page: 4129 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 120 start-page: 200 year: 2020 end-page: 268 publication-title: Chem. Rev. – start-page: 5473 year: 2020 end-page: 5487 publication-title: Eur. J. Org. Chem. – volume: 7 start-page: 11299 year: 2016 publication-title: Nat. Commun. – volume: 58 131 start-page: 1880 1896 year: 2019 2019 end-page: 1891 1907 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2022 publication-title: Chin. Chem. Lett. – volume: 59 132 start-page: 12007 12105 year: 2020 2020 end-page: 12012 12110 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 3705 3734 year: 2020 2020 end-page: 3710 3739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 10121 year: 2017 end-page: 10138 publication-title: Dalton Trans. – volume: 59 132 start-page: 22306 22490 year: 2020 2020 end-page: 22310 22495 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_45_1 doi: 10.1002/adma.201905966 – ident: e_1_2_7_6_2 doi: 10.1002/ange.201809432 – ident: e_1_2_7_19_1 doi: 10.1002/anie.202001125 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201905866 – ident: e_1_2_7_61_2 doi: 10.1002/ange.201814441 – ident: e_1_2_7_10_1 doi: 10.1002/anie.202007314 – ident: e_1_2_7_9_1 doi: 10.1016/j.ccr.2020.213243 – ident: e_1_2_7_27_1 doi: 10.1021/acs.joc.0c00723 – ident: e_1_2_7_31_1 doi: 10.1002/anie.202108591 – volume: 134 start-page: e202202137 year: 2022 ident: e_1_2_7_29_2 publication-title: Angew. Chem. doi: 10.1002/ange.202202137 – ident: e_1_2_7_34_1 doi: 10.1039/D0SC04417B – ident: e_1_2_7_64_1 doi: 10.1038/s41570-021-00338-6 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202101140 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202007693 – ident: e_1_2_7_3_1 doi: 10.1021/jacs.7b08511 – ident: e_1_2_7_52_1 doi: 10.1021/jacs.1c04482 – ident: e_1_2_7_56_1 doi: 10.1038/s41467-022-31293-5 – ident: e_1_2_7_58_1 doi: 10.1021/jacs.9b12610 – ident: e_1_2_7_21_1 doi: 10.1016/j.cclet.2021.09.089 – ident: e_1_2_7_12_2 doi: 10.1002/ange.201106996 – ident: e_1_2_7_19_2 doi: 10.1002/ange.202001125 – ident: e_1_2_7_22_1 doi: 10.1021/jacs.2c05333 – ident: e_1_2_7_53_2 doi: 10.1002/ange.201611019 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201809432 – ident: e_1_2_7_29_1 doi: 10.1002/anie.202202137 – ident: e_1_2_7_66_1 doi: 10.1016/j.chempr.2018.02.022 – ident: e_1_2_7_24_2 doi: 10.1002/ange.201812095 – ident: e_1_2_7_31_2 doi: 10.1002/ange.202108591 – ident: e_1_2_7_4_1 doi: 10.1039/C7DT01685A – ident: e_1_2_7_39_1 doi: 10.1016/j.cclet.2022.06.062 – ident: e_1_2_7_11_1 doi: 10.1039/D2SC01800D – ident: e_1_2_7_60_1 doi: 10.1039/C1CS15179G – ident: e_1_2_7_42_1 doi: 10.1002/anie.201906761 – ident: e_1_2_7_57_2 doi: 10.1002/ange.201914421 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.8b04569 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202102448 – ident: e_1_2_7_36_1 doi: 10.1021/ja0032475 – ident: e_1_2_7_48_2 doi: 10.1002/ange.202007693 – ident: e_1_2_7_35_1 doi: 10.1021/jacs.2c02924 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201704816 – ident: e_1_2_7_15_2 doi: 10.1002/ange.201910639 – ident: e_1_2_7_51_2 doi: 10.1002/ange.201801452 – ident: e_1_2_7_65_1 doi: 10.1002/chem.201601844 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemrev.5b00484 – ident: e_1_2_7_41_1 doi: 10.1021/cr5006342 – ident: e_1_2_7_53_1 doi: 10.1002/anie.201611019 – ident: e_1_2_7_1_1 doi: 10.1021/cr60255a003 – ident: e_1_2_7_17_1 doi: 10.1021/acs.accounts.9b00037 – ident: e_1_2_7_38_1 doi: 10.1039/D0SC06141G – ident: e_1_2_7_49_1 doi: 10.1002/anie.202107748 – ident: e_1_2_7_24_1 doi: 10.1002/anie.201812095 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.7b00449 – ident: e_1_2_7_42_2 doi: 10.1002/ange.201906761 – ident: e_1_2_7_15_1 doi: 10.1002/anie.201910639 – ident: e_1_2_7_57_1 doi: 10.1002/anie.201914421 – ident: e_1_2_7_62_2 doi: 10.1002/ange.202102838 – ident: e_1_2_7_32_1 doi: 10.1039/D2QO00684G – ident: e_1_2_7_30_1 doi: 10.1021/ja512183e – ident: e_1_2_7_43_1 doi: 10.1039/C8QO01157E – ident: e_1_2_7_37_1 doi: 10.1039/C0CC02339F – ident: e_1_2_7_51_1 doi: 10.1002/anie.201801452 – ident: e_1_2_7_40_1 doi: 10.1038/ncomms2198 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.6b05779 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202005374 – ident: e_1_2_7_18_1 doi: 10.1021/jacs.9b00148 – ident: e_1_2_7_49_2 doi: 10.1002/ange.202107748 – ident: e_1_2_7_61_1 doi: 10.1002/anie.201814441 – ident: e_1_2_7_10_2 doi: 10.1002/ange.202007314 – ident: e_1_2_7_59_1 doi: 10.1002/anie.202116071 – ident: e_1_2_7_67_1 doi: 10.1039/D1SC03308E – ident: e_1_2_7_50_2 doi: 10.1002/ange.201704816 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms11299 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.0c01290 – ident: e_1_2_7_62_1 doi: 10.1002/anie.202102838 – ident: e_1_2_7_14_2 doi: 10.1002/ange.202102448 – ident: e_1_2_7_44_1 doi: 10.1002/ajoc.202000501 – ident: e_1_2_7_16_2 doi: 10.1002/ange.202101140 – ident: e_1_2_7_55_1 doi: 10.1021/acscatal.1c03622 – ident: e_1_2_7_7_1 doi: 10.1021/acs.chemrev.9b00279 – ident: e_1_2_7_63_1 doi: 10.1002/adma.202007290 – volume: 134 start-page: e202116071 year: 2022 ident: e_1_2_7_59_2 publication-title: Angew. Chem. doi: 10.1002/ange.202116071 – ident: e_1_2_7_54_1 doi: 10.1021/jacs.9b03806 – ident: e_1_2_7_47_1 doi: 10.1021/acs.chemrev.9b00291 – ident: e_1_2_7_2_1 doi: 10.1039/9781847557575 – ident: e_1_2_7_33_1 doi: 10.1039/D0SC02872J – ident: e_1_2_7_8_1 doi: 10.1002/ejoc.202000660 – ident: e_1_2_7_12_1 doi: 10.1002/anie.201106996 – ident: e_1_2_7_28_2 doi: 10.1002/ange.202005374 – volume: 134 year: 2022 ident: 000903634800001.39 publication-title: Angew. Chem – volume: 59 start-page: 22306 year: 2020 ident: WOS:000572133000001 article-title: Chemistry Evolves, Terms Evolve, but Phenomena Do Not Evolve: From Chalcogen-Chalcogen Interactions to Chalcogen Bonding publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007314 – volume: 6 start-page: 112 year: 2022 ident: WOS:000727754500001 article-title: Using azobenzene photocontrol to set proteins in motion publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-021-00338-6 – volume: 133 start-page: 9481 year: 2021 ident: 000903634800001.22 publication-title: Angew. Chem – volume: 10 start-page: 74 year: 2021 ident: WOS:000596784500001 article-title: Recent Advances of Photoresponsive Supramolecular Switches publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.202000501 – volume: 131 start-page: 12835 year: 2019 ident: 000903634800001.54 publication-title: Angew. Chem – volume: 132 start-page: 3734 year: 2020 ident: 000903634800001.74 publication-title: Angew. Chem – volume: 250 start-page: 3118 year: 2006 ident: WOS:000242760900013 article-title: Indicator-displacement assays publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2006.04.009 – volume: 118 start-page: 2010 year: 2018 ident: WOS:000426614700014 article-title: From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00449 – volume: 133 start-page: 22144 year: 2021 ident: 000903634800001.42 publication-title: Angew. Chem – volume: 142 start-page: 5876 year: 2020 ident: WOS:000526393100052 article-title: Chalcogen Bonding and Hydrophobic Effects Force Molecules into Small Spaces publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c01290 – volume: 46 start-page: 10121 year: 2017 ident: WOS:000408696100001 article-title: Chalcogen bonding in synthesis, catalysis and design of materials publication-title: DALTON TRANSACTIONS doi: 10.1039/c7dt01685a – volume: 141 start-page: 9175 year: 2019 ident: WOS:000475540800012 article-title: Chalcogen-Chalcogen Bonding Catalysis Enables Assembly of Discrete Molecules publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b03806 – volume: 33 start-page: ARTN 2007290 year: 2021 ident: WOS:000653197400001 article-title: Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202007290 – volume: 22 start-page: 14434 year: 2016 ident: WOS:000384698500001 article-title: Halogen Bonding in Organic Synthesis and Organocatalysis publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201601844 – volume: 59 start-page: 12007 year: 2020 ident: WOS:000531690600001 article-title: Chalcogen Bond Mediated Enhancement of Cooperative Ion-Pair Recognition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202001125 – volume: 51 start-page: 1657 year: 2012 ident: WOS:000299946400029 article-title: C?H•••O Hydrogen Bonding Induced Triazole Foldamers: Efficient Halogen Bonding Receptors for Organohalogens publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201106996 – volume: 132 start-page: 22490 year: 2020 ident: 000903634800001.12 publication-title: Angew. Chem – volume: 47 start-page: 460 year: 2011 ident: WOS:000285068300107 article-title: Photoswitchable triple hydrogen-bonding motif publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c0cc02339f – volume: 7 start-page: ARTN 11299 year: 2016 ident: WOS:000374291700001 article-title: Supramolecular macrocycles reversibly assembled by Te•••O chalcogen bonding publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms11299 – volume: 13 start-page: ARTN 3563 year: 2022 ident: WOS:000814810600006 article-title: Cooperative chalcogen bonding interactions in confined sites activate aziridines publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-31293-5 – volume: 137 start-page: 4126 year: 2015 ident: WOS:000352244800026 article-title: Chalcogen Bonding in Solution: Interactions of Benzotelluradiazoles with Anionic and Uncharged Lewis Bases publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja512183e – volume: 129 start-page: 12172 year: 2017 ident: 000903634800001.64 publication-title: Angew. Chem – start-page: 1 year: 2007 ident: WOS:000269345800026 article-title: Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium publication-title: HANDBOOK OF CHALCOGEN CHEMISTRY: NEW PERSPECTIVES IN SULFUR, SELENIUM AND TELLURIUM doi: 10.1039/9781847557575 – volume: 12 start-page: 11338 year: 2021 ident: WOS:000678739300001 article-title: Acid-catalysed liquid-to-solid transitioning of arylazoisoxazole photoswitches publication-title: CHEMICAL SCIENCE doi: 10.1039/d1sc03308e – volume: 33 start-page: 2026 year: 2022 ident: WOS:000789375500055 article-title: A highly active and selective chalcogen bond-mediated perchlorate channel publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2021.09.089 – volume: 85 start-page: 8397 year: 2020 ident: WOS:000547450900011 article-title: Chalcogen-Bonding Supramolecular Polymers publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.0c00723 – volume: 413 start-page: ARTN 213243 year: 2020 ident: WOS:000525870000011 article-title: Chalcogen-bond driven molecular recognition at work publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2020.213243 – volume: 131 start-page: 17079 year: 2019 ident: 000903634800001.20 publication-title: Angew. Chem – volume: 141 start-page: 4119 year: 2019 ident: WOS:000460996500051 article-title: Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b00148 – volume: 120 start-page: 200 year: 2020 ident: WOS:000507144600006 article-title: Photo- and Redox-Driven Artificial Molecular Motors publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00291 – volume: 144 start-page: 8827 year: 2022 ident: WOS:000804699500048 article-title: Redox-Switchable Chalcogen Bonding for Anion Recognition and Sensing publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c02924 – volume: 60 start-page: 14836 year: 2021 ident: WOS:000647992500001 article-title: A Light-Operated Molecular Cable Car for Gated Ion Transport publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102838 – volume: 59 start-page: 17154 year: 2020 ident: WOS:000563879300001 article-title: The Carbonyl...Tellurazole Chalcogen Bond as a Molecular Recognition Unit: From Model Studies to Supramolecular Organic Frameworks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202005374 – volume: 41 start-page: 1809 year: 2012 ident: WOS:000300177100012 article-title: Photoisomerization in different classes of azobenzene publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15179g – volume: 11 start-page: 7495 year: 2020 ident: WOS:000550969100025 article-title: Redox-controlled chalcogen-bonding at tellurium: impact on Lewis acidity and chloride anion transport properties publication-title: CHEMICAL SCIENCE doi: 10.1039/d0sc02872j – volume: 52 start-page: 1313 year: 2019 ident: WOS:000469304100019 article-title: The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00037 – volume: 3 start-page: ARTN 1207 year: 2012 ident: WOS:000315992100042 article-title: Orthogonal switching of a single supramolecular complex publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms2198 – volume: 58 start-page: 16923 year: 2019 ident: WOS:000494188400001 article-title: Chalcogen Bonding Catalysis of a Nitro-Michael Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910639 – volume: 134 year: 2022 ident: 000903634800001.77 publication-title: Angew. Chem – volume: 60 start-page: 19442 year: 2021 ident: WOS:000677213500001 article-title: Halogen Bonding Tetraphenylethene Anion Receptors: Anion-Induced Emissive Aggregates and Photoswitchable Recognition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202107748 – volume: 68 start-page: 587 year: 1968 ident: WOS:A1968B839800003 article-title: STRUCTURAL CHEMISTRY OF DONOR-ACCEPTOR INTERACTIONS publication-title: CHEMICAL REVIEWS – volume: 133 start-page: 14957 year: 2021 ident: 000903634800001.18 publication-title: Angew. Chem – volume: 124 start-page: 1689 year: 2012 ident: 000903634800001.15 publication-title: Angew. Chem – volume: 142 start-page: 3117 year: 2020 ident: WOS:000514255300050 article-title: Dual Chalcogen-Chalcogen Bonding Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12610 – volume: 59 start-page: 3705 year: 2020 ident: WOS:000510497500001 article-title: The Importance of 1,5-Oxygen••Chalcogen Interactions in Enantioselective Isochalcogenourea Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201914421 – volume: 138 start-page: 9093 year: 2016 ident: WOS:000380730000026 article-title: Anion Transport with Chalcogen Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b05779 – volume: 12 start-page: 1762 year: 2021 ident: WOS:000617028900018 article-title: Towards photoswitchable quadruple hydrogen bonds via a reversible "photolocking" strategy for photocontrolled self-assembly publication-title: CHEMICAL SCIENCE doi: 10.1039/d0sc06141g – volume: 131 start-page: 9814 year: 2019 ident: 000903634800001.80 publication-title: Angew. Chem – volume: 60 start-page: 14831 year: 2021 ident: WOS:000654745400001 article-title: Halogen-Bonded Organic Framework (XOF) Based on Iodonium-Bridged N...I+...N Interactions: A Type of Diphase Periodic Organic Network publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102448 – volume: 58 start-page: 12705 year: 2019 ident: WOS:000478908300001 article-title: A Visible-Light-Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906761 – volume: 60 start-page: 11604 year: 2021 ident: WOS:000621034500001 article-title: Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007693 – volume: 6 start-page: 498 year: 2019 ident: WOS:000458518400011 article-title: Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host-guest interaction publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c8qo01157e – volume: 61 start-page: ARTN e202116071 year: 2022 ident: WOS:000756148100001 article-title: Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202116071 – volume: 60 start-page: 9395 year: 2021 ident: WOS:000627476900001 article-title: Chalcogen...π Bonding Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202101140 – volume: 140 start-page: 7079 year: 2018 ident: WOS:000435525500008 article-title: Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b04569 – volume: 58 start-page: 1880 year: 2019 ident: WOS:000458828000003 article-title: Chalcogen Bonding: An Overview publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201809432 – volume: 133 start-page: 14962 year: 2021 ident: 000903634800001.82 publication-title: Angew. Chem – volume: 58 start-page: 9712 year: 2019 ident: WOS:000476615900004 article-title: Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201814441 – volume: 132 start-page: 17303 year: 2020 ident: 000903634800001.37 publication-title: Angew. Chem – volume: 129 start-page: 830 year: 2017 ident: 000903634800001.69 publication-title: Angew. Chem – volume: 143 start-page: 8625 year: 2021 ident: WOS:000664300200019 article-title: Anion Chelation via Double Chalcogen Bonding: The Case of a Bis-telluronium Dication and Its Application in Electrophilic Catalysis via Metal-Chloride Bond Activation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c04482 – volume: 61 start-page: ARTN e202202137 year: 2022 ident: WOS:000788386900001 article-title: Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202202137 – volume: 144 start-page: 14778 year: 2022 ident: WOS:000849831900001 article-title: Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c05333 – volume: 132 start-page: 12105 year: 2020 ident: 000903634800001.26 publication-title: Angew. Chem – volume: 133 start-page: 19591 year: 2021 ident: 000903634800001.62 publication-title: Angew. Chem – volume: 60 start-page: 21973 year: 2021 ident: WOS:000691392900001 article-title: Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202108591 – volume: 139 start-page: 15160 year: 2017 ident: WOS:000414115800051 article-title: The Origin of Chalcogen-Bonding Interactions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b08511 – volume: 131 start-page: 1896 year: 2019 ident: 000903634800001.7 publication-title: Angew. Chem – volume: 130 start-page: 5506 year: 2018 ident: 000903634800001.66 publication-title: Angew. Chem – volume: 9 start-page: 3966 year: 2022 ident: WOS:000809068300001 article-title: Interplay between chalcogen bonds and dynamic covalent bonds publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d2qo00684g – volume: 13 start-page: 7098 year: 2022 ident: WOS:000799832100001 article-title: Halogen bonding and chalcogen bonding mediated sensing publication-title: CHEMICAL SCIENCE doi: 10.1039/d2sc01800d – volume: 57 start-page: 5408 year: 2018 ident: WOS:000431035500039 article-title: Catalysis with Pnictogen, Chalcogen, and Halogen Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201801452 – volume: 130 start-page: 17506 year: 2018 ident: 000903634800001.32 publication-title: Angew. Chem – volume: 119 start-page: 10977 year: 2019 ident: WOS:000490359300005 article-title: Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00279 – volume: 116 start-page: 2478 year: 2016 ident: WOS:000371106000018 article-title: The Halogen Bond publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00484 – volume: 34 start-page: ARTN 107639 year: 2023 ident: WOS:000950216900001 article-title: Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2022.06.062 – volume: 123 start-page: 6213 year: 2001 ident: WOS:000169534000054 article-title: Controlled multi-stage recognition of guests using orthogonal electro- and photochemical inputs publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 11 start-page: 12632 year: 2021 ident: WOS:000709692900019 article-title: Bis-selenonium Cations as Bidentate Chalcogen Bond Donors in Catalysis publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c03622 – volume: 4 start-page: 731 year: 2018 ident: WOS:000430591500010 article-title: Sigma-Hole Interactions in Anion Recognition publication-title: CHEM doi: 10.1016/j.chempr.2018.02.022 – volume: 2020 start-page: 5473 year: 2020 ident: WOS:000563836500001 article-title: σ-Hole Interactions in Catalysis publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202000660 – volume: 57 start-page: 17259 year: 2018 ident: WOS:000454575500058 article-title: Supramolecular Capsules: Strong versus Weak Chalcogen Bonding publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201812095 – volume: 32 start-page: ARTN 1905866 year: 2020 ident: WOS:000495466100001 article-title: The Many Ways to Assemble Nanoparticles Using Light publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201905866 – volume: 115 start-page: 7543 year: 2015 ident: WOS:000359613600010 article-title: Photoresponsive Host-Guest Functional Systems publication-title: CHEMICAL REVIEWS doi: 10.1021/cr5006342 – volume: 32 start-page: ARTN 1905966 year: 2020 ident: WOS:000508912600001 article-title: Enlightening Materials with Photoswitches publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201905966 – volume: 56 start-page: 12009 year: 2017 ident: WOS:000410810600064 article-title: Carbon-Halogen Bond Activation by Selenium-Based Chalcogen Bonding publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201704816 – volume: 56 start-page: 812 year: 2017 ident: WOS:000394996900024 article-title: Catalysis with Chalcogen Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201611019 |
SSID | ssj0028806 |
Score | 2.527329 |
Snippet | Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202212707 |
SubjectTerms | Affinity Alkylation Anion Binding Anions Antifungal agents Azo compounds Azobenzene Binding Bonding Catalysis Chalcogen Bonding Chalcogen bonds Chemistry Chemistry, Multidisciplinary Irradiation Photoswitch Physical Sciences Radiation Receptors Science & Technology Supramolecular Catalysis Tellurium Wavelengths |
Title | Visible‐Light‐Switchable Tellurium‐Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202212707 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000903634800001 https://www.ncbi.nlm.nih.gov/pubmed/36383643 https://www.proquest.com/docview/2766927004 https://www.proquest.com/docview/2737464485 |
Volume | 62 |
WOS | 000903634800001 |
WOSCitedRecordID | wos000903634800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXsoFyn-goCBV4uR2Yztxwm0btSoIKgQt6i2ynURdNSRVmwiJC32EPmOfhBnnh24RAsFpd-OJVk6-8cx4PN8AbOjSGCNjwwKZF0xKrpiJA81CrYmcUAQmoeLk9_vR3qF8exQeXavi7_khpg030gy3XpOCa3O-9ZM0lCqwMb7jRFHuyskDEbo87ceJP4ojOPvyIiEYdaEfWRtnfGv59mWr9IurecMqLTuyzhLt3gU9zqE_gHKy2bVm0367Qe_4P5NcgzuDm-rPe1zdg1tFfR9W07E73AP4_nmBylQVVxeX7yi-x89PXxcIASrF8g-KqurOFt0XvLyNdjL302Nd2QbR6lMjY7SXr_0Px03bDEflKxSZ14gRf3vhhn1dj1fmhrZjXP2Fn9JuE5GoPITD3Z2DdI8NzRyYFUooxpOoRChwGVlpldIWQ9MyVkSfH3Obcx3i2mFUrrXIw0IazfMZL5WINcboobTiEazUTV08AV_mwUzYJDazXFFaNjFhbpROylIEUSG4B2x8mZkdmM6p4UaV9RzNPKPHmk2P1YNXk_xpz_HxW8n1ERvZoOvnGVdRlFD-XnrwchrG10GpF10XTUcyQkkKhUMPHveYmv5K4BIo0DH0YOM6yKZxcoMp3S5jl4rxIPgbsXSYOFEbtB5wh7I_TC-b77_ZmX49_ZebnsFt_E5H9BiP1mGlPeuK5-i2teaFU80fwk466w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigX3o-UAkGqxMntxnbihNs2tNrCdoVgi7hFtpOoK0JSlURIXOAn8Bv5JczkBVuEQHCKYk8UOfnGnvF4vgHY0bkxRoaGeTLNmJRcMRN6mvlaEzmh8ExEycnHi2B2Ip-_9YfThJQL0_FDjBtupBntfE0KThvSez9YQykFGx08ThzllE9-mYJ0pJvPXo0MUhzh2SUYCcGoDv3A2zjhe-vPr69LvxibF9aldVO2XYsOr4EZRtEdQXm329Rm1366QPD4X8O8Dld7S9WddtC6AZey8iZsxkOBuFvw-c0K9anIvn35OicXH6-vP64QBZSN5S6zomjOV817bN7HpTJ141Nd2AoB61ItY1wyn7ovT6u66k_LFygyLREm7v6q7XZ1ObRMDe3ItCkYbkwbTsSjchtODg-W8Yz19RyYFUooxqMgRzRwGVhpldIWvdM8VMSgH3Kbcu3j9GFUqrVI_UwazdMJz5UINbrpvrTiDmyUVZndA1em3kTYKDSTVFFkNjJ-apSO8lx4QSa4A2z4m4ntyc6p5kaRdDTNPKHPmoyf1YEno_xZR_PxW8ntARxJr-4fEq6CIKIQvnTg8diNv4OiL7rMqoZkhJLkDfsO3O1ANb5K4Cwo0DZ0YOdnlI39ZAlTxF2GbTTGAe9vxOJ-4MRuUDvAW5j9YXjJdHF0MN5t_ctDj2BztjyeJ_OjxYv7cAXb6cQe48E2bNTnTfYArbjaPGz19DtW4z8H |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgEX_ikpBYJUiZPbje3ECbdt6KqFsqqgRb1FdpyoK0JStYmQuMAj8Iw8CTP5o1uEQHCKYk8UOfnGnvF4vgHY0LkxRoaGedJmTEqumAk9zXytiZxQeCai5OQ382D3SL469o8vZPF3_BDjhhtpRjtfk4Kf2nzrJ2koZWCjf8eJopzSya_KAF0sMovejgRSHNHZ5RcJwagM_UDbOOFby88vL0u_2JqXlqVlS7Zdima3QA-D6E6gfNhsarOZfr7E7_g_o7wNN3s71Z12wLoDV7LyLlyPh_Jw9-DL-wVqU5F9__ptnxx8vL77tEAMUC6We5gVRXO2aD5i8zYulNaNT3SRVghXlyoZ44L5wj04qeqqPytfoMi0RJC424u229Xl0DI1tB_TJmC4MW03EYvKfTia7RzGu6yv5sBSoYRiPApyxAKXQSpTpXSKvmkeKuLPD3lqufZx8jDKai2sn0mjuZ3wXIlQo5Puy1Q8gJWyKrOH4ErrTUQahWZiFcVlI-Nbo3SU58ILMsEdYMPPTNKe6pwqbhRJR9LME_qsyfhZHXg-yp92JB-_lVwfsJH0yn6ecBUEEQXwpQPPxm78HRR70WVWNSQjlCRf2HdgtcPU-CqBc6BAy9CBjYsgG_vJDqZ4uwzbWIwD3t-Ixf3AidugdoC3KPvD8JLpfG9nvFv7l4eewrWDl7Nkf2_--hHcwGY6rsd4sA4r9VmTPUYTrjZPWi39AWRCPbY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible%E2%80%90Light%E2%80%90Switchable+Tellurium%E2%80%90Based+Chalcogen+Bonding%3A+Photocontrolled+Anion+Binding+and+Anion+Abstraction+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Duan%2C+Hong%E2%80%90Ying&rft.au=Han%2C+Shi%E2%80%90Tao&rft.au=Zhan%2C+Tian%E2%80%90Guang&rft.au=Liu%2C+Li%E2%80%90Juan&rft.date=2023-01-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202212707&rft.externalDBID=10.1002%252Fanie.202212707&rft.externalDocID=ANIE202212707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |