Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors
It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojun...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 12; pp. e2205936 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202205936 |
Cover
Abstract | It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
A universal strategy for constructing lamellar porous heterojunctions is developed to fabricate flexible electrodes for high‐performance energy storage devices. The resulted electrodes have a unique energy band structure with higher electronic density of states near the Fermi level and high conductivity, which achieve efficient charge transport and shortened the ion diffusion distance. |
---|---|
AbstractList | It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.
A universal strategy for constructing lamellar porous heterojunctions is developed to fabricate flexible electrodes for high‐performance energy storage devices. The resulted electrodes have a unique energy band structure with higher electronic density of states near the Fermi level and high conductivity, which achieve efficient charge transport and shortened the ion diffusion distance. It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH)2 lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH)2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm-2 at 2 mA cm-2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2 //CC@AC shows high energy density of 127.7 W h kg-1 at 750.0 W kg-1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications.It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH)2 lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH)2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm-2 at 2 mA cm-2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2 //CC@AC shows high energy density of 127.7 W h kg-1 at 750.0 W kg-1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH)2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH)2). The unique structure brings the electrode a high specific capacity of 3620 mF cm−2 at 2 mA cm−2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E–Ef = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH)2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH)2//CC@AC shows high energy density of 127.7 W h kg−1 at 750.0 W kg−1, remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two-layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO-Co(OH) lamella on Cu-plated carbon cloth (named as CPCC@CuO@Co(OH) ). The unique structure brings the electrode a high specific capacity of 3620 mF cm at 2 mA cm and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level (E-E = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH) electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH) //CC@AC shows high energy density of 127.7 W h kg at 750.0 W kg , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high energy density under high power density. Herein, a concept of porous engineering is proposed to simply prepare two‐layered bimetallic heterojunction with porous structures. This concept is successfully applied in fabrication of flexible electrode based on CuO‐Co(OH) 2 lamella on Cu‐plated carbon cloth (named as CPCC@CuO@Co(OH) 2 ). The unique structure brings the electrode a high specific capacity of 3620 mF cm −2 at 2 mA cm −2 and appropriate mechanical properties with Young's modulus of 302.0 MPa. Density functional theory calculations show that porous heterojunction provides a higher intensity of electron state density near the Fermi level ( E – E f = 0 eV), leading to a highly conductive CPCC@CuO@Co(OH) 2 electrode with both efficient charge transport and rapid ion diffusion. Notably, the supercapacitor assembled from CPCC@CuO@Co(OH) 2 //CC@AC shows high energy density of 127.7 W h kg −1 at 750.0 W kg −1 , remarkable cycling performance (95.53% capacity maintaining after 10 000 cycles), and desired mechanical flexibility. The methodology and results in this work will accelerate the transformative developments of flexible energy storage devices in practical applications. |
Author | Yang, Guo‐Duo Li, Yunfeng Zhang, Jing‐Ping Su, Yang Wu, Xing‐Long Gong, Shen‐Gen Li, Bing Li, Yan‐Fei Sun, Hai‐Zhu |
Author_xml | – sequence: 1 givenname: Shen‐Gen surname: Gong fullname: Gong, Shen‐Gen organization: Jilin University – sequence: 2 givenname: Yan‐Fei surname: Li fullname: Li, Yan‐Fei organization: Northeast Normal University – sequence: 3 givenname: Yang surname: Su fullname: Su, Yang organization: Northeast Normal University – sequence: 4 givenname: Bing surname: Li fullname: Li, Bing organization: Northeast Normal University – sequence: 5 givenname: Guo‐Duo surname: Yang fullname: Yang, Guo‐Duo organization: Northeast Normal University – sequence: 6 givenname: Xing‐Long surname: Wu fullname: Wu, Xing‐Long organization: Northeast Normal University – sequence: 7 givenname: Jing‐Ping surname: Zhang fullname: Zhang, Jing‐Ping organization: Northeast Normal University – sequence: 8 givenname: Hai‐Zhu orcidid: 0000-0002-5113-8267 surname: Sun fullname: Sun, Hai‐Zhu email: sunhz335@nenu.edu.cn organization: Northeast Normal University – sequence: 9 givenname: Yunfeng surname: Li fullname: Li, Yunfeng email: yflichem@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36634970$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rGzEQxUVJaT7aa49F0EsudiWNV9o9JiapCy4JJD0vWnnkymglV9ql9SV_e2WcuhAoPemBfm-kee-cnIQYkJD3nE05Y-JT7r2fCiYEqxqQr8gZlxwmshbNyVFzdkrOc94wBlzM1BtyClLCrFHsjDzNY8hDGs3gYqDR0mvX46C9d4YucMAUN2M4XF7rjCtaxH1Mccz0JqxdQEwurKmNiS7c-ju9x1R0r4NBeuvxl-s80qu868vUVGY-jFtMRm-1cUNM-S15bbXP-O75vCDfbm8e54vJ8u7zl_nVcmJAgZxY2QmhUNRcS67ANnWH1tQgqo5bZBLKjlADWglGNCsAqBlK2dmK15VUDC7I5WHuNsUfI-ah7V026L0OWHZphZKVUsArUdCPL9BNHFMovytU3VT7PHmhPjxTY9fjqt0m1-u0a_8kW4DpATAp5pzQHhHO2n117b669lhdMcxeGEpEep_8kLTz_7Y1B9tP53H3n0fah6_L5V_vbzdzrsY |
CitedBy_id | crossref_primary_10_1016_j_fuel_2023_129542 crossref_primary_10_1016_j_ceramint_2024_08_176 crossref_primary_10_1039_D4TA03481C crossref_primary_10_1016_j_est_2023_109322 crossref_primary_10_1016_j_est_2023_110032 crossref_primary_10_1016_j_jallcom_2023_170798 crossref_primary_10_1016_j_materresbull_2023_112441 crossref_primary_10_1016_j_jallcom_2024_176751 crossref_primary_10_1002_advs_202308582 crossref_primary_10_1016_j_jcis_2023_07_010 crossref_primary_10_1016_j_cej_2023_144590 crossref_primary_10_1016_j_est_2024_114150 crossref_primary_10_1021_acsami_4c01533 crossref_primary_10_1016_j_jallcom_2024_173562 crossref_primary_10_1002_anie_202401629 crossref_primary_10_1002_ange_202401629 crossref_primary_10_1016_j_ensm_2024_103321 crossref_primary_10_1016_j_apsusc_2024_159732 crossref_primary_10_4150_KPMI_2023_30_5_387 crossref_primary_10_1039_D4SC05710D crossref_primary_10_1016_j_est_2024_113956 crossref_primary_10_1016_j_jpowsour_2024_234472 crossref_primary_10_1002_smll_202408221 crossref_primary_10_1002_batt_202400699 crossref_primary_10_1016_j_apenergy_2024_123284 crossref_primary_10_1016_j_jcis_2023_10_114 crossref_primary_10_1016_j_microc_2024_110578 crossref_primary_10_1016_j_est_2024_111134 crossref_primary_10_1039_D3CP06038A crossref_primary_10_1016_j_apsusc_2024_160230 crossref_primary_10_1016_j_diamond_2024_111732 crossref_primary_10_1002_advs_202309865 |
Cites_doi | 10.1002/adma.202005858 10.1039/C6EE00966B 10.1016/j.cej.2021.130609 10.1016/j.ijhydene.2018.04.173 10.1038/nmat4810 10.1002/adma.202170028 10.1038/nmat4766 10.1021/acsami.5b00806 10.1002/aenm.201901892 10.1002/aenm.202000181 10.1039/C9NR00962K 10.1039/C8TA06349D 10.1016/j.apsusc.2019.02.170 10.1002/aenm.202002838 10.1007/s10853-017-1161-z 10.1088/1361-6528/aaa80d 10.1039/C8TA08262F 10.1002/aenm.202003010 10.1016/j.ensm.2017.12.006 10.1016/j.apmt.2021.101048 10.1016/j.cej.2021.131003 10.1002/adma.202004560 10.1039/C8TA00945G 10.1016/j.cej.2021.131089 10.1016/j.cej.2021.132486 10.1016/j.jcis.2018.08.019 10.1016/j.ensm.2020.07.030 10.1021/acsami.7b10402 10.1039/D1QI00934F 10.1016/j.ccr.2021.213910 10.1016/j.nanoen.2016.02.019 10.1016/j.electacta.2018.12.037 10.1038/nmat4851 10.1002/aenm.202070090 10.1039/C7EE00488E 10.1021/ja8057309 10.1002/aenm.201500753 10.1002/adfm.202102284 10.1016/j.nanoen.2017.11.013 10.1002/smtd.201900823 10.1149/1.2115565 10.1039/C3TA15427K 10.1016/j.jechem.2021.04.057 10.1002/anie.201702649 10.1002/adfm.202103073 10.1038/s41563-019-0598-7 10.1016/0039-6028(76)90026-1 10.1002/adfm.201707247 10.1016/j.jelechem.2018.01.059 10.1016/j.jpowsour.2012.04.104 10.1021/acssuschemeng.1c05164 10.1016/j.cej.2019.05.169 10.1016/j.jpcs.2017.09.009 10.1016/j.cej.2019.05.039 10.1021/acs.chemrev.8b00252 10.1016/j.jtice.2018.09.017 10.1016/j.cej.2020.126145 10.1039/D1EE00398D 10.1016/j.cej.2021.128871 10.1002/aenm.201702294 10.1039/D0TA10504J 10.1002/anie.201907516 10.1039/D1TA10580A 10.1039/C8TA10442E |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202205936 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36634970 10_1002_smll_202205936 SMLL202205936 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2412019ZD002 – fundername: National Natural Science Foundation of China funderid: 22035001; 22275030 – fundername: National Natural Science Foundation of China grantid: 22035001 – fundername: National Natural Science Foundation of China grantid: 22275030 – fundername: Fundamental Research Funds for the Central Universities grantid: 2412019ZD002 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c3736-f6b227e281a6173f98befc8325b1fe063810383ef63c29d33380e66bf51856703 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 05:19:19 EDT 2025 Fri Jul 25 12:02:38 EDT 2025 Thu Apr 03 07:01:38 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Jul 01 02:54:24 EDT 2025 Wed Jan 22 16:22:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | high energy density heterostructures flexible electrodes porous interface engineering supercapacitors |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-f6b227e281a6173f98befc8325b1fe063810383ef63c29d33380e66bf51856703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5113-8267 |
PMID | 36634970 |
PQID | 2789568101 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2765773152 proquest_journals_2789568101 pubmed_primary_36634970 crossref_primary_10_1002_smll_202205936 crossref_citationtrail_10_1002_smll_202205936 wiley_primary_10_1002_smll_202205936_SMLL202205936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 23 2019; 11 2019; 10 2019; 58 2020; 401 2022; 64 2020; 11 2020; 10 2018; 43 2017; 9 2020; 19 2018; 6 2018; 8 2020; 4 2021; 31 2021; 33 2014; 2 2021; 438 2018; 532 2019; 479 2018; 816 2012; 215 2021; 9 2021; 8 2019; 7 2018; 29 2018; 28 2015; 5 2021; 425 2020; 32 2009; 131 2021; 1 2015; 7 2021; 14 2021; 13 2017; 52 1984; 131 2021; 11 2020; 30 2017; 16 2018; 118 2017; 10 2018; 112 2017; 56 2021; 415 2022; 10 2022; 429 2018; 93 2022; 427 2018; 12 2022; 428 1976; 59 2016; 9 2019; 373 2016; 22 2019; 374 2019; 297 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Kar T. (e_1_2_7_33_1) 2021; 1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 Fu W. (e_1_2_7_20_1) 2021; 13 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Wang X. (e_1_2_7_37_1) 2020; 30 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1777 year: 2017 publication-title: Energy Environ. Sci. – volume: 401 year: 2020 publication-title: Chem. Eng. J. – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 9 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 59 start-page: 413 year: 1976 publication-title: Surf. Sci. – volume: 16 start-page: 454 year: 2017 publication-title: Nat. Mater. – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 14 start-page: 2549 year: 2021 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2812 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 7278 year: 2021 publication-title: J. Mater. Chem. A – volume: 13 year: 2021 publication-title: Mater. Today – volume: 43 start-page: 91 year: 2018 publication-title: Nano Energy – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 22 start-page: 189 year: 2016 publication-title: Nano Energy – volume: 58 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 552 year: 2020 publication-title: Nat. Mater. – volume: 479 start-page: 1270 year: 2019 publication-title: Appl. Surf. Sci. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3710 year: 2022 publication-title: J. Mater. Chem. A – volume: 16 start-page: 161 year: 2017 publication-title: Nat. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 297 start-page: 593 year: 2019 publication-title: Electrochim. Acta – volume: 12 start-page: 128 year: 2018 publication-title: Energy Storage Mater. – volume: 43 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 9773 year: 2017 publication-title: J. Mater. Sci. – volume: 112 start-page: 54 year: 2018 publication-title: J. Phys. Chem. Solids – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 11 start-page: 6243 year: 2019 publication-title: Nanoscale – volume: 23 year: 2021 publication-title: Appl. Mater. Today – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 215 start-page: 317 year: 2012 publication-title: J. Power Sources – volume: 532 start-page: 630 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 816 start-page: 99 year: 2018 publication-title: J. Electroanal. Chem. – volume: 438 year: 2021 publication-title: Coord. Chem. Rev. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 1 year: 2021 publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 373 start-page: 1012 year: 2019 publication-title: Chem. Eng. J. – volume: 8 start-page: 5100 year: 2021 publication-title: Inorg. Chem. Front. – volume: 32 start-page: 208 year: 2020 publication-title: Energy Storage Mater. – volume: 7 start-page: 1160 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 93 start-page: 632 year: 2018 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 2 start-page: 5041 year: 2014 publication-title: J. Mater. Chem. A – volume: 131 start-page: 290 year: 1984 publication-title: J. Electrochem. Soc. – volume: 4 year: 2020 publication-title: Small Methods – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 64 start-page: 214 year: 2022 publication-title: J. Energy Chem. – volume: 118 start-page: 9233 year: 2018 publication-title: Chem. Rev. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 374 start-page: 181 year: 2019 publication-title: Chem. Eng. J. – volume: 16 start-page: 220 year: 2017 publication-title: Nat. Mater. – volume: 131 start-page: 1802 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 7141 year: 2017 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_6_1 doi: 10.1002/adma.202005858 – ident: e_1_2_7_40_1 doi: 10.1039/C6EE00966B – ident: e_1_2_7_43_1 doi: 10.1016/j.cej.2021.130609 – ident: e_1_2_7_55_1 doi: 10.1016/j.ijhydene.2018.04.173 – ident: e_1_2_7_61_1 doi: 10.1038/nmat4810 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202170028 – ident: e_1_2_7_22_1 doi: 10.1038/nmat4766 – ident: e_1_2_7_46_1 doi: 10.1021/acsami.5b00806 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201901892 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.202000181 – ident: e_1_2_7_63_1 doi: 10.1039/C9NR00962K – ident: e_1_2_7_27_1 doi: 10.1039/C8TA06349D – ident: e_1_2_7_52_1 doi: 10.1016/j.apsusc.2019.02.170 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.202002838 – ident: e_1_2_7_48_1 doi: 10.1007/s10853-017-1161-z – ident: e_1_2_7_59_1 doi: 10.1088/1361-6528/aaa80d – ident: e_1_2_7_49_1 doi: 10.1039/C8TA08262F – ident: e_1_2_7_4_1 doi: 10.1002/aenm.202003010 – ident: e_1_2_7_28_1 doi: 10.1016/j.ensm.2017.12.006 – ident: e_1_2_7_12_1 doi: 10.1016/j.apmt.2021.101048 – ident: e_1_2_7_17_1 doi: 10.1016/j.cej.2021.131003 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202004560 – ident: e_1_2_7_50_1 doi: 10.1039/C8TA00945G – ident: e_1_2_7_13_1 doi: 10.1016/j.cej.2021.131089 – ident: e_1_2_7_24_1 doi: 10.1016/j.cej.2021.132486 – ident: e_1_2_7_64_1 doi: 10.1016/j.jcis.2018.08.019 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2020.07.030 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.7b10402 – ident: e_1_2_7_11_1 doi: 10.1039/D1QI00934F – volume: 1 year: 2021 ident: e_1_2_7_33_1 publication-title: Crit. Rev. Solid State Mater. Sci. – ident: e_1_2_7_30_1 doi: 10.1016/j.ccr.2021.213910 – ident: e_1_2_7_15_1 doi: 10.1016/j.nanoen.2016.02.019 – ident: e_1_2_7_58_1 doi: 10.1016/j.electacta.2018.12.037 – ident: e_1_2_7_23_1 doi: 10.1038/nmat4851 – ident: e_1_2_7_31_1 doi: 10.1002/aenm.202070090 – ident: e_1_2_7_16_1 doi: 10.1039/C7EE00488E – volume: 13 year: 2021 ident: e_1_2_7_20_1 publication-title: Mater. Today – ident: e_1_2_7_65_1 doi: 10.1021/ja8057309 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201500753 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202102284 – ident: e_1_2_7_42_1 doi: 10.1016/j.nanoen.2017.11.013 – ident: e_1_2_7_56_1 doi: 10.1002/smtd.201900823 – volume: 30 year: 2020 ident: e_1_2_7_37_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_47_1 doi: 10.1149/1.2115565 – ident: e_1_2_7_45_1 doi: 10.1039/C3TA15427K – ident: e_1_2_7_36_1 doi: 10.1016/j.jechem.2021.04.057 – ident: e_1_2_7_2_1 doi: 10.1002/anie.201702649 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202103073 – ident: e_1_2_7_19_1 doi: 10.1038/s41563-019-0598-7 – ident: e_1_2_7_53_1 doi: 10.1016/0039-6028(76)90026-1 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201707247 – ident: e_1_2_7_44_1 doi: 10.1016/j.jelechem.2018.01.059 – ident: e_1_2_7_62_1 doi: 10.1016/j.jpowsour.2012.04.104 – ident: e_1_2_7_67_1 doi: 10.1021/acssuschemeng.1c05164 – ident: e_1_2_7_57_1 doi: 10.1016/j.cej.2019.05.169 – ident: e_1_2_7_51_1 doi: 10.1016/j.jpcs.2017.09.009 – ident: e_1_2_7_1_1 doi: 10.1016/j.cej.2019.05.039 – ident: e_1_2_7_66_1 doi: 10.1021/acs.chemrev.8b00252 – ident: e_1_2_7_60_1 doi: 10.1016/j.jtice.2018.09.017 – ident: e_1_2_7_41_1 doi: 10.1016/j.cej.2020.126145 – ident: e_1_2_7_21_1 doi: 10.1039/D1EE00398D – ident: e_1_2_7_34_1 doi: 10.1016/j.cej.2021.128871 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201702294 – ident: e_1_2_7_39_1 doi: 10.1039/D0TA10504J – ident: e_1_2_7_7_1 doi: 10.1002/anie.201907516 – ident: e_1_2_7_10_1 doi: 10.1039/D1TA10580A – ident: e_1_2_7_35_1 doi: 10.1039/C8TA10442E |
SSID | ssj0031247 |
Score | 2.5539904 |
Snippet | It remains a great challenge to design and manufacture battery‐type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high... It remains a great challenge to design and manufacture battery-type supercapacitors with satisfactory flexibility, appropriate mechanical property, and high... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2205936 |
SubjectTerms | Bimetals Charge transport Copper oxides Density functional theory Electrodes Electron states Energy storage Flexibility flexible electrodes Heterojunctions heterostructures high energy density Ion diffusion Lamella Mechanical properties Modulus of elasticity Nanotechnology porous interface engineering Supercapacitors |
Title | Construction of Bimetallic Heterojunction Based on Porous Engineering for High Performance Flexible Asymmetric Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205936 https://www.ncbi.nlm.nih.gov/pubmed/36634970 https://www.proquest.com/docview/2789568101 https://www.proquest.com/docview/2765773152 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYmnsYDbONXgSFPQuIpbeNLnOSxnaiqCaaKgsRbFDu2VGgbROjDeNjfvjunCS0TmsTebMVOHOfO9zm--46xUxBaZiIPvFhmkReoCEuhtliNujaGINEukPbypxzeBD9uw9uVKP6KH6L54Uaa4dZrUvBMlZ0X0tByNqWjAwoUTYA4t30I3TntVcMfBWi8XHYVtFkeEW_VrI1d0Vnvvm6V_oKa68jVmZ7BNsvqQVceJ_ftxZNq6-dXfI7_81af2NYSl_JeJUif2Qcz_8I2V9gKd9hvSu5Z083ywvL-ZGYQu08nmg_Jq6a4QyPpLvbRNuYcC6PisViUfOU-HFEyJ-8SPnqJWeAD4uVUU8N75a_ZjLJ8aT5ePJhHjcZcTygl0C67GZxffx96y_QNnoYIpGelEiIyIvYzhElgk1gZq3EFCZVvDUElImcHYyVokeSAm-WukVLZEDEEigrssY15MTcHjBOHvMliRJfgB76FROc5hdTmvsJtteq2mFd_vlQvuc0pxcY0rViZRUrzmjbz2mJnTfuHitXjzZbHtTSkS-0uU4oedkRufot9ay6jXtJhSzY3OLHYRoZRBAiPWmy_kqLmUYAwL0giHLZwsvCPMaTjy4uLpnb4nk5H7COWoXKeO2YbKCzmK6KpJ3XiNOYPN4QWhg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8N9gA8sI2P0Q2YkZB4CjR24iSPfFXdaBHiQ-Itih1bKmubqqUP7GF_--6SJm1BExK8xYmdOM6d7xf77ncA-4JrmfDUc0KZBI6nAjzytcViULeh8CKdB9K2L2Xzzvt175fehBQLU_BDVAtupBn5fE0KTgvSR1PW0FGvS3sHFCkaCbkAH2mTjnTz7LpikBJovvL8Kmi1HKLeKnkb6_xovv28XXoBNuexa258Gp9Ald0ufE5-H44f1aH-84zR8V3v9RlWJ9CUHRey9AU-mP4arMwQFq7DX8rvWTLOssyyk07PIHzvdjRrkmNN9oB2Mr94guYxZXhwlQ2z8YjN3IchUGbkYMKupmELrEHUnKpr2PHoqdejRF-a3YwHZqjRnusOZQXagLvG-e1p05lkcHC0CIR0rFScB4aHboJISdgoVMZqnER85VpDaIn42YWxUmgepQL_l-tGSmV9hBEoLWITFvtZ32wBIxp5k4QIMIXruVZEOk0pqjZ1Ff5Zq3oNnPL7xXpCb05ZNrpxQczMYxrXuBrXGhxU9QcFscd_a26X4hBPFHwUUwBxzuXm1mCvuoyqSfstSd_gwGId6QeBQIRUg6-FGFWPEoj0vCjAbvNcGF7pQ3zTbrWq0re3NPoBS83bditu_by8-A7LeF4UvnTbsIiCY3YQXD2q3Vx9_gGaQxqi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xIk3bwwb7LIPhSUh7Cm3sxEkeYaMqrK0qGBJvUezYUre0qSh92B72t3OXL1oQmrS9xbGdOPad7-fY9zuAA8G1THjqOaFMAsdTAV752mIy6NpQeJEuHGmHI9m_9M6u_KsVL_6SH6L54UaaUczXpODz1HbuSEMX04y2DshRNBLyCWx6EpdYBIvOGwIpgdarCK-CRssh5q2atrHLO-v1183SA6y5Dl0L29N7CUnd6vLIyc_D5Y061L_vETr-z2dtwYsKmLKjUpK2YcPMXsHzFbrC1_CHonvWfLMst-x4MjUI3rOJZn06VpP_QCtZZB6jcUwZXozz63y5YCvPYQiTGR0vYeM7pwXWI2JOlRl2tPg1nVKYL80ulnNzrdGa6wnFBHoDl72T71_6ThW_wdEiENKxUnEeGB66CeIkYaNQGatxCvGVaw1hJWJnF8ZKoXmUClwtd42UyvoIIlBWxFtozfKZeQ-MSORNEiK8FK7nWhHpNCWf2tRVOOiq2wanHr5YV-TmFGMji0taZh5Tv8ZNv7bhc1N-XtJ6PFpyt5aGuFLvRUzuwwWTm9uGT002KibttiQzgx2LZaQfBALxURvelVLUvEogzvOiAJvNC1n4Sxvii-Fg0KR2_qXSPjwdf-3Fg9PRtw_wDG-L8iDdLrRQbsweIqsb9bFQnlsvyRlR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Bimetallic+Heterojunction+Based+on+Porous+Engineering+for+High+Performance+Flexible+Asymmetric+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gong%2C+Shen%E2%80%90Gen&rft.au=Li%2C+Yan%E2%80%90Fei&rft.au=Su%2C+Yang&rft.au=Li%2C+Bing&rft.date=2023-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202205936&rft.externalDBID=10.1002%252Fsmll.202205936&rft.externalDocID=SMLL202205936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |