Ultrafast Bi‐Directional Bending Moisture‐Responsive Soft Actuators through Superfine Silk Rod Modified Bio‐Mimicking Hierarchical Layered Structure

Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achie...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 25; pp. e2309364 - n/a
Main Authors Yu, Jing, Xu, Zongpu, Wan, Quan, Shuai, Yajun, Wang, Jie, Mao, Chuanbin, Yang, Mingying
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202309364

Cover

Abstract Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. This work presents a moisture‐responsive soft actuator capable of bi‐directional bending deformations and rapid bending rates. Inspired by Delosperma nakurense seed capsules, such deformation properties are achieved through a hierarchical structure combining a moisture‐responsive graphene oxide (GO) layer modified with a superfine silk fibroin rod (SFR) and a moisture‐inert reduced graphene oxide (RGO) layer.
AbstractList Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm −1 ) and ultrafast bending rates (7.06 cm −1  s −1 ). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.
Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.
Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm ) and ultrafast bending rates (7.06 cm  s ). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.
Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.
Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. This work presents a moisture‐responsive soft actuator capable of bi‐directional bending deformations and rapid bending rates. Inspired by Delosperma nakurense seed capsules, such deformation properties are achieved through a hierarchical structure combining a moisture‐responsive graphene oxide (GO) layer modified with a superfine silk fibroin rod (SFR) and a moisture‐inert reduced graphene oxide (RGO) layer.
Author Xu, Zongpu
Shuai, Yajun
Yu, Jing
Wan, Quan
Yang, Mingying
Mao, Chuanbin
Wang, Jie
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0003-4314-180X
  surname: Yu
  fullname: Yu, Jing
  organization: Zhejiang University
– sequence: 2
  givenname: Zongpu
  surname: Xu
  fullname: Xu, Zongpu
  organization: Zhejiang University
– sequence: 3
  givenname: Quan
  surname: Wan
  fullname: Wan, Quan
  organization: Zhejiang University
– sequence: 4
  givenname: Yajun
  surname: Shuai
  fullname: Shuai, Yajun
  organization: Zhejiang University
– sequence: 5
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: Zhejiang University
– sequence: 6
  givenname: Chuanbin
  surname: Mao
  fullname: Mao, Chuanbin
  organization: The Chinese University of Hong Kong
– sequence: 7
  givenname: Mingying
  orcidid: 0000-0003-1256-6514
  surname: Yang
  fullname: Yang, Mingying
  email: yangm@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38225691$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNvAliUaiQ2bBD_m4Vm25VGkiZCasrZcz3VzW2ccbA8oO34Ca34evwSP0hapEsIbW_J3ztU955gcDH4AQl4yumCU8rdx49yCUy5oK-ryCTliNRPzWvL24OHN6CE5jvGGUsF42Twjh0JyXtUtOyK_vrgUtNUxFaf4-8fPdxjAJPSDdsUpDD0O18XSY0xjgPx9AXHrh4jfoFh5m4oTk0adfIhFWgc_Xq-L1biFYHHIALrb4sL3Wd-jRejzBJ89lrhBczsZnyMEHcwaTZ7W6R2EDK1SGM007jl5arWL8OLunpHLD-8vz87n3eePn85OurkRjSjn3JoWhJaiopW4siXLW-veGE0Zp1Vd9T0XmhopLdWyrypBAbQ0smkayqUVM_Jmb7sN_usIMakNRgPO6QH8GBVvWZWzkmWT0deP0Bs_hhxVVILWbVVSkc-MvLqjxqsN9GobcKPDTt2HnoFyD5jgYwxglcGkp9BzFegUo2rqVk3dqodus2zxSHbv_E9Buxd8Rwe7_9Bqtey6v9o_TjG8HQ
CitedBy_id crossref_primary_10_1002_adma_202413648
crossref_primary_10_1002_adfm_202412254
crossref_primary_10_1016_j_cej_2025_160260
crossref_primary_10_1039_D4MH00631C
crossref_primary_10_1002_smll_202401580
crossref_primary_10_1016_j_cej_2024_153294
crossref_primary_10_1021_acsami_4c12834
Cites_doi 10.1021/acsnano.0c01779
10.1016/j.nanoen.2021.106677
10.1038/ncomms1336
10.1002/adma.202303805
10.1021/acsnano.6b04769
10.1002/adfm.202101291
10.1039/C8TC00747K
10.1002/adma.202002695
10.1002/admt.201900554
10.1016/j.carbon.2020.10.090
10.1002/admi.202101948
10.1038/nchem.1859
10.1021/acsami.9b20365
10.1038/s41467-021-23960-w
10.1038/s41598-017-00870-w
10.1038/s41467-019-12044-5
10.1016/j.carbon.2022.10.072
10.1016/j.eurpolymj.2016.03.012
10.1021/acsnano.1c09477
10.1016/j.fuel.2012.09.043
10.1002/adfm.202212341
10.1002/adma.201901585
10.1038/ncomms5293
10.1002/adma.201906233
10.1002/adfm.201808241
10.1038/37745
10.1002/adma.201403587
10.1002/advs.201902743
10.1073/pnas.1717912115
10.1021/acsami.8b11811
10.1002/adfm.202010578
10.1021/acsnano.1c06823
10.1038/srep08064
10.1126/sciadv.1500533
10.1039/C6SC03909J
10.1002/advs.202104697
10.1038/s41467-023-40626-x
10.1021/acsami.8b17538
10.1126/science.1140097
10.1039/C7NR09580E
10.1142/S1758825116400032
10.1021/acsami.2c00873
10.1002/adfm.202101378
10.1021/acsami.0c07956
10.1002/advs.202101295
10.1038/s41578-020-00251-2
10.1002/anie.202003737
10.1038/ncomms8346
10.1039/C8NR01785A
10.1093/nsr/nwz219
10.1002/advs.202205146
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202309364
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38225691
10_1002_smll_202309364
SMLL202309364
Genre article
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Science and Technology Plan
  funderid: 2021C02072‐6; LY22E030004
– fundername: Zhejiang University K. P.Chao's High Technology Development Foundation
  funderid: 2022RC014
– fundername: National Key R&D Program of China
  funderid: 2020YFC1806903
– fundername: National Science Foundation
  funderid: 52103149; 32101095
– fundername: State of Sericulture Industry Technology System
  funderid: CARS‐18‐ZJ0501
– fundername: Plan of National Youth Science and Technology Innovation leader
  funderid: [2020]366
– fundername: Plan of National Youth Science and Technology Innovation leader
  grantid: [2020]366
– fundername: State of Sericulture Industry Technology System
  grantid: CARS-18-ZJ0501
– fundername: Zhejiang Provincial Science and Technology Plan
  grantid: 2021C02072-6
– fundername: Zhejiang Provincial Science and Technology Plan
  grantid: LY22E030004
– fundername: National Key R&D Program of China
  grantid: 2020YFC1806903
– fundername: National Science Foundation
  grantid: 52103149
– fundername: National Science Foundation
  grantid: 32101095
– fundername: Zhejiang University K. P.Chao's High Technology Development Foundation
  grantid: 2022RC014
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAHHS
AAYOK
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3734-2fc9e3a835053bf41161adcca0120565dd23a0c88f0a8d5530eea8c8777028f3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Sep 04 17:51:20 EDT 2025
Fri Sep 12 10:17:38 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Wed Oct 01 03:39:18 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Sep 09 05:10:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords graphene oxide
moisture‐responsive material
hierarchical structure
bio‐mimicking structure
silk fibroin
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-2fc9e3a835053bf41161adcca0120565dd23a0c88f0a8d5530eea8c8777028f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1256-6514
0000-0003-4314-180X
PMID 38225691
PQID 3069540333
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2915569847
proquest_journals_3069540333
pubmed_primary_38225691
crossref_citationtrail_10_1002_smll_202309364
crossref_primary_10_1002_smll_202309364
wiley_primary_10_1002_smll_202309364_SMLL202309364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 10
2021; 6
2017; 8
2023; 14
2011; 2
2022 2021 2020 2019 2021; 14 31 14 11 8
2022 2020; 16 59
2019; 31
2022 2023; 91 35
2019; 10
2013; 105
2020; 12
2020; 32
2016; 78
2020; 7
2020 2016 2021 2022; 32 10 31 16
2014; 5
2021; 12
1997 2007 2015; 390 316 5
2022 2022 2015 2015 2022 2023; 33 9 6 1 91 35
2019; 29
2022 2018 2014; 21 115 6
2018; 10
2019 2015 2020 2021 2023 2022 2018 2021 2017 2018; 4 27 7 175 202 9 6 31 7 10
2016; 8
e_1_2_11_13_1
e_1_2_11_11_1
e_1_2_11_2_6
e_1_2_11_6_2
e_1_2_11_27_3
e_1_2_11_2_5
e_1_2_11_27_2
e_1_2_11_2_4
e_1_2_11_4_2
e_1_2_11_27_1
e_1_2_11_2_3
e_1_2_11_4_1
e_1_2_11_2_2
e_1_2_11_2_1
e_1_2_11_27_4
e_1_2_11_20_2
e_1_2_11_20_1
e_1_2_11_20_6
e_1_2_11_22_4
e_1_2_11_20_5
e_1_2_11_22_3
e_1_2_11_24_1
e_1_2_11_20_4
e_1_2_11_22_2
e_1_2_11_6_3
e_1_2_11_8_1
e_1_2_11_20_3
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_19_1
Zhang F. (e_1_2_11_6_1) 2022; 21
e_1_2_11_10_1
e_1_2_11_14_1
e_1_2_11_12_1
e_1_2_11_5_3
e_1_2_11_7_1
e_1_2_11_5_2
e_1_2_11_20_9
e_1_2_11_5_1
e_1_2_11_20_8
e_1_2_11_20_7
e_1_2_11_22_5
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_1_1
e_1_2_11_21_1
e_1_2_11_25_1
e_1_2_11_9_2
e_1_2_11_20_10
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_18_1
e_1_2_11_16_1
References_xml – volume: 33 9 6 1 91 35
  start-page: 7346
  year: 2022 2022 2015 2015 2022 2023
  publication-title: Adv. Funct. Mater. Adv. Sci. Nat. Commun. Sci. Adv. Nano Energy Adv. Mater.
– volume: 390 316 5
  start-page: 668 884 8064
  year: 1997 2007 2015
  publication-title: Nature Science Sci. Rep.
– volume: 6
  start-page: 264
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 8
  year: 2016
  publication-title: Int. J. Appl. Mech.
– volume: 2
  start-page: 337
  year: 2011
  publication-title: Nat. Commun.
– volume: 4 27 7 175 202 9 6 31 7 10
  start-page: 332 775 594 286 6416 769 8422
  year: 2019 2015 2020 2021 2023 2022 2018 2021 2017 2018
  publication-title: Adv. Mater. Technol. Adv. Mater. Nat. Sci. Rev. Carbon Carbon Adv. Mater. Inter. J. Mater. Chem. C Adv. Fun. Mater. Sci. Rep. Nanoscale
– volume: 12
  start-page: 3245
  year: 2020
  publication-title: Acs App. Mater. Interfaces
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 12
  year: 2020
  publication-title: Acs App. Mater. Interfaces
– volume: 5
  start-page: 4293
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  year: 2018
  publication-title: Acs App. Mater. Interfaces
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 32 10 31 16
  start-page: 9529 2672
  year: 2020 2016 2021 2022
  publication-title: Adv. Mater. ACS Nano Adv. Funct. Mater. ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4087
  year: 2019
  publication-title: Nat. Commun.
– volume: 14 31 14 11 8
  start-page: 7055 1440
  year: 2022 2021 2020 2019 2021
  publication-title: Acs App. Mater. Interfaces Adv. Fun. Mater. ACS Nano Acs App. Mater. Interfaces Adv. Sci.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 78
  start-page: 129
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 16 59
  start-page: 3664
  year: 2022 2020
  publication-title: ACS Nano Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 21 115 6
  start-page: 1375 70 229
  year: 2022 2018 2014
  publication-title: Nat. Mater. Proc. Natl. Acad. Sci. USA Nat. Chem.
– volume: 105
  start-page: 645
  year: 2013
  publication-title: Fuel
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 91 35
  year: 2022 2023
  publication-title: Nano Energy Adv. Mater.
– volume: 14
  start-page: 5067
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1701
  year: 2017
  publication-title: Chem. Sci.
– volume: 12
  start-page: 3711
  year: 2021
  publication-title: Nat. Commun.
– ident: e_1_2_11_22_3
  doi: 10.1021/acsnano.0c01779
– ident: e_1_2_11_9_1
  doi: 10.1016/j.nanoen.2021.106677
– ident: e_1_2_11_1_1
  doi: 10.1038/ncomms1336
– ident: e_1_2_11_9_2
  doi: 10.1002/adma.202303805
– ident: e_1_2_11_27_2
  doi: 10.1021/acsnano.6b04769
– ident: e_1_2_11_27_3
  doi: 10.1002/adfm.202101291
– ident: e_1_2_11_20_7
  doi: 10.1039/C8TC00747K
– ident: e_1_2_11_17_1
  doi: 10.1002/adma.202002695
– ident: e_1_2_11_20_1
  doi: 10.1002/admt.201900554
– volume: 21
  start-page: 1375
  year: 2022
  ident: e_1_2_11_6_1
  publication-title: Nat. Mater.
– ident: e_1_2_11_20_4
  doi: 10.1016/j.carbon.2020.10.090
– ident: e_1_2_11_20_6
  doi: 10.1002/admi.202101948
– ident: e_1_2_11_6_3
  doi: 10.1038/nchem.1859
– ident: e_1_2_11_25_1
  doi: 10.1021/acsami.9b20365
– ident: e_1_2_11_14_1
  doi: 10.1038/s41467-021-23960-w
– ident: e_1_2_11_20_9
  doi: 10.1038/s41598-017-00870-w
– ident: e_1_2_11_7_1
  doi: 10.1038/s41467-019-12044-5
– ident: e_1_2_11_20_5
  doi: 10.1016/j.carbon.2022.10.072
– ident: e_1_2_11_19_1
  doi: 10.1016/j.eurpolymj.2016.03.012
– ident: e_1_2_11_27_4
  doi: 10.1021/acsnano.1c09477
– ident: e_1_2_11_24_1
  doi: 10.1016/j.fuel.2012.09.043
– ident: e_1_2_11_2_1
  doi: 10.1002/adfm.202212341
– ident: e_1_2_11_8_1
  doi: 10.1002/adma.201901585
– ident: e_1_2_11_12_1
  doi: 10.1038/ncomms5293
– ident: e_1_2_11_27_1
  doi: 10.1002/adma.201906233
– ident: e_1_2_11_15_1
  doi: 10.1002/adfm.201808241
– ident: e_1_2_11_5_1
  doi: 10.1038/37745
– ident: e_1_2_11_20_2
  doi: 10.1002/adma.201403587
– ident: e_1_2_11_18_1
  doi: 10.1002/advs.201902743
– ident: e_1_2_11_6_2
  doi: 10.1073/pnas.1717912115
– ident: e_1_2_11_16_1
  doi: 10.1021/acsami.8b11811
– ident: e_1_2_11_20_8
  doi: 10.1002/adfm.202010578
– ident: e_1_2_11_4_1
  doi: 10.1021/acsnano.1c06823
– ident: e_1_2_11_5_3
  doi: 10.1038/srep08064
– ident: e_1_2_11_2_4
  doi: 10.1126/sciadv.1500533
– ident: e_1_2_11_23_1
  doi: 10.1039/C6SC03909J
– ident: e_1_2_11_2_2
  doi: 10.1002/advs.202104697
– ident: e_1_2_11_26_1
  doi: 10.1038/s41467-023-40626-x
– ident: e_1_2_11_22_4
  doi: 10.1021/acsami.8b17538
– ident: e_1_2_11_5_2
  doi: 10.1126/science.1140097
– ident: e_1_2_11_20_10
  doi: 10.1039/C7NR09580E
– ident: e_1_2_11_21_1
  doi: 10.1142/S1758825116400032
– ident: e_1_2_11_22_1
  doi: 10.1021/acsami.2c00873
– ident: e_1_2_11_22_2
  doi: 10.1002/adfm.202101378
– ident: e_1_2_11_2_5
  doi: 10.1016/j.nanoen.2021.106677
– ident: e_1_2_11_13_1
  doi: 10.1021/acsami.0c07956
– ident: e_1_2_11_22_5
  doi: 10.1002/advs.202101295
– ident: e_1_2_11_10_1
  doi: 10.1038/s41578-020-00251-2
– ident: e_1_2_11_2_6
  doi: 10.1002/adma.202303805
– ident: e_1_2_11_4_2
  doi: 10.1002/anie.202003737
– ident: e_1_2_11_2_3
  doi: 10.1038/ncomms8346
– ident: e_1_2_11_11_1
  doi: 10.1039/C8NR01785A
– ident: e_1_2_11_20_3
  doi: 10.1093/nsr/nwz219
– ident: e_1_2_11_3_1
  doi: 10.1002/advs.202205146
SSID ssj0031247
Score 2.5074825
Snippet Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their...
Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2309364
SubjectTerms Actuators
Bending
Bionics
bio‐mimicking structure
Confined spaces
Deformation
Graphene
graphene oxide
hierarchical structure
Interlayers
Moisture
moisture‐responsive material
Robot arms
Silk fibroin
Ultrafines
Title Ultrafast Bi‐Directional Bending Moisture‐Responsive Soft Actuators through Superfine Silk Rod Modified Bio‐Mimicking Hierarchical Layered Structure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202309364
https://www.ncbi.nlm.nih.gov/pubmed/38225691
https://www.proquest.com/docview/3069540333
https://www.proquest.com/docview/2915569847
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ekx7W9bEaX7QgeIpm0klm5qiiDDLjYUbBW-hXIBgTMTMLuyd_wp735_lLrOpkoqOIoLeE7k4n6Xp8_aivAPaN0h766dBV3BMuzr-MKxPZdlUUJkp10SIqWhoYXEa96-DiJrx5FcVf8UM0C26kGdZek4ILWR69kIaWdxltHfi0lRcRIWiLh3afdtjwR3F0Xja7Cvosl4i3pqyNnn8023zWK72DmrPI1bqe8yUQ05euTpzcHk7G8lD9fcPn-J2v-gk_alzKjitBWoY5k6_A4iu2wlX4f52NH0QiyjE7SZ8e_9XWkqA8OzE2OoYNChSbyYPB4mF9-va3YSO09eyYQlUotw-rcwOx0eSecmTnWCHNbtmw0NhepwmiYuyhwGcM0rtU0WI-66UUKW0Tt2SsL_5QilE2suS32N0aXJ2fXZ323Dq1A8pEmweun6iu4QLhHxoBmQQtHCKhUZoolhcxptY-F57qdBJPdDSlNjJGdBSRFyIgSvgvmM-L3GwA83hbSxFJnNaJQAWhVCZAYQuVjjwZtj0H3OnIxqqmPafsG1lcETb7Mf3yuPnlDhw09e8rwo8Pa25PBSWuFb-McQbWRRDMOXdgrylGlaV9GJGbYlLGPnHyR13EBQ6sVwLWdMURsGFZywHfiskn7xCPBv1-c7f5lUZbsIDXQXX8bRvmceTMDgKtsdy1yvQMYKslpQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD5BeFAeUESgijImJj6VLZ22u_sIKlmx5WF3SXibzK1JQ2kJu0uCT_4En_15_hLP6Q1XY0z0sZ2ZTts5l28u5zsAb6w2Hvrp0NXcky7Ov6yrUtV3dRSmWg_RImpaGkjOotF5cHoRtqcJKRam5ofoFtxIMyp7TQpOC9K9e9bQ2VVOewc-7eVFwQNYo0060s33445BiqP7qvKroNdyiXqr5W30_N5y-2W_9BvYXMaulfM5eQyqfe36zMnlwWKuDvTnXxgd_-u7nsBGA03ZUS1Lm7Bii6ew_hNh4RZ8O8_nNzKVszk7zr5_-doYTELz7NhWATIsKVFyFjcWi8fNAdxbyyZo7tkRRatQeh_WpAdik8U1pckusEKWX7JxabC9yVIExthDic9IsqtM03o-G2UULF3lbslZLO8oyyibVPy32N0zmJ58mL4buU12BxSLPg9cP9VDyyUiQLQDKg0OcYykQYGicF6Emcb4XHp6MEg9OTCU3chaOdDEX4iYKOXbsFqUhd0F5vG-UTJSOLOTgQ5CpW2A8hZqE3kq7HsOuO3QCt0wn1MCjlzUnM2-oF8uul_uwNuu_nXN-fHHmnutpIhG92cCJ2FDxMGccwded8WotbQVIwtbLmbCJ1r-aIjQwIGdWsK6rjhiNiw7dMCv5OQv7yAmSRx3V8__pdE-PBxNk1jEH88-vYBHeD-oT8PtwSqOon2JuGuuXlWa9QObminB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRAcgPI0FLpIlXpy63rXTnJsgSiUpKqSVupttU_JqmtHTYIEJ34CZ34ev4QZ23GbIoQER3t3vbZ3Ht8-5huALWdshH46CQ2PVIjzLxdqrzuhSRNvTA8toqGlgdFROjgVh2fJ2bUo_pofol1wI82o7DUp-NT63SvS0NlFTlsHMW3lpeI23BEpTrEIFo1bAimO3qtKr4JOKyTmrSVtYxTvrrZfdUu_Yc1V6Fr5nv5DUMu3ro-cnO8s5nrHfL1B6Pg_n_UIHjTAlO3XkrQOt1zxGO5foyt8Aj9O8_ml8mo2ZwfZz2_fG3NJWJ4duCo8ho1KlJvFpcPicXP89rNjEzT2bJ9iVSi5D2uSA7HJYkpJsguskOXnbFxabG8zj7AYeyjxGaPsIjO0ms8GGYVKV5lbcjZUXyjHKJtU7LfY3VM46X84eTcIm9wOKBQdLsLYm57jCvEfWgHtxR4OkbIoThTMiyDT2piryHS7PlJdS7mNnFNdQ-yFiIg8fwZrRVm4F8Ai3rFapRrndUoYkWjjBEpbYmwa6aQTBRAuR1aahvec0m_ksmZsjiX9ctn-8gC22_rTmvHjjzU3loIiG82fSZyC9RAFc84DeNsWo87SRowqXLmYyZhI-dMeAoMAntcC1nbFEbFh2V4AcSUmf3kHORkNh-3Vy39ptAl3j9_35fDj0adXcA9vi_oo3Aas4SC61wi65vpNpVe_AAZ0KHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Bi-Directional+Bending+Moisture-Responsive+Soft+Actuators+through+Superfine+Silk+Rod+Modified+Bio-Mimicking+Hierarchical+Layered+Structure&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yu%2C+Jing&rft.au=Xu%2C+Zongpu&rft.au=Wan%2C+Quan&rft.au=Shuai%2C+Yajun&rft.date=2024-06-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=25&rft.spage=e2309364&rft_id=info:doi/10.1002%2Fsmll.202309364&rft_id=info%3Apmid%2F38225691&rft.externalDocID=38225691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon