Biodegradable Carbon Dioxide‐Derived Non‐Viral Gene Vectors for Osteosarcoma Gene Therapy
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies...
Saved in:
Published in | Advanced healthcare materials Vol. 12; no. 3; pp. e2201306 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2192-2640 2192-2659 2192-2659 |
DOI | 10.1002/adhm.202201306 |
Cover
Abstract | Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Exhibiting limited cytotoxicity and prominent transfection efficiency, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors for osteosarcoma treatment. CPCHC/siPLK1 nanoparticles can inhibit expression of PLK1 at the transcriptional and translational levels, leading to cell arrest in G2/M phase and cell death from apoptosis, and finally, significantly inhibit osteosarcoma in vitro and in vivo. |
---|---|
AbstractList | Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO
2
‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G
2
/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Exhibiting limited cytotoxicity and prominent transfection efficiency, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors for osteosarcoma treatment. CPCHC/siPLK1 nanoparticles can inhibit expression of PLK1 at the transcriptional and translational levels, leading to cell arrest in G2/M phase and cell death from apoptosis, and finally, significantly inhibit osteosarcoma in vitro and in vivo. Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference‐based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2‐derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo‐lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down‐regulated. Subsequently, cells are arrested in the G2/M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle‐based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications. |
Author | Zhang, Xinmeng Liu, Guan‐Lin Lin, Zheng‐Ian Ko, Bao‐Tsan Huang, Haoqiang Lin, Haoming Chen, Xin Xu, Zhourui Li, Meirong Yang, Chengbin Yang, Jingyu Liu, Qiqi Chen, Chih‐Kuang Zhang, Ying Chai, Yujuan Liu, Jia |
Author_xml | – sequence: 1 givenname: Meirong orcidid: 0000-0001-9589-9044 surname: Li fullname: Li, Meirong organization: Shenzhen University – sequence: 2 givenname: Zheng‐Ian surname: Lin fullname: Lin, Zheng‐Ian organization: National Sun Yat‐Sen University – sequence: 3 givenname: Jingyu surname: Yang fullname: Yang, Jingyu organization: Shenzhen University – sequence: 4 givenname: Haoqiang surname: Huang fullname: Huang, Haoqiang organization: Shenzhen University – sequence: 5 givenname: Guan‐Lin surname: Liu fullname: Liu, Guan‐Lin organization: National Chung Hsing University – sequence: 6 givenname: Qiqi surname: Liu fullname: Liu, Qiqi organization: Shenzhen University – sequence: 7 givenname: Xinmeng surname: Zhang fullname: Zhang, Xinmeng organization: Shenzhen University – sequence: 8 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Shenzhen University – sequence: 9 givenname: Zhourui surname: Xu fullname: Xu, Zhourui organization: Shenzhen University – sequence: 10 givenname: Haoming surname: Lin fullname: Lin, Haoming organization: Shenzhen University – sequence: 11 givenname: Yujuan surname: Chai fullname: Chai, Yujuan organization: Shenzhen University – sequence: 12 givenname: Xin surname: Chen fullname: Chen, Xin organization: Shenzhen University – sequence: 13 givenname: Bao‐Tsan surname: Ko fullname: Ko, Bao‐Tsan organization: National Chung Hsing University – sequence: 14 givenname: Jia surname: Liu fullname: Liu, Jia email: liujia870702@126.com organization: Shenzhen & Longgang District People's Hospital of Shenzhen – sequence: 15 givenname: Chih‐Kuang surname: Chen fullname: Chen, Chih‐Kuang email: chihkuan@mail.nsysu.edu.tw organization: National Sun Yat‐Sen University – sequence: 16 givenname: Chengbin orcidid: 0000-0001-9672-7412 surname: Yang fullname: Yang, Chengbin email: cbyang@szu.edu.cn organization: Shenzhen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36308025$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9OGzEQh62KqtCQK8dqJS5cEuzx2tk9QkIJEoUL5VatZr0TYrS7Tu0NkFsfoc_YJ6mjQJCQEL743_eNrfl9ZTuta4mxA8GHgnM4xmreDIEDcCG5_sT2QOQwAK3yne065busH8I9j0MroTPxhe1KLXnGQe2xX6fWVXTnscKypmSMvnRtMrHuyVb078_fCXn7QFVy5dq4u7Ue6-ScWkpuyXTOh2TmfHIdOnIBvXENbm5v5uRxsdpnn2dYB-o_zz328_vZzXg6uLw-vxifXA6MHEk9SJUCMGUpU1OKXKqqVFKgKjETlOt0pnWqINMa4ik3aKSQgCPIpUjRRED22NGm7sK730sKXdHYYKiusSW3DAWMJJfAdexTjx2-Qe_d0rfxd5HSmQbIMx2pb8_UsmyoKhbeNuhXxUvjIjDcAMa7EDzNtojgxTqcYh1OsQ0nCukbwdgOO-vazqOt39fyjfZoa1p98EhxMpn-eHX_AwTQook |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_164338 crossref_primary_10_1002_mabi_202300362 crossref_primary_10_1016_j_eurpolymj_2024_113624 crossref_primary_10_1016_j_jcis_2024_06_123 crossref_primary_10_1007_s11426_024_2101_1 crossref_primary_10_1039_D4PY00174E crossref_primary_10_3390_pharmaceutics15061583 crossref_primary_10_1002_adhm_202302409 |
Cites_doi | 10.1002/wnan.1598 10.1021/ac403735n 10.1016/j.biomaterials.2013.08.063 10.1016/j.addr.2006.03.007 10.1016/j.addr.2016.08.014 10.2147/IJN.S180119 10.1080/10837450.2019.1567763 10.1039/C4PY00030G 10.1016/j.progpolymsci.2005.12.001 10.1038/nrc.2016.138 10.1002/cm.21504 10.1016/j.colsurfb.2015.06.002 10.1021/acs.inorgchem.0c02902 10.1016/j.ymthe.2020.01.001 10.1016/j.msec.2015.11.067 10.1039/c0jm03127e 10.1002/pol.20190194 10.2174/13895575113136660103 10.1016/j.bcp.2021.114747 10.2217/nnm-2019-0298 10.1002/macp.201900049 10.3390/genes10030208 10.1016/j.bcp.2021.114432 10.1016/j.jconrel.2021.03.028 10.1007/s12272-009-1710-3 10.1056/NEJMra2103423 10.1038/s41571-021-00519-8 10.1007/s10555-017-9717-6 10.1038/s41573-019-0017-4 10.1016/j.jconrel.2014.05.023 10.2147/IJN.S115364 10.1002/pbc.28352 10.1021/acs.biomac.1c01498 10.1038/nmat3209 10.1038/sj.gt.3301052 10.1021/acs.molpharmaceut.1c00653 10.1038/35065617 10.1038/s41467-021-27493-0 10.1093/embo-reports/kvf069 10.1002/adhm.201801318 10.1016/j.gene.2020.145246 10.1038/nrg3763 10.1021/acs.organomet.1c00474 10.1002/mabi.201600191 10.1039/C5BM00003C 10.1007/s11427-018-9438-y 10.1002/smll.201503352 10.1038/ncb918 10.1002/mabi.202100085 10.1016/j.tranon.2021.101332 10.1002/adhm.201200094 10.2147/IJN.S227289 10.1634/theoncologist.2018-0838 10.1007/s12274-017-1521-7 10.1002/adma.201903637 10.1038/nmat3187 10.1021/acs.nanolett.0c04468 10.2147/IJN.S243878 10.1016/j.drudis.2013.06.014 10.1002/mabi.202100349 10.1016/j.jes.2020.10.007 10.1039/D0PY01755H 10.1039/C6RA15545F 10.1016/j.ejpb.2018.05.034 10.2147/IJN.S222419 10.2174/1381612820999141029162811 10.3390/nano11092312 10.1016/j.cub.2006.12.037 10.1038/onc.2017.113 10.1021/acsami.8b16168 10.3390/cells10102684 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1002/adhm.202201306 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | 36308025 10_1002_adhm_202201306 ADHM202201306 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Commission funderid: JCYJ20210324130609027 – fundername: University Stable Support Research Funding of Shenzhen funderid: 20200813153346001 – fundername: National Natural Science Foundation of China funderid: 81900264 – fundername: Start‐up Grant from Shenzhen University funderid: 2019136 – fundername: Kaohsiung Veterans General Hospital and National Sun Yat‐sen University/Kaohsiung Medical University funderid: VGHNSU111‐001; 111‐P29 – fundername: Longgang Medical and Health Science and Technology Project funderid: LGKCYLWS2020040 – fundername: Natural Science Foundation of Guangdong Province funderid: 2019A1515012163 – fundername: Kaohsiung Veterans General Hospital – fundername: Ministry of Science and Technology of Taiwan funderid: MOST 109‐2221‐E‐110‐066‐MY3; MOST 110‐2221‐E‐110‐001‐MY3; MOST 110‐2113‐M‐005‐018 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 110-2221-E-110-001-MY3 – fundername: Kaohsiung Veterans General Hospital and National Sun Yat-sen University/Kaohsiung Medical University grantid: VGHNSU111-001 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 109-2221-E-110-066-MY3 – fundername: University Stable Support Research Funding of Shenzhen grantid: 20200813153346001 – fundername: Kaohsiung Veterans General Hospital and National Sun Yat-sen University/Kaohsiung Medical University grantid: 111-P29 – fundername: National Natural Science Foundation of China grantid: 81900264 – fundername: Natural Science Foundation of Guangdong Province grantid: 2019A1515012163 – fundername: Longgang Medical and Health Science and Technology Project grantid: LGKCYLWS2020040 – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ20210324130609027 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 110-2113-M-005-018 |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN C45 CITATION EJD GODZA OVD TEORI CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 LH4 |
ID | FETCH-LOGICAL-c3736-45522cbb34cb1935db531a5ba81e964f66452866231a0cac3132a729314ac9643 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Fri Sep 05 10:07:08 EDT 2025 Fri Jul 25 12:14:48 EDT 2025 Wed Feb 19 02:23:47 EST 2025 Tue Jul 01 03:06:49 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Wed Jan 22 16:24:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | siRNA delivery gene therapy osteosarcoma PLK1 cationic polycarbonates |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3736-45522cbb34cb1935db531a5ba81e964f66452866231a0cac3132a729314ac9643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9672-7412 0000-0001-9589-9044 |
PMID | 36308025 |
PQID | 2768622986 |
PQPubID | 2032434 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2730320601 proquest_journals_2768622986 pubmed_primary_36308025 crossref_primary_10_1002_adhm_202201306 crossref_citationtrail_10_1002_adhm_202201306 wiley_primary_10_1002_adhm_202201306_ADHM202201306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 68 2021; 769 2021; 21 2006; 31 2015; 3 2019; 31 2020 2016; 58 6 2021; 189 2019; 11 2019; 10 2021; 103 2018; 129 2006; 58 2000 2009; 7 32 2014; 190 2020; 15 2021; 385 2015 2019 2021 2021 2021 2019; 21 14 21 333 18 24 2017; 113 2020 2019; 63 18 2013 2018 2021; 13 75 193 2020 2020; 25 15 2016; 12 2019; 220 2014; 86 2021 2021; 60 40 2021; 10 2014; 5 2021; 12 2021; 11 2012; 1 2017; 36 2016 2007 2020; 11 17 15 2017; 17 2013; 34 2021; 18 2020 2017; 15 17 2011 2012; 11 11 2020; 28 2002 2001 2003; 3 410 5 2011 2015; 21 133 2022 2019 2017; 23 8 10 2022; 16 2013 2016 2020; 18 60 12 2018; 37 2014 2022; 15 22 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_47_3 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_9_6 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_8_3 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 10 start-page: 2684 year: 2021 publication-title: Cells – volume: 18 60 12 start-page: 1090 569 year: 2013 2016 2020 publication-title: Drug Discovery Today Mater. Sci. Eng., C Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 10 start-page: 208 year: 2019 publication-title: Genes – volume: 5 start-page: 4002 year: 2014 publication-title: Polym. Chem. – volume: 1 start-page: 751 year: 2012 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 2768 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 21 14 21 333 18 24 start-page: 1347 3127 3680 139 4448 747 year: 2015 2019 2021 2021 2021 2019 publication-title: Curr. Pharm. Des. Nanomedicine Nano Lett. J. Controlled Release Mol. Pharm. Oncologist – volume: 7 32 start-page: 126 1045 year: 2000 2009 publication-title: Gene Ther. Arch. Pharm. Res. – volume: 16 year: 2022 publication-title: Transl. Oncol. – volume: 37 start-page: 107 year: 2018 publication-title: Cancer Metastasis Rev. – volume: 60 40 start-page: 852 3742 year: 2021 2021 publication-title: Inorg. Chem. Organometallics – volume: 13 75 193 start-page: 2014 481 year: 2013 2018 2021 publication-title: Mini‐Rev. Med. Chem. Cytoskeleton Biochem. Pharmacol. – volume: 18 start-page: 609 year: 2021 publication-title: Nat. Rev. Clin. Oncol. – volume: 15 17 start-page: 2131 year: 2020 2017 publication-title: Int. J. Nanomed. Macromol. Biosci. – volume: 13 start-page: 6885 year: 2018 publication-title: Int. J. Nanomedicine – volume: 12 start-page: 7233 year: 2021 publication-title: Nat. Commun. – volume: 3 start-page: 1114 year: 2015 publication-title: Biomater. Sci. – volume: 17 start-page: 93 year: 2017 publication-title: Nat. Rev. Cancer – volume: 23 8 10 start-page: 1259 3049 year: 2022 2019 2017 publication-title: Biomacromolecules Adv. Healthcare Mater. Nano Res. – volume: 34 start-page: 9688 year: 2013 publication-title: Biomaterials – volume: 769 year: 2021 publication-title: Gene – volume: 189 year: 2021 publication-title: Biochem. Pharmacol. – volume: 25 15 start-page: 9 3347 year: 2020 2020 publication-title: Pharm. Dev. Technol. Int. J. Nanomedicine – volume: 11 start-page: 2312 year: 2021 publication-title: Nanomaterials – volume: 103 start-page: 33 year: 2021 publication-title: J. Environ. Sci. – volume: 21 133 start-page: 4125 148 year: 2011 2015 publication-title: J. Mater. Chem. Colloids Surf., B – volume: 12 start-page: 1244 year: 2021 publication-title: Polym. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 534 year: 2016 publication-title: Small – volume: 129 start-page: 184 year: 2018 publication-title: Eur. J. Pharm. Biopharm. – volume: 21 year: 2021 publication-title: Macromol. Biosci. – volume: 3 410 5 start-page: 341 215 143 year: 2002 2001 2003 publication-title: EMBO Rep. Nature Nat. Cell Biol. – volume: 58 6 start-page: 872 year: 2020 2016 publication-title: J. Polym. Sci. RSC Adv. – volume: 113 start-page: 87 year: 2017 publication-title: Adv Drug Delivery Rev. – volume: 190 start-page: 398 year: 2014 publication-title: J. Controlled Release – volume: 11 11 start-page: 82 10 year: 2011 2012 publication-title: Nat. Mater. Nat. Mater. – volume: 220 year: 2019 publication-title: Macromol. Chem. Phys. – volume: 15 22 start-page: 541 year: 2014 2022 publication-title: Nat. Rev. Genet. Macromol. Biosci. – volume: 36 start-page: 4819 year: 2017 publication-title: Oncogene – volume: 68 year: 2021 publication-title: Pediatr. Blood Cancer – volume: 11 17 15 start-page: 5277 316 1397 year: 2016 2007 2020 publication-title: Int. J. Nanomedicine Curr. Biol. Int. J. Nanomedicine – volume: 86 start-page: 2131 year: 2014 publication-title: Anal. Chem. – volume: 385 start-page: 2066 year: 2021 publication-title: N. Engl. J. Med. – volume: 28 start-page: 709 year: 2020 publication-title: Mol. Ther. – volume: 15 start-page: 2131 year: 2020 publication-title: Int. J. Nanomedicine – volume: 58 start-page: 467 year: 2006 publication-title: Adv. Drug Delivery Rev. – volume: 63 18 start-page: 485 421 year: 2020 2019 publication-title: Sci. China: Life Sci. Nat. Rev. Drug Discovery – volume: 31 start-page: 456A year: 2006 publication-title: Prog. Polym. Sci. – ident: e_1_2_8_23_3 doi: 10.1002/wnan.1598 – ident: e_1_2_8_35_1 doi: 10.1021/ac403735n – ident: e_1_2_8_39_1 doi: 10.1016/j.biomaterials.2013.08.063 – ident: e_1_2_8_24_1 doi: 10.1016/j.addr.2006.03.007 – ident: e_1_2_8_46_1 doi: 10.1016/j.addr.2016.08.014 – ident: e_1_2_8_43_1 doi: 10.2147/IJN.S180119 – ident: e_1_2_8_15_1 doi: 10.1080/10837450.2019.1567763 – ident: e_1_2_8_32_1 doi: 10.1039/C4PY00030G – ident: e_1_2_8_34_1 doi: 10.1016/j.progpolymsci.2005.12.001 – ident: e_1_2_8_48_1 doi: 10.1038/nrc.2016.138 – ident: e_1_2_8_6_2 doi: 10.1002/cm.21504 – ident: e_1_2_8_30_2 doi: 10.1016/j.colsurfb.2015.06.002 – ident: e_1_2_8_36_1 doi: 10.1021/acs.inorgchem.0c02902 – ident: e_1_2_8_22_1 doi: 10.1016/j.ymthe.2020.01.001 – ident: e_1_2_8_23_2 doi: 10.1016/j.msec.2015.11.067 – ident: e_1_2_8_30_1 doi: 10.1039/c0jm03127e – ident: e_1_2_8_31_1 doi: 10.1002/pol.20190194 – ident: e_1_2_8_6_1 doi: 10.2174/13895575113136660103 – ident: e_1_2_8_6_3 doi: 10.1016/j.bcp.2021.114747 – ident: e_1_2_8_9_2 doi: 10.2217/nnm-2019-0298 – ident: e_1_2_8_33_1 doi: 10.1002/macp.201900049 – ident: e_1_2_8_7_1 doi: 10.3390/genes10030208 – ident: e_1_2_8_14_1 doi: 10.1016/j.bcp.2021.114432 – ident: e_1_2_8_9_4 doi: 10.1016/j.jconrel.2021.03.028 – ident: e_1_2_8_41_2 doi: 10.1007/s12272-009-1710-3 – ident: e_1_2_8_3_1 doi: 10.1056/NEJMra2103423 – ident: e_1_2_8_4_1 doi: 10.1038/s41571-021-00519-8 – ident: e_1_2_8_12_1 doi: 10.1007/s10555-017-9717-6 – ident: e_1_2_8_11_2 doi: 10.1038/s41573-019-0017-4 – ident: e_1_2_8_27_1 doi: 10.1016/j.jconrel.2014.05.023 – ident: e_1_2_8_8_1 doi: 10.2147/IJN.S115364 – ident: e_1_2_8_1_1 doi: 10.1002/pbc.28352 – ident: e_1_2_8_18_1 doi: 10.1021/acs.biomac.1c01498 – ident: e_1_2_8_26_2 doi: 10.1038/nmat3209 – ident: e_1_2_8_41_1 doi: 10.1038/sj.gt.3301052 – ident: e_1_2_8_9_5 doi: 10.1021/acs.molpharmaceut.1c00653 – ident: e_1_2_8_47_2 doi: 10.1038/35065617 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-021-27493-0 – ident: e_1_2_8_47_1 doi: 10.1093/embo-reports/kvf069 – ident: e_1_2_8_18_2 doi: 10.1002/adhm.201801318 – ident: e_1_2_8_44_1 doi: 10.1016/j.gene.2020.145246 – ident: e_1_2_8_17_1 doi: 10.1038/nrg3763 – ident: e_1_2_8_36_2 doi: 10.1021/acs.organomet.1c00474 – ident: e_1_2_8_37_2 doi: 10.1002/mabi.201600191 – ident: e_1_2_8_16_1 doi: 10.1039/C5BM00003C – ident: e_1_2_8_11_1 doi: 10.1007/s11427-018-9438-y – ident: e_1_2_8_20_1 doi: 10.1002/smll.201503352 – ident: e_1_2_8_47_3 doi: 10.1038/ncb918 – ident: e_1_2_8_38_1 doi: 10.1002/mabi.202100085 – ident: e_1_2_8_10_1 doi: 10.1016/j.tranon.2021.101332 – ident: e_1_2_8_40_1 doi: 10.1002/adhm.201200094 – ident: e_1_2_8_8_3 doi: 10.2147/IJN.S227289 – ident: e_1_2_8_9_6 doi: 10.1634/theoncologist.2018-0838 – ident: e_1_2_8_18_3 doi: 10.1007/s12274-017-1521-7 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201903637 – ident: e_1_2_8_26_1 doi: 10.1038/nmat3187 – ident: e_1_2_8_9_3 doi: 10.1021/acs.nanolett.0c04468 – ident: e_1_2_8_15_2 doi: 10.2147/IJN.S243878 – ident: e_1_2_8_23_1 doi: 10.1016/j.drudis.2013.06.014 – ident: e_1_2_8_17_2 doi: 10.1002/mabi.202100349 – ident: e_1_2_8_42_1 doi: 10.1016/j.jes.2020.10.007 – ident: e_1_2_8_28_1 doi: 10.1039/D0PY01755H – ident: e_1_2_8_31_2 doi: 10.1039/C6RA15545F – ident: e_1_2_8_45_1 doi: 10.1016/j.ejpb.2018.05.034 – ident: e_1_2_8_37_1 doi: 10.2147/IJN.S222419 – ident: e_1_2_8_9_1 doi: 10.2174/1381612820999141029162811 – ident: e_1_2_8_29_1 doi: 10.3390/nano11092312 – ident: e_1_2_8_8_2 doi: 10.1016/j.cub.2006.12.037 – ident: e_1_2_8_5_1 doi: 10.1038/onc.2017.113 – ident: e_1_2_8_21_1 doi: 10.1021/acsami.8b16168 – ident: e_1_2_8_2_1 doi: 10.3390/cells10102684 – ident: e_1_2_8_25_1 doi: 10.2147/IJN.S222419 – ident: e_1_2_8_10_2 |
SSID | ssj0000651681 |
Score | 2.367291 |
Snippet | Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo‐like kinase 1 (PLK1) overexpressed in most tumors... Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2201306 |
SubjectTerms | Apoptosis Biodegradability Bone cancer Bone Neoplasms Cancer Carbon Dioxide Carbonates cationic polycarbonates Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line, Tumor Cell proliferation Expression vectors Gene expression Gene therapy Genetic Therapy - methods Genetic Vectors Humans In vivo methods and tests Invasiveness Kinases Nanoparticles Nanotechnology Osteosarcoma Osteosarcoma cells PLK1 Polo-like kinase 1 RNA, Small Interfering - genetics RNA-mediated interference Sarcoma siRNA siRNA delivery Therapeutic targets Transfection Tumors |
Title | Biodegradable Carbon Dioxide‐Derived Non‐Viral Gene Vectors for Osteosarcoma Gene Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.202201306 https://www.ncbi.nlm.nih.gov/pubmed/36308025 https://www.proquest.com/docview/2768622986 https://www.proquest.com/docview/2730320601 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4EHxJ3CQEFC4gEZGttxm8eybipT2z2QTh0vke14bSVIYGsR8Os5J3FuUMTgJWptq3b9fT45vpzPhLwI-1oECe9RE55bKhQMRZ1YTkNlLNNWidDmap8zOZ6L40WwqM_p5tElG_3a_NgZV_I_qEIa4IpRsv-AbPWjkACfAV94AsLwvBLGb9dZgmIPSR7_dKAuNGA5Wmff1omlI2jBV3AnZ1lKT9cYh48S069ObXHBDh4vPAGIs0ugevZJFblRQ2Sg1KYtTwms6qNi4OYW_686z5MfCphaDJpb1om5SfuwsumSvqtpeObWqI_htfl9WxPLJY9V9gVIu2wuSDDeWJDI7RbYQEaZdELfdkdaaXhZg2C8YUUtY7ihKnea-EIyViUr1BFoFGxrac9O4qP5ZBJHh4voOtljffCsOmRvOJpO3ldrcOB--TK_x7ZqX6nr2WNv2lW0_ZbfJiPtuU3unES3yS03q_CGBUXukGs2vUtuNrQm75GzFlm8gizeL2TxKrJ4SAfPkcUDsnhNshS5jiz3yfzoMDoYU3evBjW8zyUVATjdRmsujAb_PUg0GGIVaDXwbSjFucTN7oEEx9hXPaMMqnsqmIRxXyiD-m0PSCfNUvsII_51Xxkf1e650FqHPOklfs9IgRu-RncJLXstNk50Hu8--RgXctksxl6Oq17ukpdV-c-F3MofS-6XIMRuSF7GADPM0Fk4gOznVTYYTNwFU6nNtlgGvDaGMkRd8rAAr6qKS46x50GXsBzNv7QhHo7G0-rb4ytU-YTcqIfMPulsLrb2KXi1G_3MkfMnjtid8A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Carbon+Dioxide-Derived+Non-Viral+Gene+Vectors+for+Osteosarcoma+Gene+Therapy&rft.jtitle=Advanced+healthcare+materials&rft.au=Li%2C+Meirong&rft.au=Lin%2C+Zheng-Ian&rft.au=Yang%2C+Jingyu&rft.au=Huang%2C+Haoqiang&rft.date=2023-01-01&rft.issn=2192-2659&rft.eissn=2192-2659&rft.volume=12&rft.issue=3&rft.spage=e2201306&rft_id=info:doi/10.1002%2Fadhm.202201306&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |