Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors

It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojun...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 12; pp. e2205936 - n/a
Main Authors Gong, Shen‐Gen, Li, Yan‐Fei, Su, Yang, Li, Bing, Yang, Guo‐Duo, Wu, Xing‐Long, Zhang, Jing‐Ping, Sun, Hai‐Zhu, Li, Yunfeng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202205936

Cover

Abstract It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. A universal strategy for constructing lamellar porous heterojunctions is developed to fabricate flexible electrodes for high‐performance energy storage devices. The resulted electrodes have a unique energy band structure with higher electronic density of states near the Fermi level and high conductivity, which achieve efficient charge transport and shortened the ion diffusion distance.
AbstractList It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. A universal strategy for constructing lamellar porous heterojunctions is developed to fabricate flexible electrodes for high‐performance energy storage devices. The resulted electrodes have a unique energy band structure with higher electronic density of states near the Fermi level and high conductivity, which achieve efficient charge transport and shortened the ion diffusion distance.
It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH)2 lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH)2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm-2 at 2 mA cm-2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2 //CC@AC shows high energy density of 127.7 W h kg-1 at 750.0 W kg-1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH)2 lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH)2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm-2 at 2 mA cm-2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2 //CC@AC shows high energy density of 127.7 W h kg-1 at 750.0 W kg-1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH) lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH) ). The unique structure brings the electrode a high specific capacity of 3620 mF cm at 2 mA cm and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-E  = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH) electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH) //CC@AC shows high energy density of 127.7 W h kg at 750.0 W kg , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH) 2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH) 2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm −2 at 2 mA cm −2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level ( E – E f  = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH) 2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH) 2 //CC@AC shows high energy density of 127.7 W h kg −1 at 750.0 W kg −1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
Author Yang, Guo‐Duo
Li, Yunfeng
Zhang, Jing‐Ping
Su, Yang
Wu, Xing‐Long
Gong, Shen‐Gen
Li, Bing
Li, Yan‐Fei
Sun, Hai‐Zhu
Author_xml – sequence: 1
  givenname: Shen‐Gen
  surname: Gong
  fullname: Gong, Shen‐Gen
  organization: Jilin University
– sequence: 2
  givenname: Yan‐Fei
  surname: Li
  fullname: Li, Yan‐Fei
  organization: Northeast Normal University
– sequence: 3
  givenname: Yang
  surname: Su
  fullname: Su, Yang
  organization: Northeast Normal University
– sequence: 4
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: Northeast Normal University
– sequence: 5
  givenname: Guo‐Duo
  surname: Yang
  fullname: Yang, Guo‐Duo
  organization: Northeast Normal University
– sequence: 6
  givenname: Xing‐Long
  surname: Wu
  fullname: Wu, Xing‐Long
  organization: Northeast Normal University
– sequence: 7
  givenname: Jing‐Ping
  surname: Zhang
  fullname: Zhang, Jing‐Ping
  organization: Northeast Normal University
– sequence: 8
  givenname: Hai‐Zhu
  orcidid: 0000-0002-5113-8267
  surname: Sun
  fullname: Sun, Hai‐Zhu
  email: sunhz335@nenu.edu.cn
  organization: Northeast Normal University
– sequence: 9
  givenname: Yunfeng
  surname: Li
  fullname: Li, Yunfeng
  email: yflichem@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36634970$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rGzEQxUVJaT7aa49F0EsudiWNV9o9JiapCy4JJD0vWnnkymglV9ql9SV_e2WcuhAoPemBfm-kee-cnIQYkJD3nE05Y-JT7r2fCiYEqxqQr8gZlxwmshbNyVFzdkrOc94wBlzM1BtyClLCrFHsjDzNY8hDGs3gYqDR0mvX46C9d4YucMAUN2M4XF7rjCtaxH1Mccz0JqxdQEwurKmNiS7c-ju9x1R0r4NBeuvxl-s80qu868vUVGY-jFtMRm-1cUNM-S15bbXP-O75vCDfbm8e54vJ8u7zl_nVcmJAgZxY2QmhUNRcS67ANnWH1tQgqo5bZBLKjlADWglGNCsAqBlK2dmK15VUDC7I5WHuNsUfI-ah7V026L0OWHZphZKVUsArUdCPL9BNHFMovytU3VT7PHmhPjxTY9fjqt0m1-u0a_8kW4DpATAp5pzQHhHO2n117b669lhdMcxeGEpEep_8kLTz_7Y1B9tP53H3n0fah6_L5V_vbzdzrsY
CitedBy_id crossref_primary_10_1016_j_fuel_2023_129542
crossref_primary_10_1016_j_ceramint_2024_08_176
crossref_primary_10_1039_D4TA03481C
crossref_primary_10_1016_j_est_2023_109322
crossref_primary_10_1016_j_est_2023_110032
crossref_primary_10_1016_j_jallcom_2023_170798
crossref_primary_10_1016_j_materresbull_2023_112441
crossref_primary_10_1016_j_jallcom_2024_176751
crossref_primary_10_1002_advs_202308582
crossref_primary_10_1016_j_jcis_2023_07_010
crossref_primary_10_1016_j_cej_2023_144590
crossref_primary_10_1016_j_est_2024_114150
crossref_primary_10_1021_acsami_4c01533
crossref_primary_10_1016_j_jallcom_2024_173562
crossref_primary_10_1002_anie_202401629
crossref_primary_10_1002_ange_202401629
crossref_primary_10_1016_j_ensm_2024_103321
crossref_primary_10_1016_j_apsusc_2024_159732
crossref_primary_10_4150_KPMI_2023_30_5_387
crossref_primary_10_1039_D4SC05710D
crossref_primary_10_1016_j_est_2024_113956
crossref_primary_10_1016_j_jpowsour_2024_234472
crossref_primary_10_1002_smll_202408221
crossref_primary_10_1002_batt_202400699
crossref_primary_10_1016_j_apenergy_2024_123284
crossref_primary_10_1016_j_jcis_2023_10_114
crossref_primary_10_1016_j_microc_2024_110578
crossref_primary_10_1016_j_est_2024_111134
crossref_primary_10_1039_D3CP06038A
crossref_primary_10_1016_j_apsusc_2024_160230
crossref_primary_10_1016_j_diamond_2024_111732
crossref_primary_10_1002_advs_202309865
Cites_doi 10.1002/adma.202005858
10.1039/C6EE00966B
10.1016/j.cej.2021.130609
10.1016/j.ijhydene.2018.04.173
10.1038/nmat4810
10.1002/adma.202170028
10.1038/nmat4766
10.1021/acsami.5b00806
10.1002/aenm.201901892
10.1002/aenm.202000181
10.1039/C9NR00962K
10.1039/C8TA06349D
10.1016/j.apsusc.2019.02.170
10.1002/aenm.202002838
10.1007/s10853-017-1161-z
10.1088/1361-6528/aaa80d
10.1039/C8TA08262F
10.1002/aenm.202003010
10.1016/j.ensm.2017.12.006
10.1016/j.apmt.2021.101048
10.1016/j.cej.2021.131003
10.1002/adma.202004560
10.1039/C8TA00945G
10.1016/j.cej.2021.131089
10.1016/j.cej.2021.132486
10.1016/j.jcis.2018.08.019
10.1016/j.ensm.2020.07.030
10.1021/acsami.7b10402
10.1039/D1QI00934F
10.1016/j.ccr.2021.213910
10.1016/j.nanoen.2016.02.019
10.1016/j.electacta.2018.12.037
10.1038/nmat4851
10.1002/aenm.202070090
10.1039/C7EE00488E
10.1021/ja8057309
10.1002/aenm.201500753
10.1002/adfm.202102284
10.1016/j.nanoen.2017.11.013
10.1002/smtd.201900823
10.1149/1.2115565
10.1039/C3TA15427K
10.1016/j.jechem.2021.04.057
10.1002/anie.201702649
10.1002/adfm.202103073
10.1038/s41563-019-0598-7
10.1016/0039-6028(76)90026-1
10.1002/adfm.201707247
10.1016/j.jelechem.2018.01.059
10.1016/j.jpowsour.2012.04.104
10.1021/acssuschemeng.1c05164
10.1016/j.cej.2019.05.169
10.1016/j.jpcs.2017.09.009
10.1016/j.cej.2019.05.039
10.1021/acs.chemrev.8b00252
10.1016/j.jtice.2018.09.017
10.1016/j.cej.2020.126145
10.1039/D1EE00398D
10.1016/j.cej.2021.128871
10.1002/aenm.201702294
10.1039/D0TA10504J
10.1002/anie.201907516
10.1039/D1TA10580A
10.1039/C8TA10442E
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202205936
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36634970
10_1002_smll_202205936
SMLL202205936
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2412019ZD002
– fundername: National Natural Science Foundation of China
  funderid: 22035001; 22275030
– fundername: National Natural Science Foundation of China
  grantid: 22035001
– fundername: National Natural Science Foundation of China
  grantid: 22275030
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2412019ZD002
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c3736-f6b227e281a6173f98befc8325b1fe063810383ef63c29d33380e66bf51856703
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 05:19:19 EDT 2025
Fri Jul 25 12:02:38 EDT 2025
Thu Apr 03 07:01:38 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 02:54:24 EDT 2025
Wed Jan 22 16:22:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords high energy density
heterostructures
flexible electrodes
porous interface engineering
supercapacitors
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-f6b227e281a6173f98befc8325b1fe063810383ef63c29d33380e66bf51856703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5113-8267
PMID 36634970
PQID 2789568101
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2765773152
proquest_journals_2789568101
pubmed_primary_36634970
crossref_primary_10_1002_smll_202205936
crossref_citationtrail_10_1002_smll_202205936
wiley_primary_10_1002_smll_202205936_SMLL202205936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 23
2019; 11
2019; 10
2019; 58
2020; 401
2022; 64
2020; 11
2020; 10
2018; 43
2017; 9
2020; 19
2018; 6
2018; 8
2020; 4
2021; 31
2021; 33
2014; 2
2021; 438
2018; 532
2019; 479
2018; 816
2012; 215
2021; 9
2021; 8
2019; 7
2018; 29
2018; 28
2015; 5
2021; 425
2020; 32
2009; 131
2021; 1
2015; 7
2021; 14
2021; 13
2017; 52
1984; 131
2021; 11
2020; 30
2017; 16
2018; 118
2017; 10
2018; 112
2017; 56
2021; 415
2022; 10
2022; 429
2018; 93
2022; 427
2018; 12
2022; 428
1976; 59
2016; 9
2019; 373
2016; 22
2019; 374
2019; 297
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Kar T. (e_1_2_7_33_1) 2021; 1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
Fu W. (e_1_2_7_20_1) 2021; 13
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Wang X. (e_1_2_7_37_1) 2020; 30
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1777
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 401
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59
  start-page: 413
  year: 1976
  publication-title: Surf. Sci.
– volume: 16
  start-page: 454
  year: 2017
  publication-title: Nat. Mater.
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 2549
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2812
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 7278
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2021
  publication-title: Mater. Today
– volume: 43
  start-page: 91
  year: 2018
  publication-title: Nano Energy
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 22
  start-page: 189
  year: 2016
  publication-title: Nano Energy
– volume: 58
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 552
  year: 2020
  publication-title: Nat. Mater.
– volume: 479
  start-page: 1270
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3710
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 161
  year: 2017
  publication-title: Nat. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 297
  start-page: 593
  year: 2019
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 128
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 43
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 9773
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 112
  start-page: 54
  year: 2018
  publication-title: J. Phys. Chem. Solids
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 6243
  year: 2019
  publication-title: Nanoscale
– volume: 23
  year: 2021
  publication-title: Appl. Mater. Today
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 215
  start-page: 317
  year: 2012
  publication-title: J. Power Sources
– volume: 532
  start-page: 630
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 816
  start-page: 99
  year: 2018
  publication-title: J. Electroanal. Chem.
– volume: 438
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 1
  year: 2021
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 373
  start-page: 1012
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 5100
  year: 2021
  publication-title: Inorg. Chem. Front.
– volume: 32
  start-page: 208
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 1160
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 93
  start-page: 632
  year: 2018
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 5041
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 290
  year: 1984
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 214
  year: 2022
  publication-title: J. Energy Chem.
– volume: 118
  start-page: 9233
  year: 2018
  publication-title: Chem. Rev.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 374
  start-page: 181
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 220
  year: 2017
  publication-title: Nat. Mater.
– volume: 131
  start-page: 1802
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 7141
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202005858
– ident: e_1_2_7_40_1
  doi: 10.1039/C6EE00966B
– ident: e_1_2_7_43_1
  doi: 10.1016/j.cej.2021.130609
– ident: e_1_2_7_55_1
  doi: 10.1016/j.ijhydene.2018.04.173
– ident: e_1_2_7_61_1
  doi: 10.1038/nmat4810
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202170028
– ident: e_1_2_7_22_1
  doi: 10.1038/nmat4766
– ident: e_1_2_7_46_1
  doi: 10.1021/acsami.5b00806
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201901892
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.202000181
– ident: e_1_2_7_63_1
  doi: 10.1039/C9NR00962K
– ident: e_1_2_7_27_1
  doi: 10.1039/C8TA06349D
– ident: e_1_2_7_52_1
  doi: 10.1016/j.apsusc.2019.02.170
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.202002838
– ident: e_1_2_7_48_1
  doi: 10.1007/s10853-017-1161-z
– ident: e_1_2_7_59_1
  doi: 10.1088/1361-6528/aaa80d
– ident: e_1_2_7_49_1
  doi: 10.1039/C8TA08262F
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.202003010
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ensm.2017.12.006
– ident: e_1_2_7_12_1
  doi: 10.1016/j.apmt.2021.101048
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cej.2021.131003
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202004560
– ident: e_1_2_7_50_1
  doi: 10.1039/C8TA00945G
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cej.2021.131089
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cej.2021.132486
– ident: e_1_2_7_64_1
  doi: 10.1016/j.jcis.2018.08.019
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2020.07.030
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.7b10402
– ident: e_1_2_7_11_1
  doi: 10.1039/D1QI00934F
– volume: 1
  year: 2021
  ident: e_1_2_7_33_1
  publication-title: Crit. Rev. Solid State Mater. Sci.
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ccr.2021.213910
– ident: e_1_2_7_15_1
  doi: 10.1016/j.nanoen.2016.02.019
– ident: e_1_2_7_58_1
  doi: 10.1016/j.electacta.2018.12.037
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat4851
– ident: e_1_2_7_31_1
  doi: 10.1002/aenm.202070090
– ident: e_1_2_7_16_1
  doi: 10.1039/C7EE00488E
– volume: 13
  year: 2021
  ident: e_1_2_7_20_1
  publication-title: Mater. Today
– ident: e_1_2_7_65_1
  doi: 10.1021/ja8057309
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201500753
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202102284
– ident: e_1_2_7_42_1
  doi: 10.1016/j.nanoen.2017.11.013
– ident: e_1_2_7_56_1
  doi: 10.1002/smtd.201900823
– volume: 30
  year: 2020
  ident: e_1_2_7_37_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_47_1
  doi: 10.1149/1.2115565
– ident: e_1_2_7_45_1
  doi: 10.1039/C3TA15427K
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jechem.2021.04.057
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.201702649
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202103073
– ident: e_1_2_7_19_1
  doi: 10.1038/s41563-019-0598-7
– ident: e_1_2_7_53_1
  doi: 10.1016/0039-6028(76)90026-1
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.201707247
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jelechem.2018.01.059
– ident: e_1_2_7_62_1
  doi: 10.1016/j.jpowsour.2012.04.104
– ident: e_1_2_7_67_1
  doi: 10.1021/acssuschemeng.1c05164
– ident: e_1_2_7_57_1
  doi: 10.1016/j.cej.2019.05.169
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jpcs.2017.09.009
– ident: e_1_2_7_1_1
  doi: 10.1016/j.cej.2019.05.039
– ident: e_1_2_7_66_1
  doi: 10.1021/acs.chemrev.8b00252
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jtice.2018.09.017
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cej.2020.126145
– ident: e_1_2_7_21_1
  doi: 10.1039/D1EE00398D
– ident: e_1_2_7_34_1
  doi: 10.1016/j.cej.2021.128871
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201702294
– ident: e_1_2_7_39_1
  doi: 10.1039/D0TA10504J
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201907516
– ident: e_1_2_7_10_1
  doi: 10.1039/D1TA10580A
– ident: e_1_2_7_35_1
  doi: 10.1039/C8TA10442E
SSID ssj0031247
Score 2.5539904
Snippet It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high...
It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2205936
SubjectTerms Bimetals
Charge transport
Copper oxides
Density functional theory
Electrodes
Electron states
Energy storage
Flexibility
flexible electrodes
Heterojunctions
heterostructures
high energy density
Ion diffusion
Lamella
Mechanical properties
Modulus of elasticity
Nanotechnology
porous interface engineering
Supercapacitors
Title Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205936
https://www.ncbi.nlm.nih.gov/pubmed/36634970
https://www.proquest.com/docview/2789568101
https://www.proquest.com/docview/2765773152
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYmnsYDbONXgSFPQuIpbeNLnOSxnaiqCaaKgsRbFDu2VGgbROjDeNjfvjunCS0TmsTebMVOHOfO9zm--46xUxBaZiIPvFhmkReoCEuhtliNujaGINEukPbypxzeBD9uw9uVKP6KH6L54Uaa4dZrUvBMlZ0X0tByNqWjAwoUTYA4t30I3TntVcMfBWi8XHYVtFkeEW_VrI1d0Vnvvm6V_oKa68jVmZ7BNsvqQVceJ_ftxZNq6-dXfI7_81af2NYSl_JeJUif2Qcz_8I2V9gKd9hvSu5Z083ywvL-ZGYQu08nmg_Jq6a4QyPpLvbRNuYcC6PisViUfOU-HFEyJ-8SPnqJWeAD4uVUU8N75a_ZjLJ8aT5ePJhHjcZcTygl0C67GZxffx96y_QNnoYIpGelEiIyIvYzhElgk1gZq3EFCZVvDUElImcHYyVokeSAm-WukVLZEDEEigrssY15MTcHjBOHvMliRJfgB76FROc5hdTmvsJtteq2mFd_vlQvuc0pxcY0rViZRUrzmjbz2mJnTfuHitXjzZbHtTSkS-0uU4oedkRufot9ay6jXtJhSzY3OLHYRoZRBAiPWmy_kqLmUYAwL0giHLZwsvCPMaTjy4uLpnb4nk5H7COWoXKeO2YbKCzmK6KpJ3XiNOYPN4QWhg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8N9gA8sI2P0Q2YkZB4CjR24iSPfFXdaBHiQ-Itih1bKmubqqUP7GF_--6SJm1BExK8xYmdOM6d7xf77ncA-4JrmfDUc0KZBI6nAjzytcViULeh8CKdB9K2L2Xzzvt175fehBQLU_BDVAtupBn5fE0KTgvSR1PW0FGvS3sHFCkaCbkAH2mTjnTz7LpikBJovvL8Kmi1HKLeKnkb6_xovv28XXoBNuexa258Gp9Ald0ufE5-H44f1aH-84zR8V3v9RlWJ9CUHRey9AU-mP4arMwQFq7DX8rvWTLOssyyk07PIHzvdjRrkmNN9oB2Mr94guYxZXhwlQ2z8YjN3IchUGbkYMKupmELrEHUnKpr2PHoqdejRF-a3YwHZqjRnusOZQXagLvG-e1p05lkcHC0CIR0rFScB4aHboJISdgoVMZqnER85VpDaIn42YWxUmgepQL_l-tGSmV9hBEoLWITFvtZ32wBIxp5k4QIMIXruVZEOk0pqjZ1Ff5Zq3oNnPL7xXpCb05ZNrpxQczMYxrXuBrXGhxU9QcFscd_a26X4hBPFHwUUwBxzuXm1mCvuoyqSfstSd_gwGId6QeBQIRUg6-FGFWPEoj0vCjAbvNcGF7pQ3zTbrWq0re3NPoBS83bditu_by8-A7LeF4UvnTbsIiCY3YQXD2q3Vx9_gGaQxqi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xIk3bwwb7LIPhSUh7Cm3sxEkeYaMqrK0qGBJvUezYUre0qSh92B72t3OXL1oQmrS9xbGdOPad7-fY9zuAA8G1THjqOaFMAsdTAV752mIy6NpQeJEuHGmHI9m_9M6u_KsVL_6SH6L54UaaUczXpODz1HbuSEMX04y2DshRNBLyCWx6EpdYBIvOGwIpgdarCK-CRssh5q2atrHLO-v1183SA6y5Dl0L29N7CUnd6vLIyc_D5Y061L_vETr-z2dtwYsKmLKjUpK2YcPMXsHzFbrC1_CHonvWfLMst-x4MjUI3rOJZn06VpP_QCtZZB6jcUwZXozz63y5YCvPYQiTGR0vYeM7pwXWI2JOlRl2tPg1nVKYL80ulnNzrdGa6wnFBHoDl72T71_6ThW_wdEiENKxUnEeGB66CeIkYaNQGatxCvGVaw1hJWJnF8ZKoXmUClwtd42UyvoIIlBWxFtozfKZeQ-MSORNEiK8FK7nWhHpNCWf2tRVOOiq2wanHr5YV-TmFGMji0taZh5Tv8ZNv7bhc1N-XtJ6PFpyt5aGuFLvRUzuwwWTm9uGT002KibttiQzgx2LZaQfBALxURvelVLUvEogzvOiAJvNC1n4Sxvii-Fg0KR2_qXSPjwdf-3Fg9PRtw_wDG-L8iDdLrRQbsweIqsb9bFQnlsvyRlR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Bimetallic+Heterojunction+Based+on+Porous+Engineering+for+High+Performance+Flexible+Asymmetric+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gong%2C+Shen%E2%80%90Gen&rft.au=Li%2C+Yan%E2%80%90Fei&rft.au=Su%2C+Yang&rft.au=Li%2C+Bing&rft.date=2023-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202205936&rft.externalDBID=10.1002%252Fsmll.202205936&rft.externalDocID=SMLL202205936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon