Ultrafast Bi‐Directional Bending Moisture‐Responsive Soft Actuators through Superfine Silk Rod Modified Bio‐Mimicking Hierarchical Layered Structure
Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achie...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 25; pp. e2309364 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202309364 |
Cover
Abstract | Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.
This work presents a moisture‐responsive soft actuator capable of bi‐directional bending deformations and rapid bending rates. Inspired by Delosperma nakurense seed capsules, such deformation properties are achieved through a hierarchical structure combining a moisture‐responsive graphene oxide (GO) layer modified with a superfine silk fibroin rod (SFR) and a moisture‐inert reduced graphene oxide (RGO) layer. |
---|---|
AbstractList | Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of
Delosperma nakurense (D. nakurense)
seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm
−1
) and ultrafast bending rates (7.06 cm
−1
s
−1
). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm-1) and ultrafast bending rates (7.06 cm-1 s-1). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their accessibility, eco-friendliness, and robust regenerative attributes. A major challenge of moisture-responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi-directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture-responsive layer with a moisture-inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi-directional bending deformation (-4.06 ± 0.09 to 10.44 ± 0.00 cm ) and ultrafast bending rates (7.06 cm s ). The high deformation rate is achieved by incorporating the SFR into the moisture-responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure of Delosperma nakurense (D. nakurense) seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments. This work presents a moisture‐responsive soft actuator capable of bi‐directional bending deformations and rapid bending rates. Inspired by Delosperma nakurense seed capsules, such deformation properties are achieved through a hierarchical structure combining a moisture‐responsive graphene oxide (GO) layer modified with a superfine silk fibroin rod (SFR) and a moisture‐inert reduced graphene oxide (RGO) layer. |
Author | Xu, Zongpu Shuai, Yajun Yu, Jing Wan, Quan Yang, Mingying Mao, Chuanbin Wang, Jie |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0003-4314-180X surname: Yu fullname: Yu, Jing organization: Zhejiang University – sequence: 2 givenname: Zongpu surname: Xu fullname: Xu, Zongpu organization: Zhejiang University – sequence: 3 givenname: Quan surname: Wan fullname: Wan, Quan organization: Zhejiang University – sequence: 4 givenname: Yajun surname: Shuai fullname: Shuai, Yajun organization: Zhejiang University – sequence: 5 givenname: Jie surname: Wang fullname: Wang, Jie organization: Zhejiang University – sequence: 6 givenname: Chuanbin surname: Mao fullname: Mao, Chuanbin organization: The Chinese University of Hong Kong – sequence: 7 givenname: Mingying orcidid: 0000-0003-1256-6514 surname: Yang fullname: Yang, Mingying email: yangm@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38225691$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URNvAliUaiQ2bBD_m4Vm25VGkiZCasrZcz3VzW2ccbA8oO34Ca34evwSP0hapEsIbW_J3ztU955gcDH4AQl4yumCU8rdx49yCUy5oK-ryCTliNRPzWvL24OHN6CE5jvGGUsF42Twjh0JyXtUtOyK_vrgUtNUxFaf4-8fPdxjAJPSDdsUpDD0O18XSY0xjgPx9AXHrh4jfoFh5m4oTk0adfIhFWgc_Xq-L1biFYHHIALrb4sL3Wd-jRejzBJ89lrhBczsZnyMEHcwaTZ7W6R2EDK1SGM007jl5arWL8OLunpHLD-8vz87n3eePn85OurkRjSjn3JoWhJaiopW4siXLW-veGE0Zp1Vd9T0XmhopLdWyrypBAbQ0smkayqUVM_Jmb7sN_usIMakNRgPO6QH8GBVvWZWzkmWT0deP0Bs_hhxVVILWbVVSkc-MvLqjxqsN9GobcKPDTt2HnoFyD5jgYwxglcGkp9BzFegUo2rqVk3dqodus2zxSHbv_E9Buxd8Rwe7_9Bqtey6v9o_TjG8HQ |
CitedBy_id | crossref_primary_10_1002_adma_202413648 crossref_primary_10_1002_adfm_202412254 crossref_primary_10_1016_j_cej_2025_160260 crossref_primary_10_1039_D4MH00631C crossref_primary_10_1002_smll_202401580 crossref_primary_10_1016_j_cej_2024_153294 crossref_primary_10_1021_acsami_4c12834 |
Cites_doi | 10.1021/acsnano.0c01779 10.1016/j.nanoen.2021.106677 10.1038/ncomms1336 10.1002/adma.202303805 10.1021/acsnano.6b04769 10.1002/adfm.202101291 10.1039/C8TC00747K 10.1002/adma.202002695 10.1002/admt.201900554 10.1016/j.carbon.2020.10.090 10.1002/admi.202101948 10.1038/nchem.1859 10.1021/acsami.9b20365 10.1038/s41467-021-23960-w 10.1038/s41598-017-00870-w 10.1038/s41467-019-12044-5 10.1016/j.carbon.2022.10.072 10.1016/j.eurpolymj.2016.03.012 10.1021/acsnano.1c09477 10.1016/j.fuel.2012.09.043 10.1002/adfm.202212341 10.1002/adma.201901585 10.1038/ncomms5293 10.1002/adma.201906233 10.1002/adfm.201808241 10.1038/37745 10.1002/adma.201403587 10.1002/advs.201902743 10.1073/pnas.1717912115 10.1021/acsami.8b11811 10.1002/adfm.202010578 10.1021/acsnano.1c06823 10.1038/srep08064 10.1126/sciadv.1500533 10.1039/C6SC03909J 10.1002/advs.202104697 10.1038/s41467-023-40626-x 10.1021/acsami.8b17538 10.1126/science.1140097 10.1039/C7NR09580E 10.1142/S1758825116400032 10.1021/acsami.2c00873 10.1002/adfm.202101378 10.1021/acsami.0c07956 10.1002/advs.202101295 10.1038/s41578-020-00251-2 10.1002/anie.202003737 10.1038/ncomms8346 10.1039/C8NR01785A 10.1093/nsr/nwz219 10.1002/advs.202205146 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202309364 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38225691 10_1002_smll_202309364 SMLL202309364 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Science and Technology Plan funderid: 2021C02072‐6; LY22E030004 – fundername: Zhejiang University K. P.Chao's High Technology Development Foundation funderid: 2022RC014 – fundername: National Key R&D Program of China funderid: 2020YFC1806903 – fundername: National Science Foundation funderid: 52103149; 32101095 – fundername: State of Sericulture Industry Technology System funderid: CARS‐18‐ZJ0501 – fundername: Plan of National Youth Science and Technology Innovation leader funderid: [2020]366 – fundername: Plan of National Youth Science and Technology Innovation leader grantid: [2020]366 – fundername: State of Sericulture Industry Technology System grantid: CARS-18-ZJ0501 – fundername: Zhejiang Provincial Science and Technology Plan grantid: 2021C02072-6 – fundername: Zhejiang Provincial Science and Technology Plan grantid: LY22E030004 – fundername: National Key R&D Program of China grantid: 2020YFC1806903 – fundername: National Science Foundation grantid: 52103149 – fundername: National Science Foundation grantid: 32101095 – fundername: Zhejiang University K. P.Chao's High Technology Development Foundation grantid: 2022RC014 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAHHS AAYOK ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3734-2fc9e3a835053bf41161adcca0120565dd23a0c88f0a8d5530eea8c8777028f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Sep 04 17:51:20 EDT 2025 Fri Sep 12 10:17:38 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Wed Oct 01 03:39:18 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Sep 09 05:10:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | graphene oxide moisture‐responsive material hierarchical structure bio‐mimicking structure silk fibroin |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-2fc9e3a835053bf41161adcca0120565dd23a0c88f0a8d5530eea8c8777028f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1256-6514 0000-0003-4314-180X |
PMID | 38225691 |
PQID | 3069540333 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2915569847 proquest_journals_3069540333 pubmed_primary_38225691 crossref_citationtrail_10_1002_smll_202309364 crossref_primary_10_1002_smll_202309364 wiley_primary_10_1002_smll_202309364_SMLL202309364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 10 2021; 6 2017; 8 2023; 14 2011; 2 2022 2021 2020 2019 2021; 14 31 14 11 8 2022 2020; 16 59 2019; 31 2022 2023; 91 35 2019; 10 2013; 105 2020; 12 2020; 32 2016; 78 2020; 7 2020 2016 2021 2022; 32 10 31 16 2014; 5 2021; 12 1997 2007 2015; 390 316 5 2022 2022 2015 2015 2022 2023; 33 9 6 1 91 35 2019; 29 2022 2018 2014; 21 115 6 2018; 10 2019 2015 2020 2021 2023 2022 2018 2021 2017 2018; 4 27 7 175 202 9 6 31 7 10 2016; 8 e_1_2_11_13_1 e_1_2_11_11_1 e_1_2_11_2_6 e_1_2_11_6_2 e_1_2_11_27_3 e_1_2_11_2_5 e_1_2_11_27_2 e_1_2_11_2_4 e_1_2_11_4_2 e_1_2_11_27_1 e_1_2_11_2_3 e_1_2_11_4_1 e_1_2_11_2_2 e_1_2_11_2_1 e_1_2_11_27_4 e_1_2_11_20_2 e_1_2_11_20_1 e_1_2_11_20_6 e_1_2_11_22_4 e_1_2_11_20_5 e_1_2_11_22_3 e_1_2_11_24_1 e_1_2_11_20_4 e_1_2_11_22_2 e_1_2_11_6_3 e_1_2_11_8_1 e_1_2_11_20_3 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_19_1 Zhang F. (e_1_2_11_6_1) 2022; 21 e_1_2_11_10_1 e_1_2_11_14_1 e_1_2_11_12_1 e_1_2_11_5_3 e_1_2_11_7_1 e_1_2_11_5_2 e_1_2_11_20_9 e_1_2_11_5_1 e_1_2_11_20_8 e_1_2_11_20_7 e_1_2_11_22_5 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_1_1 e_1_2_11_21_1 e_1_2_11_25_1 e_1_2_11_9_2 e_1_2_11_20_10 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_18_1 e_1_2_11_16_1 |
References_xml | – volume: 33 9 6 1 91 35 start-page: 7346 year: 2022 2022 2015 2015 2022 2023 publication-title: Adv. Funct. Mater. Adv. Sci. Nat. Commun. Sci. Adv. Nano Energy Adv. Mater. – volume: 390 316 5 start-page: 668 884 8064 year: 1997 2007 2015 publication-title: Nature Science Sci. Rep. – volume: 6 start-page: 264 year: 2021 publication-title: Nat. Rev. Mater. – volume: 8 year: 2016 publication-title: Int. J. Appl. Mech. – volume: 2 start-page: 337 year: 2011 publication-title: Nat. Commun. – volume: 4 27 7 175 202 9 6 31 7 10 start-page: 332 775 594 286 6416 769 8422 year: 2019 2015 2020 2021 2023 2022 2018 2021 2017 2018 publication-title: Adv. Mater. Technol. Adv. Mater. Nat. Sci. Rev. Carbon Carbon Adv. Mater. Inter. J. Mater. Chem. C Adv. Fun. Mater. Sci. Rep. Nanoscale – volume: 12 start-page: 3245 year: 2020 publication-title: Acs App. Mater. Interfaces – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 12 year: 2020 publication-title: Acs App. Mater. Interfaces – volume: 5 start-page: 4293 year: 2014 publication-title: Nat. Commun. – volume: 10 year: 2018 publication-title: Acs App. Mater. Interfaces – volume: 10 year: 2018 publication-title: Nanoscale – volume: 32 10 31 16 start-page: 9529 2672 year: 2020 2016 2021 2022 publication-title: Adv. Mater. ACS Nano Adv. Funct. Mater. ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 4087 year: 2019 publication-title: Nat. Commun. – volume: 14 31 14 11 8 start-page: 7055 1440 year: 2022 2021 2020 2019 2021 publication-title: Acs App. Mater. Interfaces Adv. Fun. Mater. ACS Nano Acs App. Mater. Interfaces Adv. Sci. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 78 start-page: 129 year: 2016 publication-title: Eur. Polym. J. – volume: 16 59 start-page: 3664 year: 2022 2020 publication-title: ACS Nano Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 21 115 6 start-page: 1375 70 229 year: 2022 2018 2014 publication-title: Nat. Mater. Proc. Natl. Acad. Sci. USA Nat. Chem. – volume: 105 start-page: 645 year: 2013 publication-title: Fuel – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 91 35 year: 2022 2023 publication-title: Nano Energy Adv. Mater. – volume: 14 start-page: 5067 year: 2023 publication-title: Nat. Commun. – volume: 8 start-page: 1701 year: 2017 publication-title: Chem. Sci. – volume: 12 start-page: 3711 year: 2021 publication-title: Nat. Commun. – ident: e_1_2_11_22_3 doi: 10.1021/acsnano.0c01779 – ident: e_1_2_11_9_1 doi: 10.1016/j.nanoen.2021.106677 – ident: e_1_2_11_1_1 doi: 10.1038/ncomms1336 – ident: e_1_2_11_9_2 doi: 10.1002/adma.202303805 – ident: e_1_2_11_27_2 doi: 10.1021/acsnano.6b04769 – ident: e_1_2_11_27_3 doi: 10.1002/adfm.202101291 – ident: e_1_2_11_20_7 doi: 10.1039/C8TC00747K – ident: e_1_2_11_17_1 doi: 10.1002/adma.202002695 – ident: e_1_2_11_20_1 doi: 10.1002/admt.201900554 – volume: 21 start-page: 1375 year: 2022 ident: e_1_2_11_6_1 publication-title: Nat. Mater. – ident: e_1_2_11_20_4 doi: 10.1016/j.carbon.2020.10.090 – ident: e_1_2_11_20_6 doi: 10.1002/admi.202101948 – ident: e_1_2_11_6_3 doi: 10.1038/nchem.1859 – ident: e_1_2_11_25_1 doi: 10.1021/acsami.9b20365 – ident: e_1_2_11_14_1 doi: 10.1038/s41467-021-23960-w – ident: e_1_2_11_20_9 doi: 10.1038/s41598-017-00870-w – ident: e_1_2_11_7_1 doi: 10.1038/s41467-019-12044-5 – ident: e_1_2_11_20_5 doi: 10.1016/j.carbon.2022.10.072 – ident: e_1_2_11_19_1 doi: 10.1016/j.eurpolymj.2016.03.012 – ident: e_1_2_11_27_4 doi: 10.1021/acsnano.1c09477 – ident: e_1_2_11_24_1 doi: 10.1016/j.fuel.2012.09.043 – ident: e_1_2_11_2_1 doi: 10.1002/adfm.202212341 – ident: e_1_2_11_8_1 doi: 10.1002/adma.201901585 – ident: e_1_2_11_12_1 doi: 10.1038/ncomms5293 – ident: e_1_2_11_27_1 doi: 10.1002/adma.201906233 – ident: e_1_2_11_15_1 doi: 10.1002/adfm.201808241 – ident: e_1_2_11_5_1 doi: 10.1038/37745 – ident: e_1_2_11_20_2 doi: 10.1002/adma.201403587 – ident: e_1_2_11_18_1 doi: 10.1002/advs.201902743 – ident: e_1_2_11_6_2 doi: 10.1073/pnas.1717912115 – ident: e_1_2_11_16_1 doi: 10.1021/acsami.8b11811 – ident: e_1_2_11_20_8 doi: 10.1002/adfm.202010578 – ident: e_1_2_11_4_1 doi: 10.1021/acsnano.1c06823 – ident: e_1_2_11_5_3 doi: 10.1038/srep08064 – ident: e_1_2_11_2_4 doi: 10.1126/sciadv.1500533 – ident: e_1_2_11_23_1 doi: 10.1039/C6SC03909J – ident: e_1_2_11_2_2 doi: 10.1002/advs.202104697 – ident: e_1_2_11_26_1 doi: 10.1038/s41467-023-40626-x – ident: e_1_2_11_22_4 doi: 10.1021/acsami.8b17538 – ident: e_1_2_11_5_2 doi: 10.1126/science.1140097 – ident: e_1_2_11_20_10 doi: 10.1039/C7NR09580E – ident: e_1_2_11_21_1 doi: 10.1142/S1758825116400032 – ident: e_1_2_11_22_1 doi: 10.1021/acsami.2c00873 – ident: e_1_2_11_22_2 doi: 10.1002/adfm.202101378 – ident: e_1_2_11_2_5 doi: 10.1016/j.nanoen.2021.106677 – ident: e_1_2_11_13_1 doi: 10.1021/acsami.0c07956 – ident: e_1_2_11_22_5 doi: 10.1002/advs.202101295 – ident: e_1_2_11_10_1 doi: 10.1038/s41578-020-00251-2 – ident: e_1_2_11_2_6 doi: 10.1002/adma.202303805 – ident: e_1_2_11_4_2 doi: 10.1002/anie.202003737 – ident: e_1_2_11_2_3 doi: 10.1038/ncomms8346 – ident: e_1_2_11_11_1 doi: 10.1039/C8NR01785A – ident: e_1_2_11_20_3 doi: 10.1093/nsr/nwz219 – ident: e_1_2_11_3_1 doi: 10.1002/advs.202205146 |
SSID | ssj0031247 |
Score | 2.5074825 |
Snippet | Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their... Development of stimulus-responsive materials is crucial for novel soft actuators. Among these actuators, the moisture-responsive actuators are known for their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309364 |
SubjectTerms | Actuators Bending Bionics bio‐mimicking structure Confined spaces Deformation Graphene graphene oxide hierarchical structure Interlayers Moisture moisture‐responsive material Robot arms Silk fibroin Ultrafines |
Title | Ultrafast Bi‐Directional Bending Moisture‐Responsive Soft Actuators through Superfine Silk Rod Modified Bio‐Mimicking Hierarchical Layered Structure |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202309364 https://www.ncbi.nlm.nih.gov/pubmed/38225691 https://www.proquest.com/docview/3069540333 https://www.proquest.com/docview/2915569847 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ekx7W9bEaX7QgeIpm0klm5qiiDDLjYUbBW-hXIBgTMTMLuyd_wp735_lLrOpkoqOIoLeE7k4n6Xp8_aivAPaN0h766dBV3BMuzr-MKxPZdlUUJkp10SIqWhoYXEa96-DiJrx5FcVf8UM0C26kGdZek4ILWR69kIaWdxltHfi0lRcRIWiLh3afdtjwR3F0Xja7Cvosl4i3pqyNnn8023zWK72DmrPI1bqe8yUQ05euTpzcHk7G8lD9fcPn-J2v-gk_alzKjitBWoY5k6_A4iu2wlX4f52NH0QiyjE7SZ8e_9XWkqA8OzE2OoYNChSbyYPB4mF9-va3YSO09eyYQlUotw-rcwOx0eSecmTnWCHNbtmw0NhepwmiYuyhwGcM0rtU0WI-66UUKW0Tt2SsL_5QilE2suS32N0aXJ2fXZ323Dq1A8pEmweun6iu4QLhHxoBmQQtHCKhUZoolhcxptY-F57qdBJPdDSlNjJGdBSRFyIgSvgvmM-L3GwA83hbSxFJnNaJQAWhVCZAYQuVjjwZtj0H3OnIxqqmPafsG1lcETb7Mf3yuPnlDhw09e8rwo8Pa25PBSWuFb-McQbWRRDMOXdgrylGlaV9GJGbYlLGPnHyR13EBQ6sVwLWdMURsGFZywHfiskn7xCPBv1-c7f5lUZbsIDXQXX8bRvmceTMDgKtsdy1yvQMYKslpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9RAFD5BeFAeUESgijImJj6VLZ22u_sIKlmx5WF3SXibzK1JQ2kJu0uCT_4En_15_hLP6Q1XY0z0sZ2ZTts5l28u5zsAb6w2Hvrp0NXcky7Ov6yrUtV3dRSmWg_RImpaGkjOotF5cHoRtqcJKRam5ofoFtxIMyp7TQpOC9K9e9bQ2VVOewc-7eVFwQNYo0060s33445BiqP7qvKroNdyiXqr5W30_N5y-2W_9BvYXMaulfM5eQyqfe36zMnlwWKuDvTnXxgd_-u7nsBGA03ZUS1Lm7Bii6ew_hNh4RZ8O8_nNzKVszk7zr5_-doYTELz7NhWATIsKVFyFjcWi8fNAdxbyyZo7tkRRatQeh_WpAdik8U1pckusEKWX7JxabC9yVIExthDic9IsqtM03o-G2UULF3lbslZLO8oyyibVPy32N0zmJ58mL4buU12BxSLPg9cP9VDyyUiQLQDKg0OcYykQYGicF6Emcb4XHp6MEg9OTCU3chaOdDEX4iYKOXbsFqUhd0F5vG-UTJSOLOTgQ5CpW2A8hZqE3kq7HsOuO3QCt0wn1MCjlzUnM2-oF8uul_uwNuu_nXN-fHHmnutpIhG92cCJ2FDxMGccwded8WotbQVIwtbLmbCJ1r-aIjQwIGdWsK6rjhiNiw7dMCv5OQv7yAmSRx3V8__pdE-PBxNk1jEH88-vYBHeD-oT8PtwSqOon2JuGuuXlWa9QObminB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkRAcgPI0FLpIlXpy63rXTnJsgSiUpKqSVupttU_JqmtHTYIEJ34CZ34ev4QZ23GbIoQER3t3vbZ3Ht8-5huALWdshH46CQ2PVIjzLxdqrzuhSRNvTA8toqGlgdFROjgVh2fJ2bUo_pofol1wI82o7DUp-NT63SvS0NlFTlsHMW3lpeI23BEpTrEIFo1bAimO3qtKr4JOKyTmrSVtYxTvrrZfdUu_Yc1V6Fr5nv5DUMu3ro-cnO8s5nrHfL1B6Pg_n_UIHjTAlO3XkrQOt1zxGO5foyt8Aj9O8_ml8mo2ZwfZz2_fG3NJWJ4duCo8ho1KlJvFpcPicXP89rNjEzT2bJ9iVSi5D2uSA7HJYkpJsguskOXnbFxabG8zj7AYeyjxGaPsIjO0ms8GGYVKV5lbcjZUXyjHKJtU7LfY3VM46X84eTcIm9wOKBQdLsLYm57jCvEfWgHtxR4OkbIoThTMiyDT2piryHS7PlJdS7mNnFNdQ-yFiIg8fwZrRVm4F8Ai3rFapRrndUoYkWjjBEpbYmwa6aQTBRAuR1aahvec0m_ksmZsjiX9ctn-8gC22_rTmvHjjzU3loIiG82fSZyC9RAFc84DeNsWo87SRowqXLmYyZhI-dMeAoMAntcC1nbFEbFh2V4AcSUmf3kHORkNh-3Vy39ptAl3j9_35fDj0adXcA9vi_oo3Aas4SC61wi65vpNpVe_AAZ0KHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Bi-Directional+Bending+Moisture-Responsive+Soft+Actuators+through+Superfine+Silk+Rod+Modified+Bio-Mimicking+Hierarchical+Layered+Structure&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yu%2C+Jing&rft.au=Xu%2C+Zongpu&rft.au=Wan%2C+Quan&rft.au=Shuai%2C+Yajun&rft.date=2024-06-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=25&rft.spage=e2309364&rft_id=info:doi/10.1002%2Fsmll.202309364&rft_id=info%3Apmid%2F38225691&rft.externalDocID=38225691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |