Biodegradable Carbon Dioxide‐Derived Non‐Viral Gene Vectors for Osteosarcoma Gene Therapy

Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 12; no. 3; pp. e2201306 - n/a
Main Authors Li, Meirong, Lin, Zheng‐Ian, Yang, Jingyu, Huang, Haoqiang, Liu, Guan‐Lin, Liu, Qiqi, Zhang, Xinmeng, Zhang, Ying, Xu, Zhourui, Lin, Haoming, Chai, Yujuan, Chen, Xin, Ko, Bao‐Tsan, Liu, Jia, Chen, Chih‐Kuang, Yang, Chengbin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text
ISSN2192-2640
2192-2659
2192-2659
DOI10.1002/adhm.202201306

Cover

Abstract Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Exhibiting limited cytotoxicity and prominent transfection efficiency, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors for osteosarcoma treatment. CPCHC/siPLK1 nanoparticles can inhibit expression of PLK1 at the transcriptional and translational levels, leading to cell arrest in G2/M phase and cell death from apoptosis, and finally, significantly inhibit osteosarcoma in vitro and in vivo.
AbstractList Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO 2 ‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G 2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Exhibiting limited cytotoxicity and prominent transfection efficiency, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors for osteosarcoma treatment. CPCHC/siPLK1 nanoparticles can inhibit expression of PLK1 at the transcriptional and translational levels, leading to cell arrest in G2/M phase and cell death from apoptosis, and finally, significantly inhibit osteosarcoma in vitro and in vivo.
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Author Zhang, Xinmeng
Liu, Guan‐Lin
Lin, Zheng‐Ian
Ko, Bao‐Tsan
Huang, Haoqiang
Lin, Haoming
Chen, Xin
Xu, Zhourui
Li, Meirong
Yang, Chengbin
Yang, Jingyu
Liu, Qiqi
Chen, Chih‐Kuang
Zhang, Ying
Chai, Yujuan
Liu, Jia
Author_xml – sequence: 1
  givenname: Meirong
  orcidid: 0000-0001-9589-9044
  surname: Li
  fullname: Li, Meirong
  organization: Shenzhen University
– sequence: 2
  givenname: Zheng‐Ian
  surname: Lin
  fullname: Lin, Zheng‐Ian
  organization: National Sun Yat‐Sen University
– sequence: 3
  givenname: Jingyu
  surname: Yang
  fullname: Yang, Jingyu
  organization: Shenzhen University
– sequence: 4
  givenname: Haoqiang
  surname: Huang
  fullname: Huang, Haoqiang
  organization: Shenzhen University
– sequence: 5
  givenname: Guan‐Lin
  surname: Liu
  fullname: Liu, Guan‐Lin
  organization: National Chung Hsing University
– sequence: 6
  givenname: Qiqi
  surname: Liu
  fullname: Liu, Qiqi
  organization: Shenzhen University
– sequence: 7
  givenname: Xinmeng
  surname: Zhang
  fullname: Zhang, Xinmeng
  organization: Shenzhen University
– sequence: 8
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Shenzhen University
– sequence: 9
  givenname: Zhourui
  surname: Xu
  fullname: Xu, Zhourui
  organization: Shenzhen University
– sequence: 10
  givenname: Haoming
  surname: Lin
  fullname: Lin, Haoming
  organization: Shenzhen University
– sequence: 11
  givenname: Yujuan
  surname: Chai
  fullname: Chai, Yujuan
  organization: Shenzhen University
– sequence: 12
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: Shenzhen University
– sequence: 13
  givenname: Bao‐Tsan
  surname: Ko
  fullname: Ko, Bao‐Tsan
  organization: National Chung Hsing University
– sequence: 14
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  email: liujia870702@126.com
  organization: Shenzhen & Longgang District People's Hospital of Shenzhen
– sequence: 15
  givenname: Chih‐Kuang
  surname: Chen
  fullname: Chen, Chih‐Kuang
  email: chihkuan@mail.nsysu.edu.tw
  organization: National Sun Yat‐Sen University
– sequence: 16
  givenname: Chengbin
  orcidid: 0000-0001-9672-7412
  surname: Yang
  fullname: Yang, Chengbin
  email: cbyang@szu.edu.cn
  organization: Shenzhen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36308025$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OGzEQh62KqtCQK8dqJS5cEuzx2tk9QkIJEoUL5VatZr0TYrS7Tu0NkFsfoc_YJ6mjQJCQEL743_eNrfl9ZTuta4mxA8GHgnM4xmreDIEDcCG5_sT2QOQwAK3yne065busH8I9j0MroTPxhe1KLXnGQe2xX6fWVXTnscKypmSMvnRtMrHuyVb078_fCXn7QFVy5dq4u7Ue6-ScWkpuyXTOh2TmfHIdOnIBvXENbm5v5uRxsdpnn2dYB-o_zz328_vZzXg6uLw-vxifXA6MHEk9SJUCMGUpU1OKXKqqVFKgKjETlOt0pnWqINMa4ik3aKSQgCPIpUjRRED22NGm7sK730sKXdHYYKiusSW3DAWMJJfAdexTjx2-Qe_d0rfxd5HSmQbIMx2pb8_UsmyoKhbeNuhXxUvjIjDcAMa7EDzNtojgxTqcYh1OsQ0nCukbwdgOO-vazqOt39fyjfZoa1p98EhxMpn-eHX_AwTQook
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_164338
crossref_primary_10_1002_mabi_202300362
crossref_primary_10_1016_j_eurpolymj_2024_113624
crossref_primary_10_1016_j_jcis_2024_06_123
crossref_primary_10_1007_s11426_024_2101_1
crossref_primary_10_1039_D4PY00174E
crossref_primary_10_3390_pharmaceutics15061583
crossref_primary_10_1002_adhm_202302409
Cites_doi 10.1002/wnan.1598
10.1021/ac403735n
10.1016/j.biomaterials.2013.08.063
10.1016/j.addr.2006.03.007
10.1016/j.addr.2016.08.014
10.2147/IJN.S180119
10.1080/10837450.2019.1567763
10.1039/C4PY00030G
10.1016/j.progpolymsci.2005.12.001
10.1038/nrc.2016.138
10.1002/cm.21504
10.1016/j.colsurfb.2015.06.002
10.1021/acs.inorgchem.0c02902
10.1016/j.ymthe.2020.01.001
10.1016/j.msec.2015.11.067
10.1039/c0jm03127e
10.1002/pol.20190194
10.2174/13895575113136660103
10.1016/j.bcp.2021.114747
10.2217/nnm-2019-0298
10.1002/macp.201900049
10.3390/genes10030208
10.1016/j.bcp.2021.114432
10.1016/j.jconrel.2021.03.028
10.1007/s12272-009-1710-3
10.1056/NEJMra2103423
10.1038/s41571-021-00519-8
10.1007/s10555-017-9717-6
10.1038/s41573-019-0017-4
10.1016/j.jconrel.2014.05.023
10.2147/IJN.S115364
10.1002/pbc.28352
10.1021/acs.biomac.1c01498
10.1038/nmat3209
10.1038/sj.gt.3301052
10.1021/acs.molpharmaceut.1c00653
10.1038/35065617
10.1038/s41467-021-27493-0
10.1093/embo-reports/kvf069
10.1002/adhm.201801318
10.1016/j.gene.2020.145246
10.1038/nrg3763
10.1021/acs.organomet.1c00474
10.1002/mabi.201600191
10.1039/C5BM00003C
10.1007/s11427-018-9438-y
10.1002/smll.201503352
10.1038/ncb918
10.1002/mabi.202100085
10.1016/j.tranon.2021.101332
10.1002/adhm.201200094
10.2147/IJN.S227289
10.1634/theoncologist.2018-0838
10.1007/s12274-017-1521-7
10.1002/adma.201903637
10.1038/nmat3187
10.1021/acs.nanolett.0c04468
10.2147/IJN.S243878
10.1016/j.drudis.2013.06.014
10.1002/mabi.202100349
10.1016/j.jes.2020.10.007
10.1039/D0PY01755H
10.1039/C6RA15545F
10.1016/j.ejpb.2018.05.034
10.2147/IJN.S222419
10.2174/1381612820999141029162811
10.3390/nano11092312
10.1016/j.cub.2006.12.037
10.1038/onc.2017.113
10.1021/acsami.8b16168
10.3390/cells10102684
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1002/adhm.202201306
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID 36308025
10_1002_adhm_202201306
ADHM202201306
Genre article
Journal Article
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Commission
  funderid: JCYJ20210324130609027
– fundername: University Stable Support Research Funding of Shenzhen
  funderid: 20200813153346001
– fundername: National Natural Science Foundation of China
  funderid: 81900264
– fundername: Start‐up Grant from Shenzhen University
  funderid: 2019136
– fundername: Kaohsiung Veterans General Hospital and National Sun Yat‐sen University/Kaohsiung Medical University
  funderid: VGHNSU111‐001; 111‐P29
– fundername: Longgang Medical and Health Science and Technology Project
  funderid: LGKCYLWS2020040
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019A1515012163
– fundername: Kaohsiung Veterans General Hospital
– fundername: Ministry of Science and Technology of Taiwan
  funderid: MOST 109‐2221‐E‐110‐066‐MY3; MOST 110‐2221‐E‐110‐001‐MY3; MOST 110‐2113‐M‐005‐018
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 110-2221-E-110-001-MY3
– fundername: Kaohsiung Veterans General Hospital and National Sun Yat-sen University/Kaohsiung Medical University
  grantid: VGHNSU111-001
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 109-2221-E-110-066-MY3
– fundername: University Stable Support Research Funding of Shenzhen
  grantid: 20200813153346001
– fundername: Kaohsiung Veterans General Hospital and National Sun Yat-sen University/Kaohsiung Medical University
  grantid: 111-P29
– fundername: National Natural Science Foundation of China
  grantid: 81900264
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2019A1515012163
– fundername: Longgang Medical and Health Science and Technology Project
  grantid: LGKCYLWS2020040
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: JCYJ20210324130609027
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 110-2113-M-005-018
GroupedDBID 05W
0R~
1OC
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
LH4
ID FETCH-LOGICAL-c3736-45522cbb34cb1935db531a5ba81e964f66452866231a0cac3132a729314ac9643
ISSN 2192-2640
2192-2659
IngestDate Fri Sep 05 10:07:08 EDT 2025
Fri Jul 25 12:14:48 EDT 2025
Wed Feb 19 02:23:47 EST 2025
Tue Jul 01 03:06:49 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Wed Jan 22 16:24:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords siRNA delivery
gene therapy
osteosarcoma
PLK1
cationic polycarbonates
Language English
License 2022 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3736-45522cbb34cb1935db531a5ba81e964f66452866231a0cac3132a729314ac9643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9672-7412
0000-0001-9589-9044
PMID 36308025
PQID 2768622986
PQPubID 2032434
PageCount 15
ParticipantIDs proquest_miscellaneous_2730320601
proquest_journals_2768622986
pubmed_primary_36308025
crossref_primary_10_1002_adhm_202201306
crossref_citationtrail_10_1002_adhm_202201306
wiley_primary_10_1002_adhm_202201306_ADHM202201306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 68
2021; 769
2021; 21
2006; 31
2015; 3
2019; 31
2020 2016; 58 6
2021; 189
2019; 11
2019; 10
2021; 103
2018; 129
2006; 58
2000 2009; 7 32
2014; 190
2020; 15
2021; 385
2015 2019 2021 2021 2021 2019; 21 14 21 333 18 24
2017; 113
2020 2019; 63 18
2013 2018 2021; 13 75 193
2020 2020; 25 15
2016; 12
2019; 220
2014; 86
2021 2021; 60 40
2021; 10
2014; 5
2021; 12
2021; 11
2012; 1
2017; 36
2016 2007 2020; 11 17 15
2017; 17
2013; 34
2021; 18
2020 2017; 15 17
2011 2012; 11 11
2020; 28
2002 2001 2003; 3 410 5
2011 2015; 21 133
2022 2019 2017; 23 8 10
2022; 16
2013 2016 2020; 18 60 12
2018; 37
2014 2022; 15 22
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_47_3
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_9_6
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_8_3
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 10
  start-page: 2684
  year: 2021
  publication-title: Cells
– volume: 18 60 12
  start-page: 1090 569
  year: 2013 2016 2020
  publication-title: Drug Discovery Today Mater. Sci. Eng., C Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 10
  start-page: 208
  year: 2019
  publication-title: Genes
– volume: 5
  start-page: 4002
  year: 2014
  publication-title: Polym. Chem.
– volume: 1
  start-page: 751
  year: 2012
  publication-title: Adv. Healthcare Mater.
– volume: 11
  start-page: 2768
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21 14 21 333 18 24
  start-page: 1347 3127 3680 139 4448 747
  year: 2015 2019 2021 2021 2021 2019
  publication-title: Curr. Pharm. Des. Nanomedicine Nano Lett. J. Controlled Release Mol. Pharm. Oncologist
– volume: 7 32
  start-page: 126 1045
  year: 2000 2009
  publication-title: Gene Ther. Arch. Pharm. Res.
– volume: 16
  year: 2022
  publication-title: Transl. Oncol.
– volume: 37
  start-page: 107
  year: 2018
  publication-title: Cancer Metastasis Rev.
– volume: 60 40
  start-page: 852 3742
  year: 2021 2021
  publication-title: Inorg. Chem. Organometallics
– volume: 13 75 193
  start-page: 2014 481
  year: 2013 2018 2021
  publication-title: Mini‐Rev. Med. Chem. Cytoskeleton Biochem. Pharmacol.
– volume: 18
  start-page: 609
  year: 2021
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 15 17
  start-page: 2131
  year: 2020 2017
  publication-title: Int. J. Nanomed. Macromol. Biosci.
– volume: 13
  start-page: 6885
  year: 2018
  publication-title: Int. J. Nanomedicine
– volume: 12
  start-page: 7233
  year: 2021
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1114
  year: 2015
  publication-title: Biomater. Sci.
– volume: 17
  start-page: 93
  year: 2017
  publication-title: Nat. Rev. Cancer
– volume: 23 8 10
  start-page: 1259 3049
  year: 2022 2019 2017
  publication-title: Biomacromolecules Adv. Healthcare Mater. Nano Res.
– volume: 34
  start-page: 9688
  year: 2013
  publication-title: Biomaterials
– volume: 769
  year: 2021
  publication-title: Gene
– volume: 189
  year: 2021
  publication-title: Biochem. Pharmacol.
– volume: 25 15
  start-page: 9 3347
  year: 2020 2020
  publication-title: Pharm. Dev. Technol. Int. J. Nanomedicine
– volume: 11
  start-page: 2312
  year: 2021
  publication-title: Nanomaterials
– volume: 103
  start-page: 33
  year: 2021
  publication-title: J. Environ. Sci.
– volume: 21 133
  start-page: 4125 148
  year: 2011 2015
  publication-title: J. Mater. Chem. Colloids Surf., B
– volume: 12
  start-page: 1244
  year: 2021
  publication-title: Polym. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 534
  year: 2016
  publication-title: Small
– volume: 129
  start-page: 184
  year: 2018
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 21
  year: 2021
  publication-title: Macromol. Biosci.
– volume: 3 410 5
  start-page: 341 215 143
  year: 2002 2001 2003
  publication-title: EMBO Rep. Nature Nat. Cell Biol.
– volume: 58 6
  start-page: 872
  year: 2020 2016
  publication-title: J. Polym. Sci. RSC Adv.
– volume: 113
  start-page: 87
  year: 2017
  publication-title: Adv Drug Delivery Rev.
– volume: 190
  start-page: 398
  year: 2014
  publication-title: J. Controlled Release
– volume: 11 11
  start-page: 82 10
  year: 2011 2012
  publication-title: Nat. Mater. Nat. Mater.
– volume: 220
  year: 2019
  publication-title: Macromol. Chem. Phys.
– volume: 15 22
  start-page: 541
  year: 2014 2022
  publication-title: Nat. Rev. Genet. Macromol. Biosci.
– volume: 36
  start-page: 4819
  year: 2017
  publication-title: Oncogene
– volume: 68
  year: 2021
  publication-title: Pediatr. Blood Cancer
– volume: 11 17 15
  start-page: 5277 316 1397
  year: 2016 2007 2020
  publication-title: Int. J. Nanomedicine Curr. Biol. Int. J. Nanomedicine
– volume: 86
  start-page: 2131
  year: 2014
  publication-title: Anal. Chem.
– volume: 385
  start-page: 2066
  year: 2021
  publication-title: N. Engl. J. Med.
– volume: 28
  start-page: 709
  year: 2020
  publication-title: Mol. Ther.
– volume: 15
  start-page: 2131
  year: 2020
  publication-title: Int. J. Nanomedicine
– volume: 58
  start-page: 467
  year: 2006
  publication-title: Adv. Drug Delivery Rev.
– volume: 63 18
  start-page: 485 421
  year: 2020 2019
  publication-title: Sci. China: Life Sci. Nat. Rev. Drug Discovery
– volume: 31
  start-page: 456A
  year: 2006
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_8_23_3
  doi: 10.1002/wnan.1598
– ident: e_1_2_8_35_1
  doi: 10.1021/ac403735n
– ident: e_1_2_8_39_1
  doi: 10.1016/j.biomaterials.2013.08.063
– ident: e_1_2_8_24_1
  doi: 10.1016/j.addr.2006.03.007
– ident: e_1_2_8_46_1
  doi: 10.1016/j.addr.2016.08.014
– ident: e_1_2_8_43_1
  doi: 10.2147/IJN.S180119
– ident: e_1_2_8_15_1
  doi: 10.1080/10837450.2019.1567763
– ident: e_1_2_8_32_1
  doi: 10.1039/C4PY00030G
– ident: e_1_2_8_34_1
  doi: 10.1016/j.progpolymsci.2005.12.001
– ident: e_1_2_8_48_1
  doi: 10.1038/nrc.2016.138
– ident: e_1_2_8_6_2
  doi: 10.1002/cm.21504
– ident: e_1_2_8_30_2
  doi: 10.1016/j.colsurfb.2015.06.002
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.inorgchem.0c02902
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ymthe.2020.01.001
– ident: e_1_2_8_23_2
  doi: 10.1016/j.msec.2015.11.067
– ident: e_1_2_8_30_1
  doi: 10.1039/c0jm03127e
– ident: e_1_2_8_31_1
  doi: 10.1002/pol.20190194
– ident: e_1_2_8_6_1
  doi: 10.2174/13895575113136660103
– ident: e_1_2_8_6_3
  doi: 10.1016/j.bcp.2021.114747
– ident: e_1_2_8_9_2
  doi: 10.2217/nnm-2019-0298
– ident: e_1_2_8_33_1
  doi: 10.1002/macp.201900049
– ident: e_1_2_8_7_1
  doi: 10.3390/genes10030208
– ident: e_1_2_8_14_1
  doi: 10.1016/j.bcp.2021.114432
– ident: e_1_2_8_9_4
  doi: 10.1016/j.jconrel.2021.03.028
– ident: e_1_2_8_41_2
  doi: 10.1007/s12272-009-1710-3
– ident: e_1_2_8_3_1
  doi: 10.1056/NEJMra2103423
– ident: e_1_2_8_4_1
  doi: 10.1038/s41571-021-00519-8
– ident: e_1_2_8_12_1
  doi: 10.1007/s10555-017-9717-6
– ident: e_1_2_8_11_2
  doi: 10.1038/s41573-019-0017-4
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jconrel.2014.05.023
– ident: e_1_2_8_8_1
  doi: 10.2147/IJN.S115364
– ident: e_1_2_8_1_1
  doi: 10.1002/pbc.28352
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.biomac.1c01498
– ident: e_1_2_8_26_2
  doi: 10.1038/nmat3209
– ident: e_1_2_8_41_1
  doi: 10.1038/sj.gt.3301052
– ident: e_1_2_8_9_5
  doi: 10.1021/acs.molpharmaceut.1c00653
– ident: e_1_2_8_47_2
  doi: 10.1038/35065617
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-021-27493-0
– ident: e_1_2_8_47_1
  doi: 10.1093/embo-reports/kvf069
– ident: e_1_2_8_18_2
  doi: 10.1002/adhm.201801318
– ident: e_1_2_8_44_1
  doi: 10.1016/j.gene.2020.145246
– ident: e_1_2_8_17_1
  doi: 10.1038/nrg3763
– ident: e_1_2_8_36_2
  doi: 10.1021/acs.organomet.1c00474
– ident: e_1_2_8_37_2
  doi: 10.1002/mabi.201600191
– ident: e_1_2_8_16_1
  doi: 10.1039/C5BM00003C
– ident: e_1_2_8_11_1
  doi: 10.1007/s11427-018-9438-y
– ident: e_1_2_8_20_1
  doi: 10.1002/smll.201503352
– ident: e_1_2_8_47_3
  doi: 10.1038/ncb918
– ident: e_1_2_8_38_1
  doi: 10.1002/mabi.202100085
– ident: e_1_2_8_10_1
  doi: 10.1016/j.tranon.2021.101332
– ident: e_1_2_8_40_1
  doi: 10.1002/adhm.201200094
– ident: e_1_2_8_8_3
  doi: 10.2147/IJN.S227289
– ident: e_1_2_8_9_6
  doi: 10.1634/theoncologist.2018-0838
– ident: e_1_2_8_18_3
  doi: 10.1007/s12274-017-1521-7
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201903637
– ident: e_1_2_8_26_1
  doi: 10.1038/nmat3187
– ident: e_1_2_8_9_3
  doi: 10.1021/acs.nanolett.0c04468
– ident: e_1_2_8_15_2
  doi: 10.2147/IJN.S243878
– ident: e_1_2_8_23_1
  doi: 10.1016/j.drudis.2013.06.014
– ident: e_1_2_8_17_2
  doi: 10.1002/mabi.202100349
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jes.2020.10.007
– ident: e_1_2_8_28_1
  doi: 10.1039/D0PY01755H
– ident: e_1_2_8_31_2
  doi: 10.1039/C6RA15545F
– ident: e_1_2_8_45_1
  doi: 10.1016/j.ejpb.2018.05.034
– ident: e_1_2_8_37_1
  doi: 10.2147/IJN.S222419
– ident: e_1_2_8_9_1
  doi: 10.2174/1381612820999141029162811
– ident: e_1_2_8_29_1
  doi: 10.3390/nano11092312
– ident: e_1_2_8_8_2
  doi: 10.1016/j.cub.2006.12.037
– ident: e_1_2_8_5_1
  doi: 10.1038/onc.2017.113
– ident: e_1_2_8_21_1
  doi: 10.1021/acsami.8b16168
– ident: e_1_2_8_2_1
  doi: 10.3390/cells10102684
– ident: e_1_2_8_25_1
  doi: 10.2147/IJN.S222419
– ident: e_1_2_8_10_2
SSID ssj0000651681
Score 2.367291
Snippet Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors...
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201306
SubjectTerms Apoptosis
Biodegradability
Bone cancer
Bone Neoplasms
Cancer
Carbon Dioxide
Carbonates
cationic polycarbonates
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Cell proliferation
Expression vectors
Gene expression
Gene therapy
Genetic Therapy - methods
Genetic Vectors
Humans
In vivo methods and tests
Invasiveness
Kinases
Nanoparticles
Nanotechnology
Osteosarcoma
Osteosarcoma cells
PLK1
Polo-like kinase 1
RNA, Small Interfering - genetics
RNA-mediated interference
Sarcoma
siRNA
siRNA delivery
Therapeutic targets
Transfection
Tumors
Title Biodegradable Carbon Dioxide‐Derived Non‐Viral Gene Vectors for Osteosarcoma Gene Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201306
https://www.ncbi.nlm.nih.gov/pubmed/36308025
https://www.proquest.com/docview/2768622986
https://www.proquest.com/docview/2730320601
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4EHxJ3CQEFC4gEZGttxm8eybipT2z2QTh0vke14bSVIYGsR8Os5J3FuUMTgJWptq3b9fT45vpzPhLwI-1oECe9RE55bKhQMRZ1YTkNlLNNWidDmap8zOZ6L40WwqM_p5tElG_3a_NgZV_I_qEIa4IpRsv-AbPWjkACfAV94AsLwvBLGb9dZgmIPSR7_dKAuNGA5Wmff1omlI2jBV3AnZ1lKT9cYh48S069ObXHBDh4vPAGIs0ugevZJFblRQ2Sg1KYtTwms6qNi4OYW_686z5MfCphaDJpb1om5SfuwsumSvqtpeObWqI_htfl9WxPLJY9V9gVIu2wuSDDeWJDI7RbYQEaZdELfdkdaaXhZg2C8YUUtY7ihKnea-EIyViUr1BFoFGxrac9O4qP5ZBJHh4voOtljffCsOmRvOJpO3ldrcOB--TK_x7ZqX6nr2WNv2lW0_ZbfJiPtuU3unES3yS03q_CGBUXukGs2vUtuNrQm75GzFlm8gizeL2TxKrJ4SAfPkcUDsnhNshS5jiz3yfzoMDoYU3evBjW8zyUVATjdRmsujAb_PUg0GGIVaDXwbSjFucTN7oEEx9hXPaMMqnsqmIRxXyiD-m0PSCfNUvsII_51Xxkf1e650FqHPOklfs9IgRu-RncJLXstNk50Hu8--RgXctksxl6Oq17ukpdV-c-F3MofS-6XIMRuSF7GADPM0Fk4gOznVTYYTNwFU6nNtlgGvDaGMkRd8rAAr6qKS46x50GXsBzNv7QhHo7G0-rb4ytU-YTcqIfMPulsLrb2KXi1G_3MkfMnjtid8A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Carbon+Dioxide-Derived+Non-Viral+Gene+Vectors+for+Osteosarcoma+Gene+Therapy&rft.jtitle=Advanced+healthcare+materials&rft.au=Li%2C+Meirong&rft.au=Lin%2C+Zheng-Ian&rft.au=Yang%2C+Jingyu&rft.au=Huang%2C+Haoqiang&rft.date=2023-01-01&rft.issn=2192-2659&rft.eissn=2192-2659&rft.volume=12&rft.issue=3&rft.spage=e2201306&rft_id=info:doi/10.1002%2Fadhm.202201306&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon